

### ERAWAST – a New Production Route for Exotic Long-lived Radionuclides

### (Exotic Radionuclides from Accelerator WAste for Science and Technology)

Dorothea Schumann, PSI Villigen, Switzerland



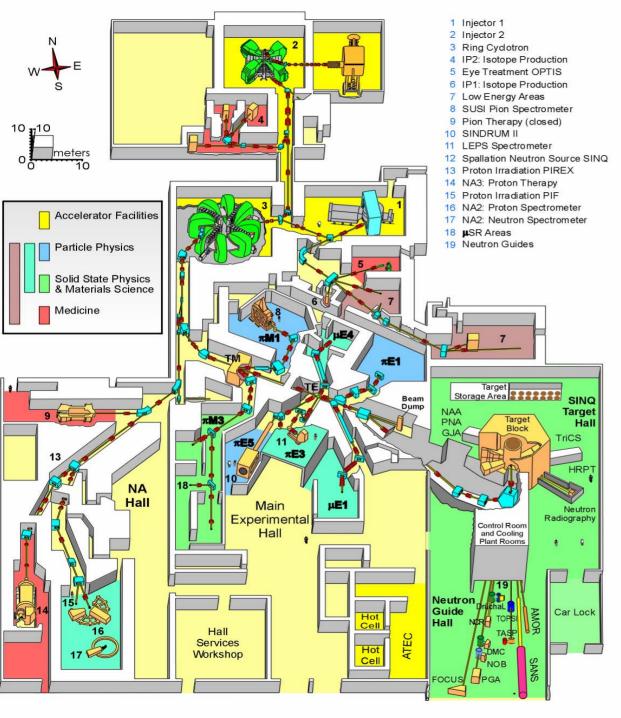
### Overview

- The idea
- Description of PSI accelerator facilities
- Concept of ERAWAST
- Copper beam dump
- Graphite targets
- Lead targets
- Separation techniques
- Summary and Outlook

## The idea

Paul Scherrer Institut

- Accelerator waste with high beam dose available at PSI
- 590 MeV protons produce several spallation products in shieldings, beam dump and targets
- Accelerator waste contains considerable amounts of long-lived exotic radionuclides


#### Application of exotic long-lived isotopes for several purposes

#### **Collaboration between**

- Nuclide production facilities
- Basic physics research/Nuclear Structure
- Laser Spectrometry (RIMS)
- Nuclear Astrophysics
- Accelerator Mass Spectrometry (AMS)
- Pharmaceutical chemistry

Workshop at PSI in Nov. 2006 (30 participants from 12 countries)

**Chemical separation necessary!** 



#### **Activated parts:**

BX2-Target, Beam dump and shielding (Beam Control, 71 MeV protons)

BMA-Target, Beam dump and shielding (Pion therapy station, 590 MeV protons)

Target E, beam dump and shielding (590 MeV protons)

Lead and Zirkalloy from the SINQ facility

#### Materials:

Copper Beryllium Tungsten Aluminium Cast iron Stainless steel Graphite Lead Concrete



## **Concept of ERAWAST**

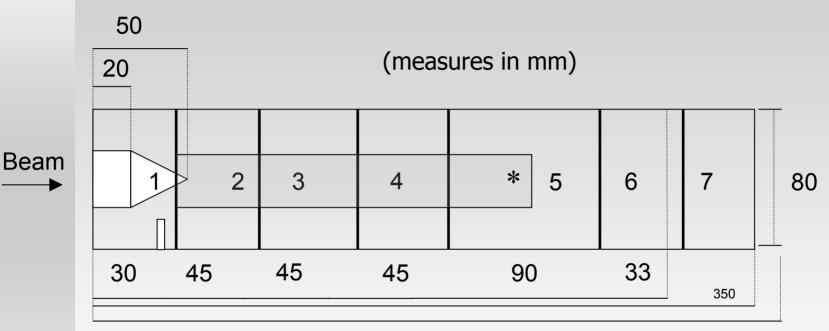
1. Existing accelerator waste material

Copper beam dump irradiated at the 590-MeV proton beam station at PSI, dismounted about 15 years ago <sup>26</sup>Al, <sup>59</sup>Ni, <sup>53</sup>Mn, <sup>60</sup>Fe, <sup>44</sup>Ti or others can be separated other irradiated materials like carbon (<sup>10</sup>Be), stainless steel or concrete are also available

