

Neutronic design of the XT-ADS core with In-Pile-Sections Gert Van den Eynde

SCK·CEN

(on behalf of Task 1.2.3 of Domain 1 - Design)

HPPA5 Workshop, Mol, Belgium

₁7-9 May 2007

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Objectives of XT-ADS (1/2)

(see D1.1 in WP1.1)

- Demonstration of the ADS concept
 - Using conventional MOX-fuel
 - At reasonable power
 - Able to accept a certain number of MA assemblies
- Multi-purpose irradiation facility
 - Fast spectrum; k_{eff} ≈ 0.95
 - Peak neutron flux: 10¹⁵ n/cm².s
 - Flexibility of operation

ENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

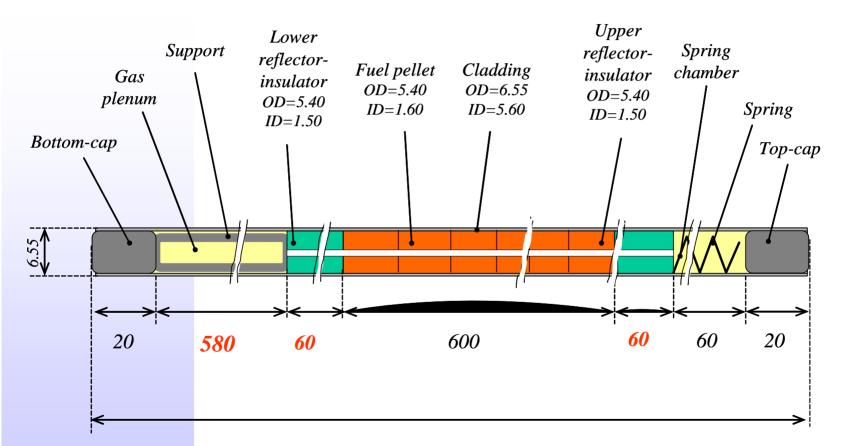
Objectives of XT-ADS (2/2)

(see D1.1 in WP1.1)

- Transmutation studies in "EFIT conditions"
 - Important parameter: ratio of dpa in fuel cladding over burn-up of the fuel
 - Ability to load future EFIT fuel pins for testing and qualification

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIR

Core design Computational route



- Start from MYRRHA Draft 2 file
- Constraints
 - 72 FAs, 90 active pins + 1 instrumentation pin
 - MOX vector from depleted UOX
 - Larger fuel pin pitch compared to MYRRHA Draft2
- Loss of reactivity compared to the original MYRRHA Draft 2
 - Increase of the Pu wt% to 31.5 wt%

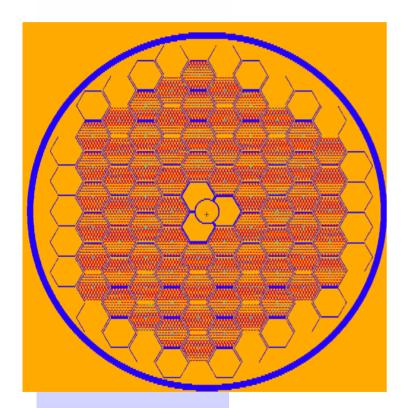
Fuel pin

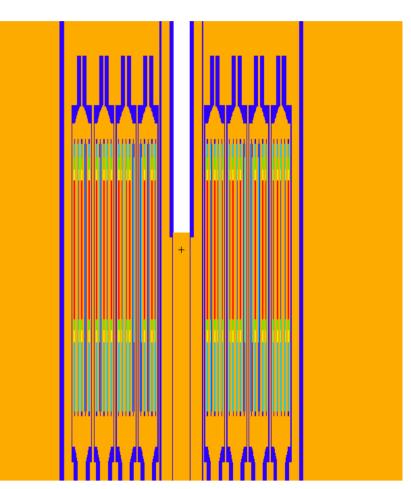


1400

Fuel Assembly

MCNPX 2.6c


JEFF 3.1 XS

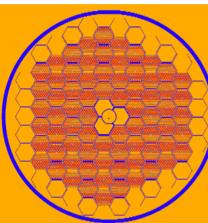

Task 1.2.3 shares the same MCNPX input file to reduce "double work"

