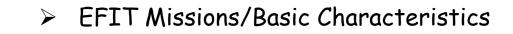
PRE-CONCEPTUAL DESIGN OF A HELIUM-COOLED ADS : He-EFIT


P. Richard^a – G. Rimpault^a - J. F. Pignatel^a B. Giraud^b - M. Schikorr^c - R. Stainsby^d

a : CEA/DEN/DER Cadarache, 13108 Saint-Paul-lez-Durance, FRANCE b : AREVA NP, c : FzK, d : AMEC-NNC

e-mail : pierre.richard@cea.fr

Outline

- > Design Approach
- > Issues Addressed During the First Half of the Project
- He-EFIT Main Features
- Presentation of the current design : Spallation module, Core, Power Conversion Cycle, DHR Approach
- Conclusions Next steps

He-EFIT in the EURTOTRANS Project - Missions

- Within EUROTRANS_DM1, 3 different ADS/ADT are studied and assessed :
 - XT-ADS, Pb-Cooled EFIT, Gas-Cooled EFIT
 - EFIT (European Facility for Industrial Transmutation) :
 - Pb-cooled EFIT is the reference solution
 - He-Cooled EFIT is the back up solution
 - > First mission assigned to EFIT : transmute efficiently Am and Cm
 - A transmutation efficiency for the elimination of minor actinides of 42 kg/TWh_{th} has been defined as target for EFIT
 - In the PDS-XADS Project : achieved with a large power plant (Several Hundreds of MW)
 - Electricity Production : goal is to have a plant efficiency higher than 40 % (close to fast neutron reactors) not including the accelerator
 - Safety : as any nuclear facility the reactor has to operate safely. But the He-EFIT safety analysis has also to properly address ADT as well as gas-cooled plant peculiarities (MA containing fuels, sub-critical level, absorber/safety rods, He low heat capacity,....).

CADARACHE

EFIT Basic Characteristics

- Some basic characteristics had to be defined early in the plant design process
- > Proton beam characteristics : essentially taken as an output from WP1.3
 - Energy set to 800 MeV which is currently considered as an upper limit : over 800 MeV, the radio-toxicity increase rapidly
 - Need for high proton beam intensity 18-24 mA
 - Number of beam trips : 5 per year (progress could be made before EFIT construction ??)
 - > Operating temperatures (Plant Efficiency) :
 - First assessment made ith Tin/Tout = 400/550 °C
 - Incentive to increase the ∆Tcore from 150 °C to 200 °C: Tin/Tout = 350/550 °C Plant efficiency beyond the design objective (43.3 %)
 - Choice of the cladding material : SiC/SiCf to deal with the worst transients (LOCA, LOF)
 - > Fuel Characteristics (coherently with AFTRA studies) :
 - CERCER (MgO matrix) limit temperature at nominal conditions : 1380 °C
 - CERMET (Mo matrix) considered as back up solution : lower transmutation capabilities and higher cost due to ⁹²Mo enrichment

He-EFIT Design Approach

1 - Spallation module design using the outcome of the PDS-XADS Project

 2 - Define the Proton Beam Intensity (for a maximum proton energy of 800 MeV), the reactor power and the K_{eff} (assuming the potential reactivity insertions and burn up swing which have to be checked later)

3 - Design the core taking into account the design objectives (MA burning, Keff,...) and the core design constraints (Fuel composition, cladding composition, pressure drops,...)

4 - Define the approach for the DHR $\,$ and design the DHR main components (blowers, HX,...)

5 - Design the primary system


6 - Design the Balance of Plant and Containment and implementation of the plant (cooling loops, confinement building, ...)

Steps 2 and 3 required iteration loops with neutronics, T/H and geometry considerations

Main Issues Addressed during the First Half of the Project (1/2)

- Target : Solid target made of W rods- Cooled by Helium
- > S/A Characteristics :

- > Core Design :
 - Core power decreased to 400 MWth (600 MWth at the beginning)
 - 3 zones core with different pin diameters
- Peaking factors :
 - Total peaking factor changed from 1.60 to 1.84 : iteration with neutronic calculations
- > Other objectives and design constraints :
 - Flat Keff versus Burn Up
 - Reasonably low current requirement \approx 20- 24 mA
 - Low pressure drop < 1.0 bar
 - Clad temperature limit < 1200°C (nominal cond.), < 1600°C (transient cond.),
 - Coolant speed < 50 m/s
- > Others : Wrapper Thickness, Number of grids,

Main Issues Addressed during the first half of the Project (2/2)

