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Outline

• The SNS Linac

• Commissioning and Operational experience With the SCL 
Linac

• Why does SNS need a cavity fault recovery system?

• A Cavity Fault Recovery System and Use Cases
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The SNS Linac

• SNS is a pulsed, accelerator driven spallation neutron 
source

• It is driven by a high power linac 
− 1.5 MW baseline (constructed device)
− 3 MW upgrade power  (CD- 0 approved)

• It is the first high power or high energy superconducting 
proton linac
− 80% of the acceleration is provided by superconducting cavities
− Did not come with an operating manual

• 1st beam to target April 28, 2006
• 1st “neutron production” Oct. 2006
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Normal Conducting Linac

• CCL Systems designed and built 
by Los Alamos 

• 805 MHz CCL accelerates beam to 
186 MeV 

• System consists of 48 accelerating 
segments, 48 quadrupoles, 32 
steering magnets and diagnostics

• 402.5 MHz DTL was designed and 
built by Los Alamos 

• Six tanks accelerate beam to 87 
MeV

• System includes 210 drift tubes, 
transverse focusing via PM quads, 
24 dipole correctors, and 
associated beam diagnostics
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Superconducting 
Linac
• Designed an built by Jefferson 

Laboratory

• SCL accelerates beam from 186 to 
1000 MeV

• SCL consists of 81 cavities in 23 
cryomodules

• Two cavities geometries are used 
to cover broad range in particle 
velocities

• Cavities are operated at 2.1 K with 
He supplied by Cryogenic Plant

• Most operation has been at 4.2 K

Medium beta cavity

High beta cavity
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Linac RF Systems

81 SCL 
Klystrons

DTL Klystrons

• 2nd largest klystron and modulator installation 
in the world!

High Voltage 
Converter Modulators

• Designed and procured 
by LANL

• All systems 8% duty 
factor: 1.3 ms, 60 Hz

• 7 DTL Klystrons: 2.5 MW 
402.5 MHz

• 4 CCL Klystrons: 5 MW 
805 MHz

• 81 SCL Klystrons: 550 
kW, 805 MHz

• 14 IGBT-based 
modulators

CCL Klystrons
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Beam Power Progress

• Power has ramped up from 8 kW to 60 kW over the last two run 
periods (since Oct. 2006)

• Machine setup and beam state recovery is more repeatable

5 Hz

15 Hz

Demonstration runs
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The Beam Power Ramp Up Goal

• We need to ramp to full design power, at full final reliability with 
decreasing beam study time by Oct. 2009
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SNS Availability Is Important

• SNS is a user facility – many users only scheduled for a few days

• Target availability is 95%

• RF systems are a major focus of availability

PSI Availability (ICFA High Brightness Workshop, 2006)
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SRF, ß=0.61, 33 
cavities

1

from 
CCL

186 MeV

805 MHz, 0.55 MW klystron

805 MHz, 5 MW klystron

402.5 MHz, 2.5 MW klystron

86.8 MeV2.5  MeV

RFQ

(1)

DTL

(6)
CCL

(4)

Layout of Linac RF with NC and SRF 
Modules

SRF, ß=0.81, 48 cavities 1000 MeV

(81 total powered)

379 MeV

Warm 
Linac

SCL 
Linac

•SCL has 81 independently powered cavities
Many parts to keep running
Many values to set w.r.t. the beam
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SCL Cavity Amplitudes

• Strategy is to run cavities at their maximum safe amplitude limit
• Need to be flexible – SRF capabilities change, not near the design
• Linac output energy is a moving target

Cavity Design
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Cavity Fault Impact on Beam Arrival Times  
for a Proton Linac

• Proton beams for high power applications (< 10 GeV) are not fully relativistic and the 
velocity is energy dependent

• If a cavity fails, the beam  arrives at downstream cavities later
• For SNS if an upstream cavity fails, the arrival time at downstream cavities can be 

delayed up to 5 nsec
− This is over 1000 degrees phase setting of an 805 MHz RF cavity
− Our goal is to set the cavity to within ~ 1 degree

Cavity:

Cavity:

Arrival 
Time:

Arrival 
Time:
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Longitudinal Acceleration Modeling (Application 
Programs – Online Model)

• Drift-kick-drift method 
• Assume design field profiles throughout the cavity
• Transit Time Factor is calculated at each gap, based on a fit of Superfish calculations
• The beam sees a large phase slip from gap to gap as it traverses the cavity 
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Setting the Phase of the SCL Cavities