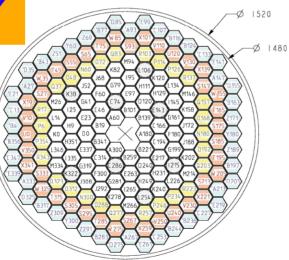
Reference core D1.7

Reference core D1.7

Parameter	Unit	XT-ADS Value	MYRRHA Value
Proton beam energy	MeV	600	350
Proton beam current	mA	2.33 [†]	5
Proton beam deposited heat	MW	1.40	1.75
Total neutron yield per incident proton		15.3	6.0
Neutron source intensity	10 ^{17 n/s}	2.23	1.9
Initial fuel mixture	MOX	(U-Pu)O ₂	(U-Pu)O ₂
Initial (HM) fuel mass	kg	857	514
Initial Pu enrichment	wt%	31.5	30
k _{eff}		0.95324	0.95521
k _s		0.95711	0.96007
$MF = 1/(1-k_S^{-1})$		23.31	25.04
Source importance ϕ^*		1.095	1.127

Reference core D1.7


Parameter	Unit	XT-ADS Value	MYRRHA Value	
Thermal power	MW	56.75 [‡]	51.75 [‡]	
Specific power	kW/kgHM	66.22	101	
Peak linear power (hottest pin)	W/cm	253	352	
Average linear power (hottest pin)	W/cm	146	252	
Max Φ_{total} in the core near hottest pin		3.31	4.1	
Max $\Phi_{>1MeV}$ in the core near hottest pin	10 ^{15 n/(cm2.s)}	0.53	0.8	
Max $\Phi_{>0.75 \text{ MeV}}$ in the core near hottest pin		0.72	1.0	
(†) Normalised to fuel power density of 700 W/cm ³ (‡) 210 MeV/fission				



XTADS: core D1.7 \rightarrow core C0

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

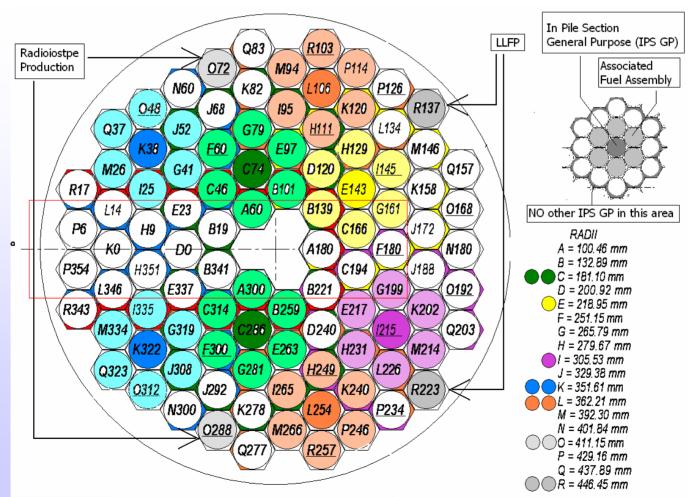
- Extended fission gas plenum
- Two extra rows added
- Core support plate taken into account in calculations
- New simplified target

K_{eff} = 0.95057 for Pu wt% = 31.8

Proposed reference XT-ADS core - Option B

- 99 original positions
 39 positions for assemblies filled with LBE and B₄C at ends (orange)
 45 positions for assies filled with B₄C pins (finite hum)
- (light blue) 183 positions in total

In-Pile-Sections



- 8 positions that are accessible from the top of the reactor are foreseen for experimental devices
- Each position is surrounded by at least 6 fuel assemblies
- Positions are chosen strategically
 - Close to the spallation target module
 - Far from the spallation target module