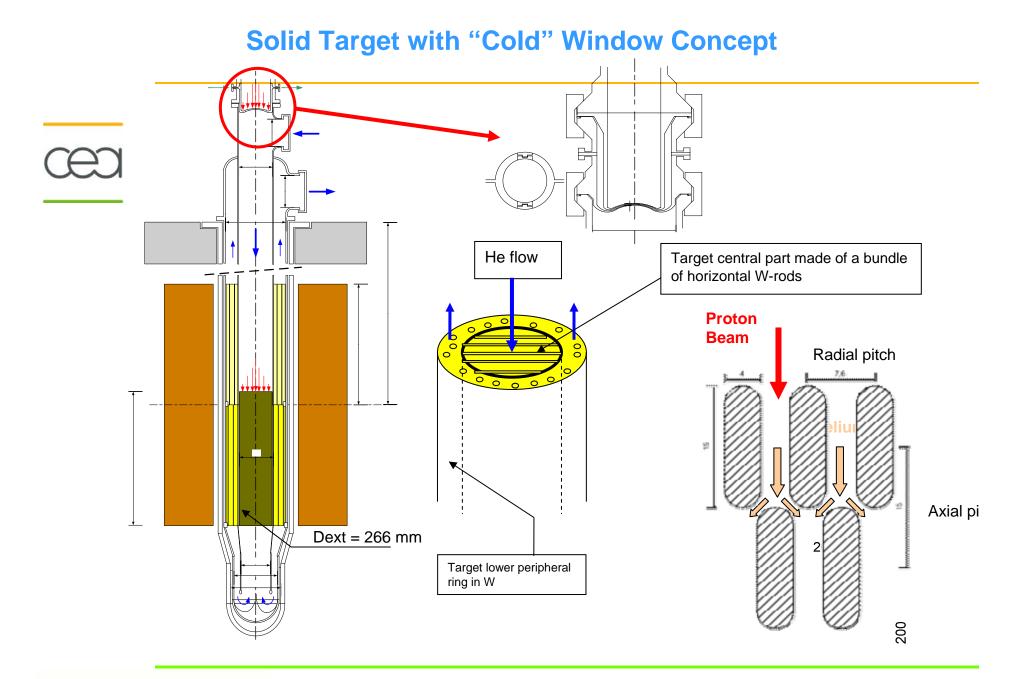
- Rather good agreement :
 - Core composition $\Delta f < 0.05 \%$
 - Fuel Max Temperatures △T< 20 °C</p>
 - Cladding Max Temperatures ∆T< 6 °C
 - Pressure drops : incoherency in the Dh calculations but small consequences : $\Delta(\Delta P) < 0.034$ bar
- > Safety :
 - Pressure drop limited to 1 bar for the core and 1.5 bar for the whole primary circuit
 - \Rightarrow Provisional value to be checked by appropriate transient calculations
 - DHR strategy Comparison of different two approaches : "XADS-like" approach / GCFR approach
- Other items : to be addressed in the second half of the Project using as much as possible the background of both He-XADS and GCFR studies

Main Features of the Gas-Cooled EFIT (1/3)

Design Parameter	Value/Characteristic	Comments		
PLANT GENERAL CHARACTERISTICS				
Coolant	Helium at 70 bars	Identical to GCFR value		
Core Power	400 MW _{th}	After iterations with neutronic calculations		
Core Power Density	55 MW/m ³	60 MW/m ³ proposed in June 2005		
Plant Efficiency	43.3 % without acc.	Requirement : 40 %		
Core Inlet/outlet Temp	350°C/550°C	Delta T increased by 50 °C		
Power conversion	Indirect cycle S-CO ₂ with re- compression			
Accelerator	LINAC	Over 800 MeV, Spallation		
	E : 800 Mev	Products have longer half-life \Rightarrow		
	I : 18-24 mA	Upper limit fixed to 800 MeV		
Target Unit	Window Target	W rods cooled by helium –		
	Solid Target	Separate cooling of the window		

Main Features of the Gas-Cooled EFIT (2/3)

	CORE GENERAL CHARAC	CTERISTICS
Fuel Composition	(Pu, Am, Cm)O ₂ + MgO	50/50 % Fuel/Matrix ratio
Fuel (pellet) Power	App. 200 W/cm ³	To be adjusted after transmutation
density		optimisation
Fuel content Ratio	34 % (Pu/MA+Pu)	To be adjusted after transmutation
		optimisation
Fuel and MA Vectors	The Pu vector used is that	CEA hypothesis for the French
	resulting from a MOX fuel	reactors
	irradiated in PWRs at	
	45 GWj/t and cooled for	
	30 years	
Fuel Pin Spacer	Grid	5 grid spacers
Fuel Assembly type	Wrapper	4 mm thickness
Fuel Assembly cross	Hexagonal	
section		
Core zoning	3 Zones	Different pin diameters
S/A pitch	137 mm	Adjusted for an optimum target size
Peaking Factor	1.839	Same peaking factors considered in
-		the three zones
Core height	1.25 m	
Core Pressure Drop	Range 0.7-1 bar	Based on GCFR assessment. To be
		checked at a second stage by
		transient calculations



