

Operational Experience of a Superconducting Cavity Fault Recovery System At the Spallation Neutron Source

J. Galambos

Fifth International Workshop on the Utilisation and Reliability of High Power Proton Accelerators

6-9 May, 2007

Outline

- The SNS Linac
- Commissioning and Operational experience With the SCL Linac
- Why does SNS need a cavity fault recovery system?
- A Cavity Fault Recovery System and Use Cases

The SNS Linac

Normal Conducting Linac

- CCL Systems designed and built by Los Alamos
- 805 MHz CCL accelerates beam to 186 MeV
- System consists of 48 accelerating segments, 48 quadrupoles, 32 steering magnets and diagnostics

- 402.5 MHz DTL was designed and built by Los Alamos
- Six tanks accelerate beam to 87 MeV
- System includes 210 drift tubes, transverse focusing via PM quads, 24 dipole correctors, and associated beam diagnostics

Superconducting Linac

- Designed an built by Jefferson Laboratory
- SCL accelerates beam from 186 to 1000 MeV
- SCL consists of 81 cavities in 23 cryomodules
- Two cavities geometries are used to cover broad range in particle velocities
- Cavities are operated at 2.1 K with He supplied by Cryogenic Plant
- Most operation has been at 4.2 K

Linac RF Systems

- Designed and procured by LANL
- All systems 8% duty factor: 1.3 ms, 60 Hz
- 7 DTL Klystrons: 2.5 MW 402.5 MHz
- 4 CCL Klystrons: 5 MW
 805 MHz
- 81 SCL Klystrons: 550 kW, 805 MHz
- 14 IGBT-based modulators

• 2nd largest klystron and modulator installation in the world!

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

DTL Klystrons

CCL Klystrons

vstron

Beam Power Progress

JIRON SOUR

HFIR

- Power has ramped up from 8 kW to 60 kW over the last two run periods (since Oct. 2006)
- Machine setup and beam state recovery is more repeatable

The Beam Power Ramp Up Goal

• We need to ramp to full design power, at full final reliability with decreasing beam study time by Oct. 2009

SNS Availability Is Important

PSI Availability (ICFA High Brightness Workshop, 2006)

A short overview over the last 8 years shows that it is very hard to achieve availability values above the magic limit of 90 %.

Year	1999	2000	2001	2002	2003	2004	2005	2006	
Hours with beam									
on target	5700	5200	4250	5030	4790	4710	5420	5520	
Availability	91	86	86	88.6	89.2	84.2	83.9	86.0	
Min avail./week	52	30	27.3	53.5	71.1	29.3	0.2	11.6	
Max avail./weeek	98	97.8	97.5	97.7	97.8	96.4	97.8	98.7	

End date of cycle

- SNS is a user facility many users only scheduled for a few days
- Target availability is 95%
- RF systems are a major focus of availability

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

TRON SOU

SCL Cavity Amplitudes

- Strategy is to run cavities at their maximum safe amplitude limit
- Need to be *flexible* SRF capabilities change, not near the design
- Linac output energy is a moving target

Cavity Fault Impact on Beam Arrival Times for a Proton Linac

- Proton beams for high power applications (< 10 GeV) are not fully relativistic and the velocity is energy dependent
- If a cavity fails, the beam arrives at downstream cavities later
- For SNS if an upstream cavity fails, the arrival time at downstream cavities can be delayed up to 5 nsec
 - This is over 1000 degrees phase setting of an 805 MHz RF cavity
 - Our goal is to set the cavity to within ~ 1 degree

Longitudinal Acceleration Modeling (Application Programs – Online Model)

- Drift-kick-drift method
- Assume design field profiles throughout the cavity
- Transit Time Factor is calculated at each gap, based on a fit of Superfish calculations
- The beam sees a large phase slip from gap to gap as it traverses the cavity

Setting the Phase of the SCL Cavities

SCL Cavity Phase Setup Times are Getting Shorter

August 2005: 48 hrs – 560 MeV, initial run, > 20 cavities off	
Dec. 2005: 101 hrs 925 MeV, turned on all planned cavities 	
July 2006: 57 hrs – 855 MeV	> Power
Oct 2006: 30 hrs – 905 MeV, used established cavity turn on procedure	cavities on sequentially

- Jan. 2007: 6 hrs
 - 905 MeV, beam blanking used, which allowed all cavities to be on during the tuning process
- The procedures used to setup the superconducting linac have matured, and the setup time is now minimal
- Still exists a need for fast recovery from changes in the SCL

SCL Tune-up – Linac Energy Gain is Understood and Predictable

- Energy gain per cavity is predictable to a few 100 keV and distributed about 0.
- Final energy is predictable to within a few MeV

HER

0 5 6 6

Energy Gain Error (MeV)

