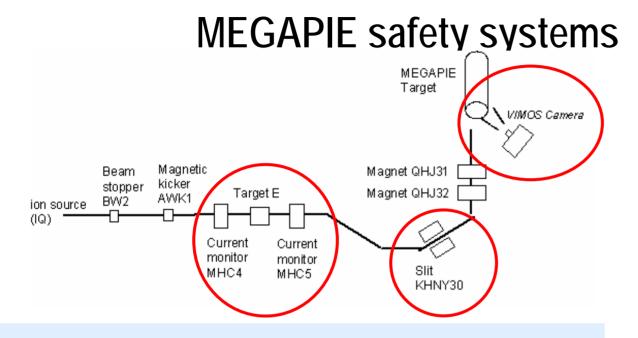
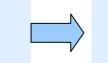

SAFETY EVALUATION OF THE MEGAPIE EXPERIMENTAL FACILITY: RESULTS AND INSIGHTS FROM THE APPLICATION OF PROBABILISTIC SAFETY ASSESSMENT

Luca Podofillini, Vinh N. Dang

Risk and Human Reliability Group Paul Scherrer Institute, Villigen PSI, Switzerland


May 7, 2007



- Over-Focused beam → excessive intensity onto the target → breach of the LMC [MEGAPIE safety report; Smith, 2006]
- "Critical" components to avoid over-focusing are:
 - Scattering Target E diffuses beam intensity distribution
 - Quadrupoles QJ31-QJ32 located downstream of two out of three safety systems

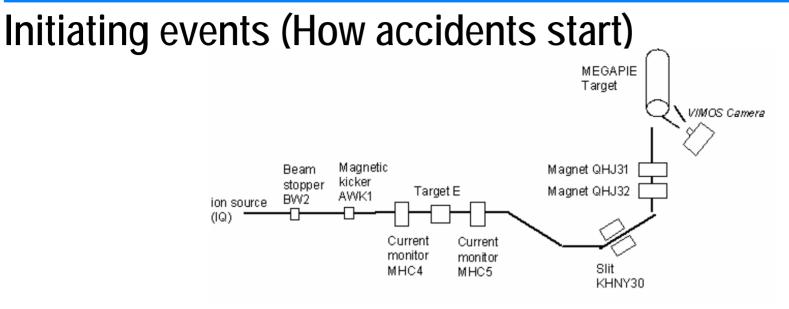
- MHC4/5 monitors transmission across scattering Target E
- KHNY30 –limits allowed spread of the trajectory →
 Detects if protons are correctly scattered by Target E

Beam shutdown if parameters are outside allowed range

• VIMOS – visually monitors beam intensity distribution

!!! There are additional safety barriers, e.g. components settings supervisions, that were outside the scope or this analysis

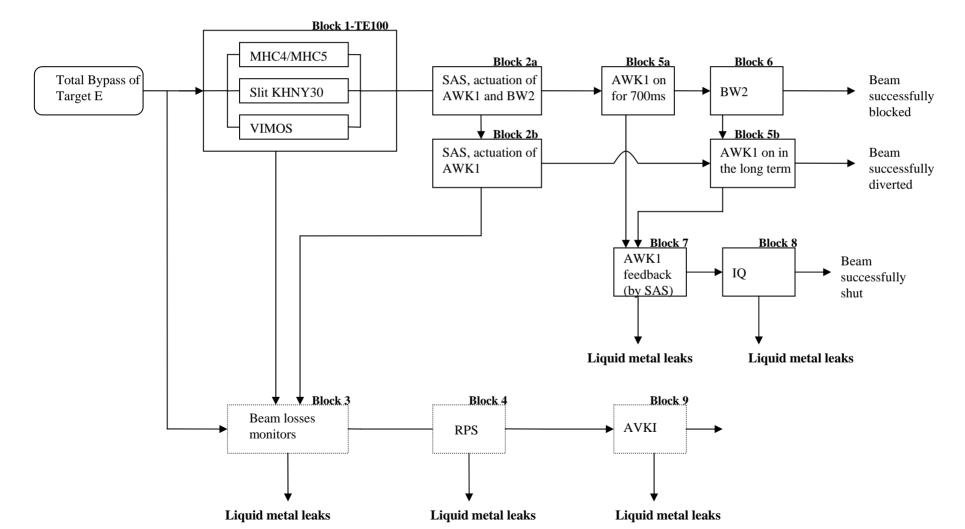
Goals of this study


- Evaluate redundancy and diversity of the MEGAPIE safety system
- Suggest possible safety-enhancing improvements