Main Features of the Gas-Cooled EFIT (3/3)

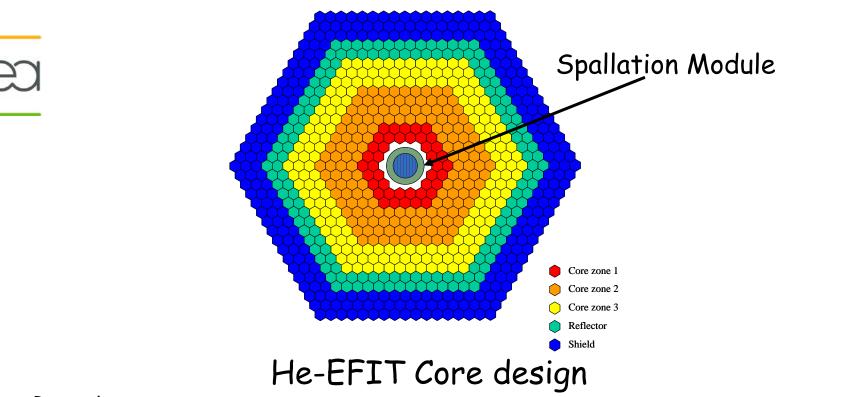
œ

	PIN CHARAC	CTERISTICS
Cladding material	SiC/SiCf	
Cladding thickness	1 mm	Thickness limited for Feasibility reasons (could be
		reduced to 0,.8 mm if necessary)
Fuel/Cladding Gap	100 µm for 5.8 mm in	Provided by AFTRA
	Diameter – Changed	
	proportionally to the pellet	
	diameter	
	DESIGN C	RITERIA
T _{fuelmax}	1380 °C	DBC cat. I
T _{fuelmax}	1580 °C	DBC cat. II
T _{fuelmax}	1780 °C	DBC cat. III
T _{cladmax}	1200 °C	DBC cat. I
T _{cladmax}	1300 °C	Long-term transient(>24h)
T _{cladmax}	1600 °C	Short-term transient(<24h)
	SAFETY	ISSUES
Protected transients	The plant shall be designed	The analysis of protected transients similarly to the
	to accommodate	XADS is to be done (transient list to be checked
	PLOF/PLOCA	with WP1.5)
DHR	Under nominal pressure :	Decay Heat Curve deduced from the benchmark
	Nat. circulation	carried out within WP1.1
	Depressurised cond. :	
	active DHR systems to	
	remove Decay Heat	

HPPA 5, Mol, May 6-9, 2007, P. Richard et al. 11 Di 370 Ep. 10

CADARACHE

Current Design – Core (1/2)


- > A three zone core has been preliminarily studied :
 - Zone 1 (inner): 45 MWth, 42 sub-assemblies
 - Zone 2 (intermediate) : 165 MWth, 156 sub-assemblies
 - Zone 3 (outer): 191 MWth, 180 sub-assemblies

> The main design features considered are the following :

- ✤ Core height : 125 cm
- External width over flat : 137 mm
- Matrix volumic fraction in the fuel pellet : 50 %
- Fuel (fuel+matrix) fraction in the different zones : 11%, 21.5 % and 35 % (for respectively zone 1, 2 and 3)
- The total form factor was assumed to be the same in the three zones (1.839)

Current Design – Core (2/2)

<u>Remarks :</u>

1 - Core pressure drops are not equilibrated (too many design constraints). They are respectively 0.84, 0.74 and 1 bar in zone 1, 2 and 3 \Rightarrow some gagging will be necessary

2- The pellet diameter in zone 1 is rather small (2.3 mm). To be increased to 4-5 mm according to AFTRA recommendations (the number of pin rows per S/A can be reduced to 11 or even 10)

Current Design – Detailed Characteristics (1/2)