- 2. **Target material from the SINQ facility** Two irradiated lead targets from the spallation source are available. Heavier isotopes like <sup>182</sup>Hf or several rare earth elements (e.g. <sup>146</sup>Sm, several Dy isotopes) can be obtained. In principle, targets from the SINQ will be available every second year.
- 3. Special irradiations

The SINQ facility offers the possibility to irradiate materials with 590 MeV protons at special positions. Tended experiments for isotope production can be offered.




### **Characteristics of the copper beam dump**

- Beam stop from the former BMA station
- Operated from 1980-1992, dismounted in 1993
- 0.1 Ah total beam dose (590 MeV protons)
- copper cylinder of ~ 10 kg; diameter 80mm
- Sample taking from several parts by drilling
- Characterization of the radionuclide inventory including radial and depth distribution

| Sampl<br>e | <sup>44</sup> Ti<br>[kBq/g] | <sup>36</sup> Cl<br>[Bq/g] | <sup>63</sup> Ni<br>[kBq/g] | <sup>55</sup> Fe<br>[kBq/g] | <sup>60</sup> Fe<br>[Bq/g] | <sup>26</sup> Al<br>[Bq/g] | <sup>110m</sup> Ag<br>[Bq/g] | <sup>108m</sup> Ag<br>[Bq/g] | <sup>59</sup> Ni<br>[Bq/g] | <sup>53</sup> Mn<br>[Bq/g] | <sup>60</sup> C0<br>[kBq/g] |
|------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|------------------------------|------------------------------|----------------------------|----------------------------|-----------------------------|
| C6.1.1     | 4.8                         | 4.06                       | 220.3                       | 233.6                       |                            | 0.154                      | 1.21                         | 1.77                         |                            |                            | 224.0                       |
| C6.1.2     | 0.54                        | 0.49                       | 133.7                       | 37.3                        |                            | 0.016                      | 1.98                         | 2.52                         |                            |                            | 85.7                        |
| C6.2.1     | 1616.0                      |                            | 34151.1                     | 42450.3                     |                            | 140                        | 3.89                         | 62.58                        |                            | 6900                       | 49957.1                     |
| C6.2.2     | 0.2                         | 0.30                       | 217.7                       | 108.6                       |                            |                            | 2.48                         | 1.35                         | 129                        | 0.6                        | 111.6                       |
| C6.3.1     | 740.8                       |                            | 36566.7                     | 44136.3                     |                            | 56                         | 2.3                          | 37.27                        |                            | 4310                       | 37969.6                     |
| C6.3.2     | 18.6                        |                            | 2006.0                      | 2562.0                      | 3.3                        | 1                          | 0.453                        | 9.19                         | 6620                       | 112                        | 2691.8                      |
| C6.3.3     | 1.5                         |                            | 1109.7                      | 1552.4                      | 1.9                        | 0.2                        | 1.32                         | 9.22                         | 2620                       | 117                        | 1239.4                      |
| C6.3.4     | 0.6                         |                            | 1841.6                      | 257.0                       | 0.5                        | 0.03                       | 0.92                         | 1.69                         | 759                        | 6                          | 663.2                       |
| C6.3.5     | 0.4                         | 0.35                       | 706.2                       | 154.7                       |                            |                            | 0.56                         | 1.06                         | 466                        | 4.9                        | 438.8                       |
| C6.4.1     | 778.1                       |                            | 16776.3                     | 26590.4                     |                            | 41                         | 1.64                         | 27.70                        |                            | 3600                       | 47256.0                     |
| C6.4.2     |                             | 0.24                       | 799.1                       | 132.5                       |                            |                            | 0.09                         | 1.27                         |                            | 2.1                        | 505.5                       |
| C6.5.1     | 95.0                        |                            | 5764.1                      | 11520.4                     | 20.2                       | 3                          | 11.70                        | 13.64                        |                            | 998                        | 10091.9                     |
| C6.5.2     |                             | 0.27                       | 545.6                       | 157.8                       |                            |                            | 0.59                         | 1.80                         | 422                        | 2.0                        | 415.0                       |
| C6.6.1     | -                           | 0.13                       | 1005.7                      | 287.6                       |                            | 0.012                      | 3.75                         | 3.93                         |                            |                            | 459.0                       |
| C6.6.2     | -                           | 0.08                       | 233.2                       | 127.8                       |                            | 0.0019                     | 0.49                         | 0.94                         |                            |                            | 169.8                       |
| C6.7.1     | -                           | 0.08                       | 170.2                       | 350.7                       |                            |                            | 1.4                          | 1.34                         |                            |                            | 148.6                       |
| C6.7.2     | -                           | 0.04                       | 118.8                       | 233.6                       |                            | 0.0013                     | 1.85                         | 0.86                         |                            |                            | 91.1                        |
| C6.7.3     | -                           | 0.04                       |                             |                             | 0.1                        | 0.0012                     | 3.86                         | 1.72                         | 1                          |                            | 56.1                        |
| C6.7.4     | -                           | 0.04                       |                             |                             |                            | 0.0009                     | 0.18                         | 1.03                         |                            | 0.5                        | 6.1                         |



