

Measurements of DN Yields and Time Spectra from p(1 GeV) + ^{nat}Pb & p(1 GeV) + ²⁰⁹Bi

<u>D. Ridikas¹</u>, A. Barzakh³, V. Blideanu¹, J.C. David¹, D. Doré¹, D. Fedorov³, X. Ledoux², F. Moroz³, V. Panteleev³, A. Plukis⁴, R. Plukiene⁴, A. Prévost¹, O. Shcherbakov³, A. Vorobyev³

¹CEA Saclay, DSM/DAPNIA, 91191 Gif-sur-Yvette, France ²CEA/DIF, DAM/DPTA, 91680 Bruyères-le-Châtel, France ³Petersburg Nuclear Physics Institute, 188350 Gatchina, Leningrad district, Russia ⁴Institute of Physics, Savanoriu pr. 231, 02300 Vilnius, Lithuania

Collaboration:

- PNPI, Russia
- IoP, Lithuania
- PSI, Switzerland

Financial support:

- CEA
- FR Ministry of Foreign Affairs
- GEDEPEON

Introduction

- high-energy high-power accelerators → use of liquid metal targets (Hg, Pb, Pb-Bi, ...)
- long flowing metal loop → activated metal close to electronics, in hot cells, heat exchanger, pumps, ...
- short transit time → "moving" beta, photon and delayed neutron (DN) radioactivity

Goal:

Characterization of DNs from high-energy spallation-fission reactions

Examples (A)

J-PARC/JAEA - thanks to H. Nakashima

short Hg transit time → delayed neutron (DN) activity

Examples (B)

MegaPie/PSI - thanks to F. Groeschel

Beam on the target from 14 August to 23 December!

E _p	570 MeV
I _p	1.2 mA (1.8)
Ŵ	0.7MW (1.0)
V_{PbBi}	~ 82 liters
Main pump	~4.00 l/s
T _{transit}	~20 s

DN and PN estimates using MCNPX+CINDER'90 Φ_n (DN)~ 10⁶ n/(s cm²) Φ_n (PN)~ 10⁶ n/(s cm²)

Important: DN yields are very sensitive to the choice of physics models!

D. Ridikas et al., Proc. of PHYSOR2006, Vancouver, Canada

6-9 May 2007, SCK*CEN Mol, Belgium

Model-dependence of DN yields

	INCL4 +ABLA model		CEM2k model	
Group	T _{1/2} , s	<i>a_i</i> , n/p times 10 ⁶	T _{1/2} , s	<i>a_i</i> , n/p times 10 ⁶
1	55.49	0.87	55.60	6.78
2	16.29	0.89	16.35	15.25
3	4.99	0.44	4.66	23.58
4	1.90	1.19	1.63	174.24
5	0.52	0.21	0.45	129.95
6	0.20	0.00	0.11	233.52
Total/average	18.70	3.59	1.90	583.35

Difference by 2 orders of magnitude!

D. Ridikas et al., Proc. of Fission2005, CEA Cadarache, France

• INCL4-ABLA gives "reasonable" predictions

- other models overestimate significantly the neutron-rich side
- 1. Fission yields on the very neutron-rich side are difficult to reach
- 2. <u>No available data</u> on DN yields from high energy fission-spallation

DN measurements from p (1GeV)+Pb at PNPI Gatchina (Russia)

He-3 counter calibration: ²⁵²Cf neutron source + Monte Carlo

Proton beam monitoring:

²⁷Al foils and gamma spectroscopy from ²²Na, ²⁴Na and ⁷Be

Measurement strategy:

- a) No target at all long irradiations
- b) Concrete block long irradiation
- c) Iron thick target long irradiations
- d) Lead target of variable thickness;
 short (350 μs), intermediate (20 s) and long (300 s) irradiations

Beam size/profile: by photo-films at exit and entrance positions

Beam intensity: by ²⁷Al foils and gamma spectroscopy from ²²Na, ²⁴Na and ⁷Be

- ${}^{27}Al(p,x){}^{7}Be$ monitor reaction cross section 7.5 \pm 0.3 mb was taken as a reference
- ratios of ²⁴Na & ²²Na with respect to ⁷Be were equal to $1.73 \pm 0.15 \& 1.99 \pm 0.07$

 \rightarrow uncertainty in proton beam monitoring from 8 % to 12 %

Accumulated raw data

6-9 May 2007, SCK*CEN Mol, Belgium

DN decay curves: p + natPb

⁶⁻⁹ May 2007, SCK*CEN Mol, Belgium

DN decay curves: $p + {}^{209}Bi$

6-9 May 2007, SCK*CEN Mol, Belgium

Experimental precursor yields (atoms/proton)

• Saturation is observed for targets thicker than 20 cm

• Similar shapes and absolute values both for Pb and Bi

D. Ridikas et al., EPJ A (2007); in print

6-9 May 2007, SCK*CEN Mol, Belgium

$$DN(t) = \sum_{i} a_{i} \exp(-\lambda_{i} t) (1 - \exp(-\lambda_{i} T_{irrad})) + C$$

$$DN(t=0) = \sum_{i} a_i + C$$

$$P_n^i Y^i = a_i / (\varepsilon_{He-3} I_p \Delta t_{ch} N_{cycles})$$

Precursor yields: data versus PHITS simulations

۲

Extraction of x-sections : ¹⁷N & ^{87,88}Br

- importance of DNs in liquid metal targets for radioprotection issues
- importance of the measurements to test model calculations
- DN yields and time spectra measured for the 1st time for p(1GeV) on thick ^{nat}Pb and Bi targets
- Estimates of errors on DN decay curves : below 20 %
- Major contributors are: ⁸⁷Br, ⁸⁸Br and ¹⁷N → extraction of x-sections
- PHITS code "recommended" for such studies
 - Consequences and "in-situ" experiment...

(e)

Absolute DN production yields: consequences

Assumption: p(1GeV) + Pb (55 cm thick; 10 cm Ø) at 1mA (1 MW)

CEA/DSM/DAPNIA's contribution for MegaPie

⁶⁻⁹ May 2007, SCK*CEN Mol, Belgium

MegaPie: geometrical model

MegaPie measurements $\leftarrow \rightarrow$ PNPI data

→ Use of parameters extracted from PNPI/Gatchina experiments

œ

DN decay curves: Fe and "brick"

He-3 counter calibration

3D modeling with

Monte Carlo

- 2. Use of Monte Carlo with
- \rightarrow exact experimental conditions
- \rightarrow variable target thickness
- \rightarrow variable DN energy

→ estimated uncertainty below 10 %

Photo of the experimental setup

Physics: ratios of relative yields relative to ⁸⁷**Br**

Target thickness, cm	$a_2^{(88Br)}/a_1^{(87Br)}$	$a_3^{(17N)}/a_1^{(87Br)}$
5	1.7	354
10	1.4	235
20	1.3	118
40	1.3	102
55	1.4	90

Experiment

stable

decreasing

\rightarrow Produced by different reaction mechanisms

Target thickness, cm	a ₂ (88Br)/a ₁ (87Br)	a ₃ (17N)/a ₁ (87Br)	a ₄ (⁹ Li)/a ₁ (⁸⁷ Br)	
5	0.96	104	235	6
10	0.95	89	200	
20	0.89	86	159	
40	0.86	64	125	p
55	0.97	62	121	

Confirmed by PHITS predictions

6-9 May 2007, SCK*CEN Mol, Belgium

Why only 4 exponentials are sufficient?

Production of Br isotopes

U fission $\leftarrow \rightarrow$ Pb fission; low energy $\leftarrow \rightarrow$ high energy