CEN

EFIT Type	He-EFIT			
Thermal Power (MW_{th}) - Volumic Power	400 - 55 MW/m ³			
Coolant Type		Не		
Coolant Pressure (bar)		70		
Inlet Temperature (°C)		350		
Outlet Temperature (°C)		550		
Plant Efficiency	43.3 % - Indired	43.3 % - Indirect S-CO ₂ cycle with re-compression		
Cladding Type - Thickness	SiC/	SiC/SiCf -Thickness = 1 mm		
Spallation module	Solid W He cooled			
Accelerator	LINAC - E = 800 MeV - I = 24 mA			
Zone	1 (inner)	2 (intermediate)	3 (outer)	
Matrix Type	MgO	MgO	MgO	
Matrix Fraction	50%	50%	50%	
Core Geometry				
Number of fissile sub-assemblies	42	156	180	
Fissile Height (H)	1.25 m	1.25 m	1.25 m	
Wrapper Width over outer Flats	137 mm	137 mm	137 mm	
Wrapper Thickness	4.0 mm	4.0 mm	4.0 mm	
Inter-Wrapper Gap	5.0 mm	5.0 mm	5.0 mm	
Coolant Volumic Fraction (%)	49.80%	44.75%	37.19%	
Fuel + Matrix Volumic Fraction (%)	11.16%	21.70%	34.98%	
Structure Volume Fraction (%)	39.05%	33.56%	27.83%	

CADARACHE

Current Design – Detailed Characteristics (2/2)

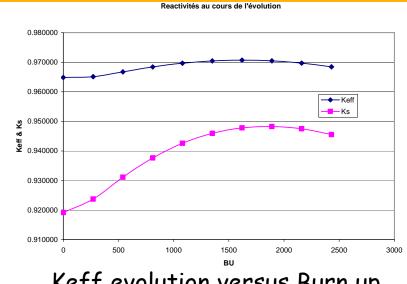
	Zone	1 (Inner)	2 (Intermediate)	3 (Outer)
\sim	Sub-Assembly Bundle Geometry			
E	Number of Pin rows per S/A - Pin per S/A	12 - 469	8-217	5 - 91
	Pin outer Diameter	4.38 mm	6.87 mm	11.57 mm
	Pitch	5.89 mm	8.60 mm	13.20 mm
	Pellet/Cladding Gap	0.040 mm	0.081 mm	0.160 mm
	Pellet Diameter	2.30 mm	4.71 mm	9.25 mm
	Core Thermal-Hydraulics			
	Average Coolant Speed in the Fissile Core	30 m/s	35 m/s	45 m/s
	Max Pin Linear Power	33 W/cm	72 W/cm	171 W/cm
	Total Core Pressure Drop	0.84 Bar	0.74 Bar	1.01 Bar
	Hottest Channel Thermics			
	Max Cladding Temperature in the Hottest Channel	686 °C	700 °C	711 °C
	Max Fuel Temperature in the Hottest Channel	792 °C	950 °C	1310 °C

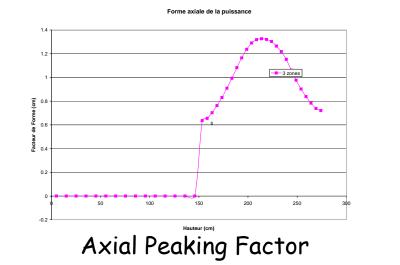
>Under nominal conditions :

*Large Margins on cladding temperature (1200 °C under normal operating conditions)

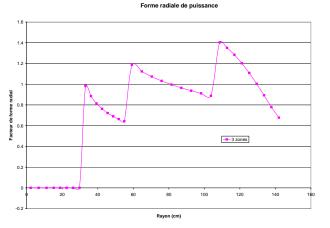
♦ Reasonable margins the fuel temperature (1380 °C)

On pressure drops : GCFR studies show the potential to increase the pressure drop ??


On-going Neutronic Assessment

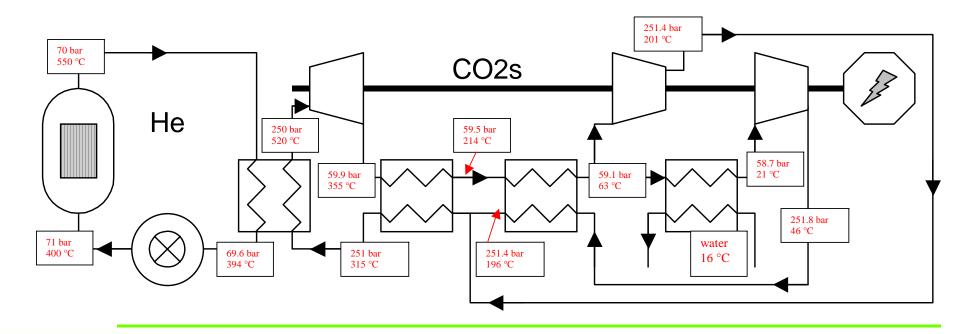

Monte-Carlo (MCNPX) simulation **ERANOS** evolution calculation

ELEMENT	Kg	Kg/TWhth
U	27.42	1.02
Np	-30.32	-1.13
Pu	176.47	6.59
Am	-1463.36	-54.64
Cm	178.90	6.68
TOTAL	-1110.89	-41.48