In-Pile-Sections

Four types of IPS

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

<u>Ou</u>ter tube da=76.2mm, di=70.2mm Low pressure He gap

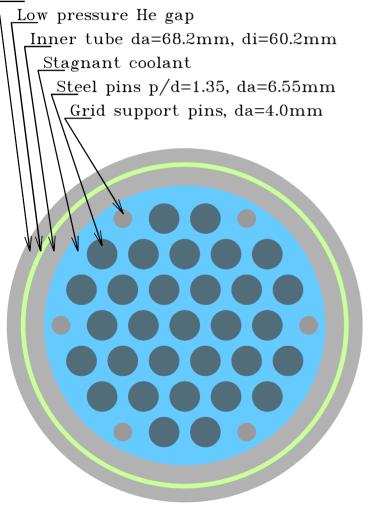
<u>Inn</u>er tube da=68.2mm, di=60.2mm

Downward flowing coolant

 $\frac{Flow \text{ support tube } da=50.0mm}{di=44.0mm}$

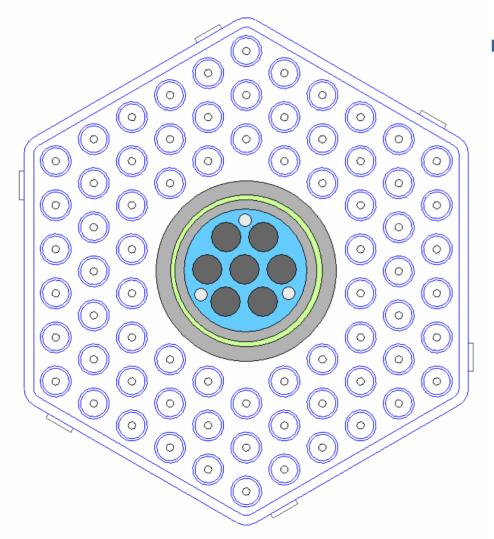
Upward flowing coolant Grid support pins, da=4.0mm

Fuel pins p/d=1.40dcIa=6.55mm, dcIi=5.60mm dfua=5.40mm, dfui=1.60mm


- P1, P2: irradiation of fuel pins
 - Currently we use the same pins as the core
 - EFIT pins in a later stage
 - Dedicated cooling circuit

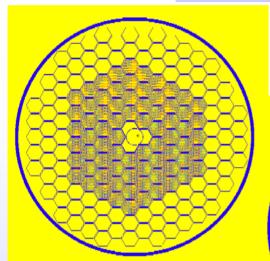
Four types of IPS

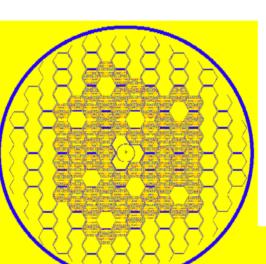
Outer tube da=76.2mm, di=70.2mm

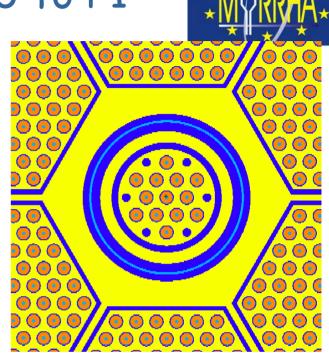


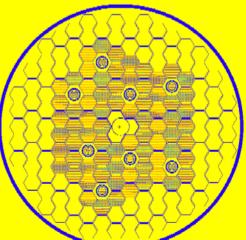
- P3: irradiation of structural materials
 - No fissile material in the hexcan
 - Stagnant coolant

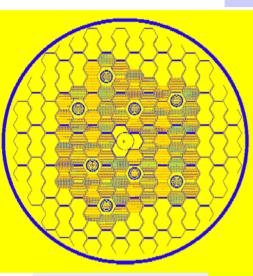
Four types of IPS






- P4: irradiation of structural materials
 - Small-size IPS hosted in partially loaded fuel assembly
 - Loss of fissile material in the core is smaller
 - Higher fluxes inside the IPS



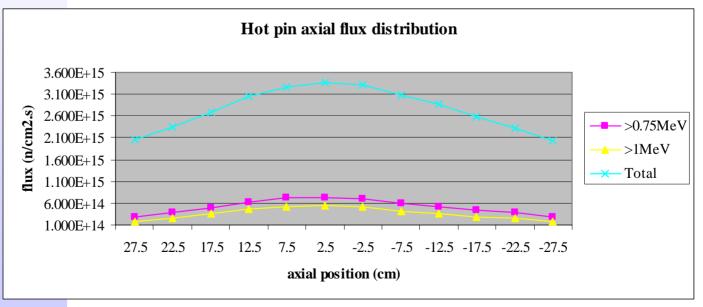


From CO over PO to P1

Core	Pu wt%	k _{eff}
СО	31.80	0.95057
PO	31.80	0.92594
PO	33.25	0.95177
P1	33.25	0.95418
P1	33.05	0.95035