%

s,

o, o, b

5

⁹9

>

Scaling Method for Cavity Fault Recovery

					New cavity phases				New Beam Energy		
Controller	Scaner Ana	alysis	Scale Cavit	ties							
Cavity	Amplitude_		plitude New	Avg Phase_0		Manual Pha	Start Phase New	W_0 (MeV)	W_New		
SCL_RF:Cav01a	ı 23.9	64	23.964	-14.515	-76.415	0	-76.415	193.45	193.45		
5CL_RF:Cav01k)		0	60.856		0		193.45	193.45		
SCL_RF:Cav01d			14.996	-26.571	-105.275	0		198.258	198.258		
SCL_RF:Cav02a			0	-17.871	-103.446	0	-104.893	204.671	198.258		
5CL_RF:Cav02k) 17.	76	17.76	-17.784	-111.149	0	-135.016	211.339	204.617		
SCL_RF:Cav02d	15.0	06	15.006	-21.789	-13.242	0	-60.455	217.048	210.09		
SCL_RF:Cav03a	ı 22.7	55	22.755	-14.711	152.401	0	36.423	226.421	219.126		
SCL_RF:Cav03k	20.3	33	20.333	-15.452	159.913	0	20.046	235.093	227.539		
CL_RF:Cav030	23.0	16	23.016	-14.742	39.074	0	-122.765	245.247	237.451		
CL_RF:Cav04a	ı 17.0	01	17.001	-18.192	60.562	0	-164.214	252.779	244.844		
CL_RF:Cav04k	21.9	68	21.968	-14.723	152.133	0	-94.202	262.844	254.768		
CL_RF:Cav04d	20.7	11	20.711	-15.513	42.746	0	136.936	272.413	264.249		
CL_RF:Cav05a	ı 22.6	06	22.606	-14.663	-60.504	0	-21.435	282.975	274.756		
CL_RF:Cav05k	21.1	.31	21.131	-15.252	167.5	0	-171.876	292.846	284.611		
CL_RF:Cav05c	21.5	52	21.552	-14.931	122.05	0	126.191	302.914	294.696		
CL_RF:Cav06a	ı 20.	49	20.49	-16.316	73.668	0	31.585	312.38	304.202		
CL_RF:Cav06k	22.3	54	22.354	-15.147	24.257	0	-33.273	322.691	314.578		
CL_RF:Cav060	21.2	72	21.272	-15.212	26.358	0	-44.889	332.404	324.372		
CL_RF:Cav07a	ı 21.9	39	21.939	-15.2	-138.872	0	111.472	342.306	334.372		
CL_RF:Cav07k	20.0	75	20.075	-16.559	-157.57	0	80.007	351.192	343.356		
CL_RF:Cav070	24.3	73	24.373	-15.168	-103.868	0	122.312	361.891	354.187		
CL_RF:Cav08a		52	18.752	-17.419	-142.479	0	51.973	369.906	362.306		
CL_RF:Cav08k	12.	82	12.82	-25.25	-157.671	0	26.116	375.041	367.511		
CL_RF:Cav080		38	19.638	-16.753	-62.458	0		383.268	375.852		
CL_RF:Cav09a		-	22.699	-15.159	-11.312	0	135.18	392.69	385.411		
CL_RF:Cav09k			23.127	-15.212	3.922	0		402.108	394.968		
CL_RF:Cav090			20.399	-16.073	142.375	0		410.232	403.215		
SCL_RF:Cav10a			24.512	-13.701	-42.544	0		419.914	413.044		
Initialize Model		Run Tri	ial	Send New Phase		s Restore Old Phase		es Export Table			
Read ne	w Amplitudes										

17

Expected Errors from the Scaling Method (I)

- Uncertainty in the cavity positions leads to errors in the predicted change in phase
- Relative cavity positions are known to a few mm, so < 1 degree error is expected from this uncertainty

Expected Errors from the Scaling Method (II)

- Uncertainty in the energy gain/cavity results in errors in the predicted change in cavity phase
- Energy gain is known to within a few hundred keV, so the error from this uncertainty is 1-2 degrees

Test of the Cavity Recovery Method - Single Cavity "Failure"

- Turned off cavity 7, rescaled the downstream cavity phase setpoints
- Downstream cavity phase setpoints changed > 1000 degrees
- A beam measurement check with the last cavity showed it was within 1 degree of the scaled prediction

Application of the Cavity Fault Recovery Scheme (I)

- In the spring 2006, 11 cavities had to be either turned off or have their amplitudes reduced for safe operation, 1 cavity was returned to operation
- The fault recovery scheme was applied "all at once"
- Phase scan spot checks indicate the scaling was within 4 degrees
- No detectable change in beam loss

Application of the Cavity Fault Recovery Scheme (II)

- In April 2007 the SCL was lowered from 4.2K to 2 K to facilitate 30 Hz operation.
- About 20 cavity amplitudes changed.

HFIR

<u>The fault recovery scheme restored beam to the previous loss state.</u>

Cavity Fault Recovery Scheme at SNS

- Additional applications of the cavity recovery scheme
 - Missing cryo-module tests to evaluate the impact on beam loss from removing entire cryo-modules from service for repairs.
 - Recovery from a control system failure that resulted in 3 broken cavity tuners.
- While intended for use in recovering from a single cavity failure, the scheme has been used more often to recover from more severe situations
 - Usually takes days to assess the situation, minutes to apply the recovery scheme
 - Previously took days to setup the cavities (now ~ 1 shift) with beam based measurement techniques
- This technique is considered a "standard practice" by now at SNS
 - Future improvements may include a more automated invocation

Summary

- High availability will be a strong driver at SNS
- A fault recovery scheme for superconducting cavity failure has been developed
- To date, its primary application has been for quick recovery from events involving multiple cavities
- It works !