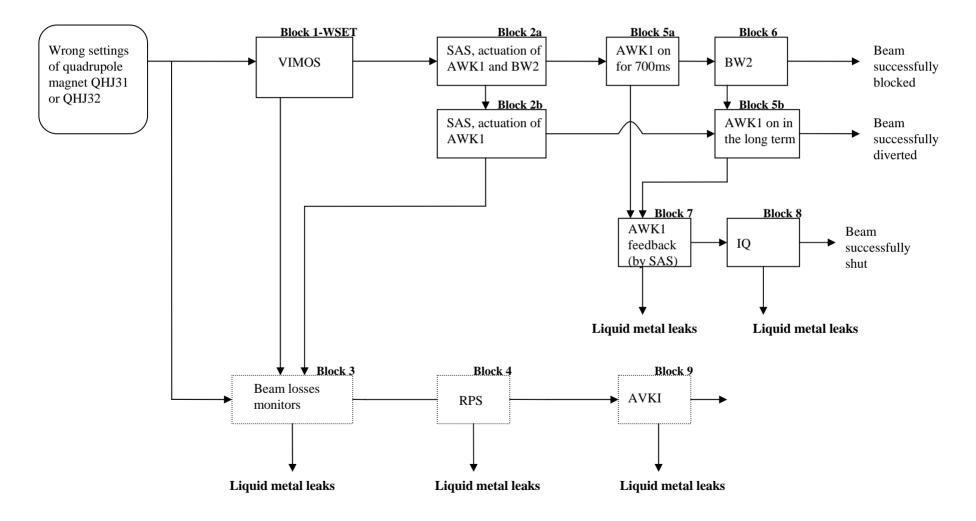
📃 The tool

 Probabilistic safety assessment (PSA): methods to analyze systems, model scenarios and failures, calculate risk and its contributors

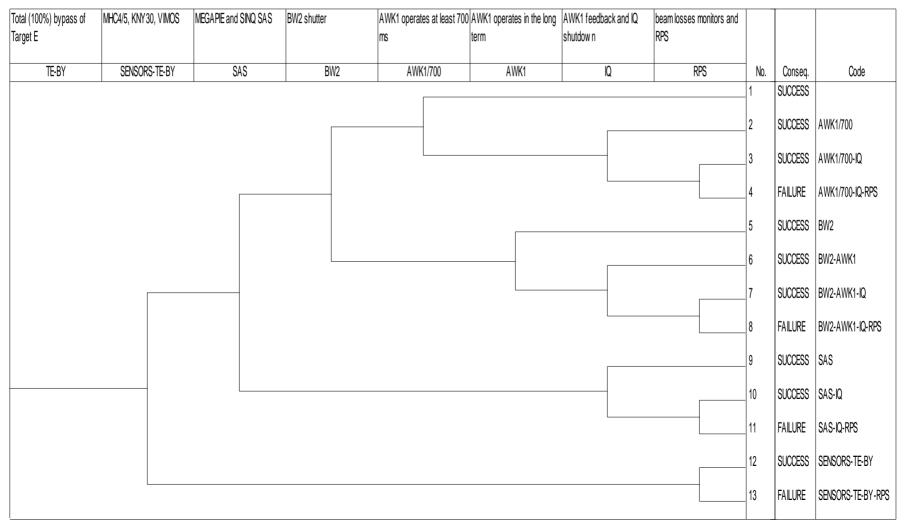
- "event trees and fault trees"