Transmutation rate : close to the target value

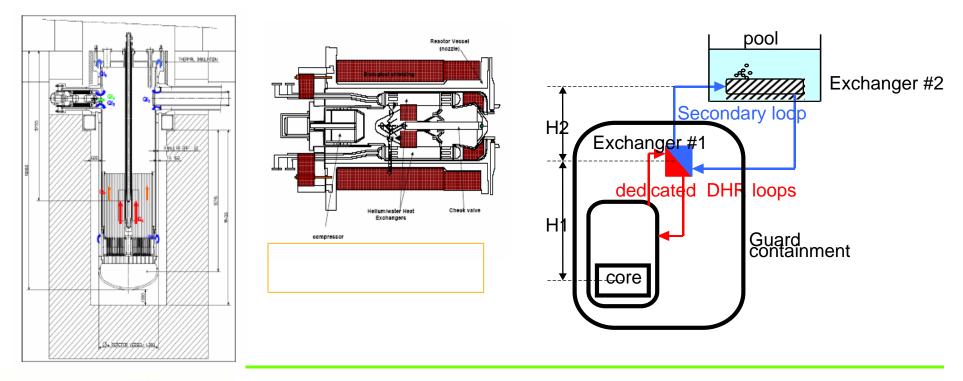
Keff evolution versus Burn up

CADARACHE


Raxial Peaking Factor

Power Conversion Cycle

Assumptions :


CADARACHE

- Indirect Supercritical CO₂ cycle with re-compression
- CO2 remains super-critical : CO2 characteristics above the Critical Point (74 bar/32 °C). This avoids the presence of water in the compressors (badly known behaviour of the components)
- > Parametric study on the core inlet temperature : +/- 50 °C

Decay Heat Removal Strategy

- Approach Compare different strategies :
 - Active/Passive
 - Guard Containment/No guard Containment
- > Background :
 - PDS-XADS (He-Cooled XADS)
 - GCFR Approach

œ

DHR for EFIT

For He-EFIT:

 \rightarrow The PDS-XADS solution seems better

 \rightarrow Proton beam +Spallation module \rightarrow complexity \rightarrow Guard containment not suitable

If the full depressurization is chosen, a strategy must be defined :

 \rightarrow The blowers must work 1 to 70 Bars $\,:$ Requires High Power and a complex Blower Design (or 2 systems : 1-10 bars and 10/70 bars?)

OR

 \rightarrow Blowers can work only at low pressure :

 \rightarrow Action for fast depressurization System systematically used (safety)

 \rightarrow SIMPLIFICATION of procedures

System implementation :

 \rightarrow 3 DHR loops designed for 100 %

 \rightarrow 2 Solutions : Loops integrated on the vessel/Ex-vessel loops

<u>Current Design :</u>

> A three zone core has been preliminarily studied :

- Zone 1 (inner): 45 MWth, 42 sub-assemblies
- Zone 2 (intermediate) : 165 MWth, 156 sub-assemblies
- Zone 3 (outer): 191 MWth, 180 sub-assemblies

> The main hypothesis and/or design objectives accounted are the following :

- ✤ Core height : 125 cm
- External width over flat : 137 mm
- Fuel (fuel+matrix) fraction in the different zones : 11%, 21.5% and 35% (for respectively zone 1, 2 and 3)
- Matrix volume fraction in the fuel pellet : 50 %

The total form factor was assumed to be the same in the three zones (1.839)

> DHR Approach defined

> Detailed neutronic calculations :

>Neutron source behaviour by the mean of MCNPX Calculations

>Core neutronics by the means of MCNPX and ERANOS calculations.

Next steps :

>Another iterative loop will be required on the core design to fully fit with the He-EFIT Objectives and Design Criteria (Transmutation rate, pin size in the inner zone,....)

> Even if the current core design is not fully defined, He-EFIT main characteristics (core power, main core dimensions) are sufficiently precise to go ahead with :

Safety Approach/DHR strategy :

- Pre-sizing of the DHR loop components
- CATHARE/SIM-ADS modelling

Remontage - System Integration