• A beam based measurement must be done to initially set each 
cavity RF phase setpoint 

• Scan the cavity phase of a cavity 360, and observe the resultant
change in the Time of Flight (TOF) between 2 downstream 
detectors
− Compare this difference with a model calculations.
− Gives the input beam energy, cavity voltage and RF phase offset 

calibration
− Need good relative phase measurements from the detectors (~ 

1degree!) 
RF Cavity Phase
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Example SCL Phase Scan

Black line = measurement fit

Dot = model

Red = cosine fit
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SCL Cavity Phase Setup Times are Getting 
Shorter

• August 2005: 48 hrs
− 560 MeV, initial run, > 20 cavities off

• Dec. 2005: 101 hrs
− 925 MeV,  turned on all planned cavities

• July 2006: 57 hrs
− 855 MeV 

• Oct 2006: 30 hrs
− 905 MeV, used established cavity turn 

on procedure

• Jan. 2007: 6 hrs
− 905 MeV, beam blanking used, which allowed all cavities to be on

during the tuning process

• The procedures used to setup the superconducting linac 
have matured, and the setup time is now minimal

• Still exists a need for fast recovery from changes in the SCL 
setup

Power 
cavities on 
sequentially



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

16

SCL Tune-up – Linac Energy Gain is 
Understood and Predictable

• Energy gain per cavity is predictable to a few 
100 keV and distributed about 0.

• Final energy is predictable to within a few MeV

Predicted - Measured Energy Gain
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Scaling Method for Cavity Fault Recovery

• Use beam measurements for original beam arrival times
• User inputs changes to the SCL RF setup
• Model predicts changes in the beam arrival times (RF phase 

setpoint changes), sends them to the machine and predicts the 
new beam energy 

• Takes < 1 second to calculate and apply the new SCL setup
− However – we have applied this technique to recover from “events” that 

take hours / days to evaluate and proceed

New cavity phases New Beam Energy
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Expected Errors from the Scaling Method (I)

• Uncertainty in the cavity positions leads to errors in the predicted 
change in phase 

• Relative cavity positions are known to a few mm, so < 1 degree error 
is expected from this uncertainty
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Expected Errors from the Scaling Method (II)

Beam Energy (MeV)
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• Uncertainty in the energy gain/cavity results in errors in the predicted 
change in cavity phase 

• Energy gain is known to within a few hundred keV, so the error from 
this uncertainty is 1-2 degrees
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Test of the Cavity Recovery Method – Single 
Cavity “Failure”

• Turned off cavity 7, rescaled the downstream cavity phase setpoints
• Downstream cavity phase setpoints changed > 1000 degrees
• A beam measurement check with the last cavity showed it was within 1  

degree of the scaled prediction

Turn off cavity 7
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Application of the Cavity Fault Recovery 
Scheme (I)

• In the spring 2006, 11 cavities had to be either turned off or have their 
amplitudes reduced for safe operation, 1 cavity was returned to operation

• The fault recovery scheme was applied “all at once”
• Phase scan spot checks indicate the scaling was within 4 degrees
• No detectable change in beam  loss
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Application of the Cavity Fault Recovery 
Scheme (II)

• In April 2007 the SCL was lowered from 4.2K to 2 K to facilitate 30 Hz 
operation.  

• About 20 cavity amplitudes changed.
• The fault recovery scheme restored beam to the previous loss state.
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Cavity Fault Recovery Scheme at SNS

• Additional applications of the cavity recovery scheme
− Missing cryo-module tests to evaluate the impact on beam loss from 

removing entire cryo-modules from service for repairs.
− Recovery from a control system failure that resulted in 3 broken cavity 

tuners.

• While intended for use in recovering from a single cavity failure, 
the scheme has been used more often to recover from more severe 
situations
− Usually takes days to assess the situation, minutes to apply the

recovery scheme
− Previously took days to setup the cavities (now ~ 1 shift) with beam 

based measurement techniques

• This technique is considered a “standard practice” by now at SNS
− Future improvements may include a more automated invocation
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Summary

• High availability will be a strong driver at SNS 

• A fault recovery scheme for superconducting cavity failure 
has been developed

• To date, its primary application has been for quick recovery 
from events involving multiple cavities

• It works !
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