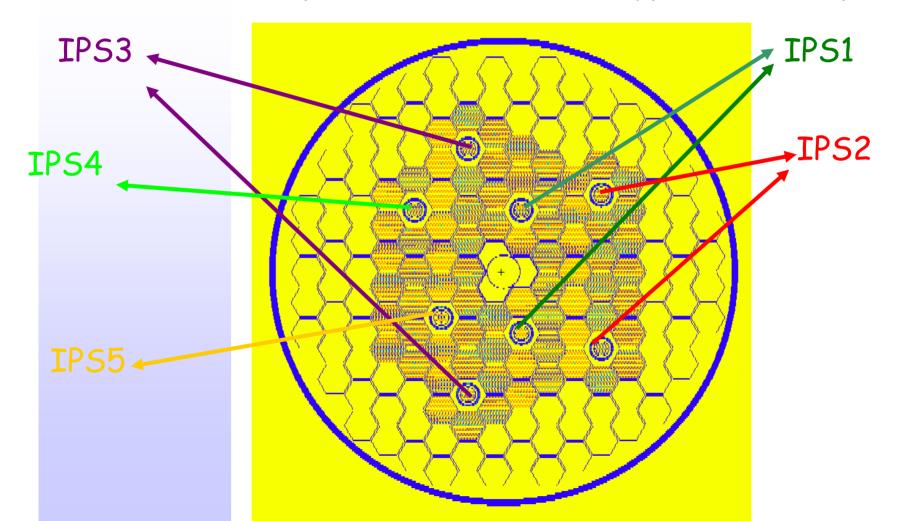
Core P1 case

- Pu wt% = 33.05%
- k_{eff} = 0.95035


For I = 2.36 mA,
 P_{th} = 57 MW

Core P1 case

- Fluxes in hot pin (midplane)
 - Peak fast flux $\Phi_{>1MeV}$ = 0.54 10¹⁵ n/cm².s
 - Peak fast flux $\Phi_{>0.750MeV}$ = 0.74 10¹⁵ n/cm².s
 - Total flux = 3.36 10¹⁵ n/cm².s



Core P1 case

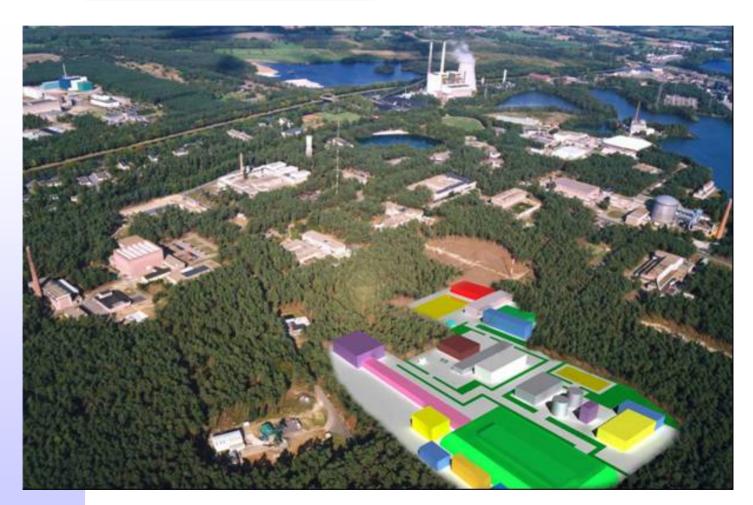
Fluxes in central pin of IPS elements (type P1) at midplane

Core P1 case

Fluxes in central pin of IPS elements (type P1) at midplane

	Φ _{>0.75MeV} (10 ¹⁵ n/cm ² .s)	₽ _{>1MeV} (10 ¹⁵ n/cm².s)	Φ _{total} (10 ¹⁵ n/cm².s)
IPS1	0.43	0.29	2.63
IPS2	0.28	0.19	1.82
IPS3	0.26	0.18	1.74
IPS4	0.30	0.20	1.96
IPS5	0.43	0.30	2.46

Conclusions



- The reference core is fixed and described in Deliverable
 1.7 of the EUROTRANS project
- Extension with two rows: core CO
- Simplified IPS models are put in the core: core P1 (ongoing work)
- Still room for optimisation of fluxes
 - Optimal position of spallation source
 - Margins on k_{eff}

One picture is better than a thousand words, we are in 2020