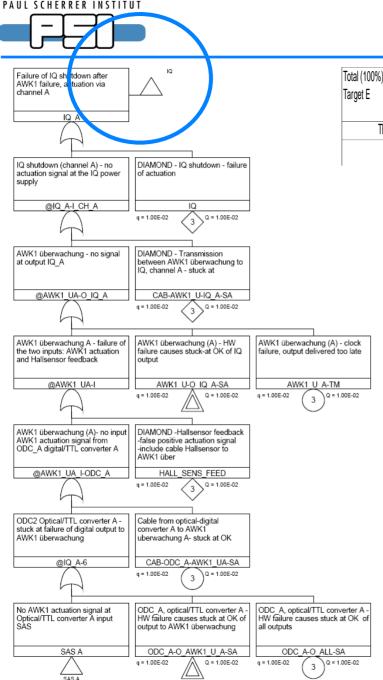

- Three events potentially initiating an accident of excessive beam over-focus:
 - TE-BY total bypass of Target E by protons beam
 - WSET1 Wrong settings of QHJ31 or QHJ32. Wrong settings loaded into the components control devices
 - WSET2 Wrong settings of QHJ31 or QHJ32. Magnets failure to set or of control devices to command current

6


Model of scenario TE-BY

Event sequence diagrams: required functions and systems


Model of scenario WSET1



Model of scenario TE-BY

Event Trees: sequence of functions and systems

				I		cigy	difu concey	
100%) bypass of E	MHC4/5, KNY 30, VIMOS	MEGAPIE and SINQ SAS	BW2 shutter	AWK1 operates at least 700 ms	AWK1 operates in t term	ne long	AWK1 feedback and shutdow n	
TE-BY	SENSORS-TE-BY	SAS	BW2	AWK1/700	AWK1		IQ	

Fault trees

Risk and Human Reliability Group

Nuclear Energy and Safety

- Systematic analysis of the possible causes of functional failures
- Functional failures are systematically traced back to basic events failures (ANDs/ORs)
- Basic events: basic components failure modes (cables, electronic devices, power supplies, software)

Application of PSA to experimental facilities: challenges

- Use of **digital and software** systems
 - Difficult to predict and quantify failure modes
 - Timing failures may be difficult to incorporate in fault trees
- Use of one-of-a-kind components
 - Lack of data to quantify probabilities of basic events

- Emphasis on qualitative results from the PSA
- No attempt to quantify failure events probabilities

What may qualitative results give?

- The PSA model (ETs and FTs) is processed by software (Risk Spectrum®)
- Minimal Cut sets: sequences of failure events that may lead to system failure given occurrence of the scenario

- Identify single, double, triple, points of failure ...
- Evaluate adequacy of safety systems (redundancy and diversity)
- (Independently on the probability of the sequences)

Results for scenario TE-BY

- 6 first-order cutsets (common cause failures i.e. failures of multiple components at the same time)
- No single point of failure → MCH4/5, KHNY30, VIMOS constitute a diverse protection against scenarios originated by bypass of Target E (TE-BY)

#	Event	Description		
1	OPT_PAN1-O_ALL-SA	Optical lead panel 1 - common cause stuck at failure of all outputs, due to loss of isolation		
2	OPT_PAN2-O_ALL-SA	Optical lead panel 2 - common cause stuck at failure of all outputs, due to loss of isolation		
3	S_SAS_A_B-CCF-ALL	SINQ SAS A and B - Common cause stuck at OK		
4	M_SAS_A_B-CCF-ALL	MEGAPIE SAS A and B - Common cause stuck at OK		
5	DOC_A_B-CCF-ALL	DOC, TTL/optical converters A and B - Common cause stuck at OK		
6	ODC_A_B-CCF-ALL	ODC, optical/TTL converters A and B - Common cause stuck at OK		

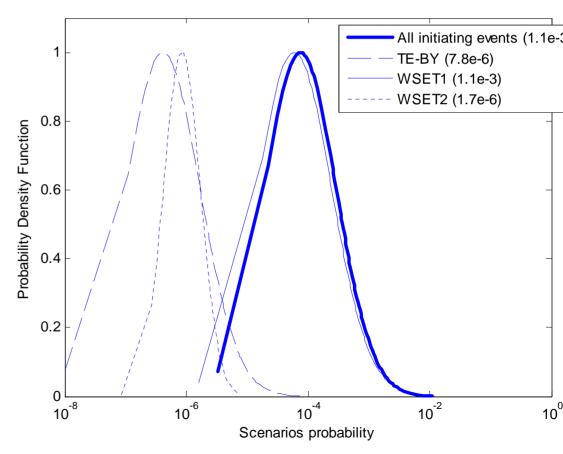
Results for scenario WSET1

- 16 first-order cutsets (10 related to failures of the VIMOS system)
- Relevant safety contribution of VIMOS: it is the only monitoring system able to catch WSET1
- VIMOS is devised with **multiple protections** against several failure modes
- Two Failure events identify scenarios where VIMOS would continue to evaluate the same frame, not recognizing a disturbance in the beam intensity distribution:

Event identifier	Description
VIMOSSW-SA	VIMOS SW - stuck at while executing due to programming error or operating system failure
FRAMEGRR-BUFFER- SA	Frame Grabber - memory buffer stuck-at due to buffer failure or software failure to save new picture

Specific safety-enhancing recommendations

Recommendations


- Two (additional) recommendations to make sure VIMOS is actively processing valid pictures:
 - Implement an automatic check (e.g. control on signal variance)
 - Formalize daily routine checks in the control room

Yet, quantification has benefits (in conference Paper)

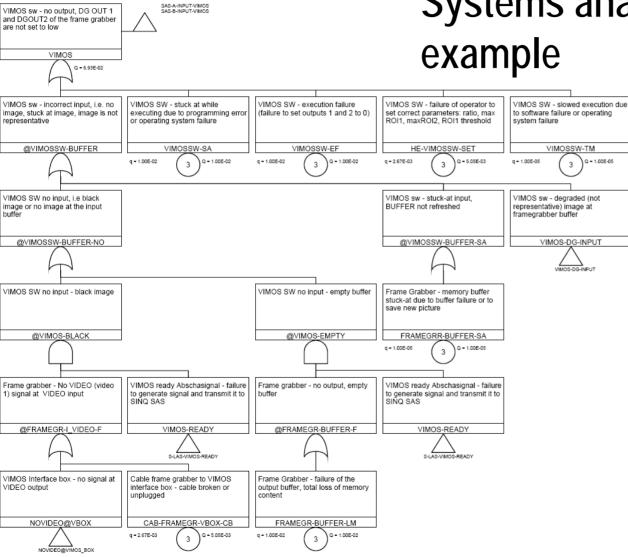
PSA handles uncertainties !!

- Prioritize scenarios, components, failure modes based on their impact on risk
- Prioritize recommendations based on their potential for riskreduction

Conclusions

- PSA can provide safety insights and identify measures for informing designers of the safety of experimental installations
- Lack of data is certainly a challenge but should not discourage (PSA treats uncertainties)
- Prioritize the identification of weaknesses, rather than the value of the risk

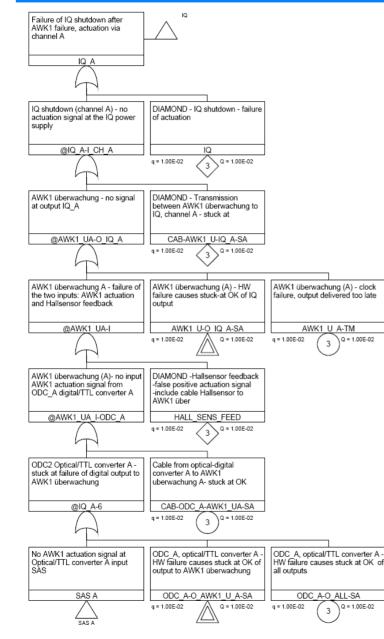
Shifts the focus from probabilities to understanding risk


Conclusions

- PSA can provide safety insights and identify measures for informing designers of the safety of experimental installations
- Lack of data is certainly a challenge but should not discourage (PSA treats uncertainties)
- Prioritize the identification of weaknesses, rather than the value of the risk

Shifts the focus from probabilities to understanding risk

Job openings in our group at PSI! Go to http://safe.web.psi.ch/


Systems analysis – Fault trees,

Q = 1.00E-05

Failure modes for pc-based software (VIMOS)

- Challenging failure modes: part of the PC, SW, OP sys fail while other still function
- VIMOS software loads and processes over and over the same image (frame grabber memory failure).
- The VIMOS software fails to load new images with the result that it processes over and over the same image.

Systems analysis – Fault trees,

- Challenge: Failure modes analysis for digital devices:
 - No output: i.e. signal goes to zero
 - Stuck at output: the signal does not switch to the correct output value when needed
 - Timing failure: output of the device is delivered too late (internal clock failure)
 - Wrong parameters set: parameters
 (e.g. thresholds for signal comparison, timing limits) are set to wrong values.