#### Schematic view of the beam dump



#### \* - Area of drilling Ø 20mm

Drilling of appr. 500g of copper from the inner part containing about 80% of activity

370



# **Estimation of available radionuclides** (no separation)

```
<sup>44</sup>Ti: 100 MBq
<sup>53</sup>Mn: 500 kBq (10<sup>19</sup> atoms)
<sup>26</sup>Al: 7 kBq (10<sup>17</sup> atoms)
<sup>60</sup>Fe: (50 kBq - 10<sup>18</sup> atoms)
<sup>59</sup>Ni: ?
(<sup>60</sup>Co: 5 GBq)
```

All these radionuclides can be provided without carrier, but some of them contain other long-lived isotopes (<sup>55</sup>Fe/<sup>63</sup>Ni)

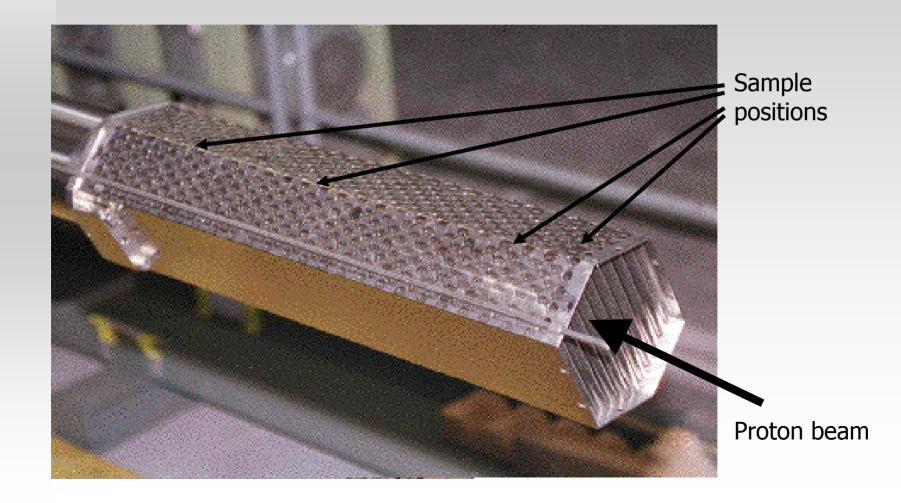


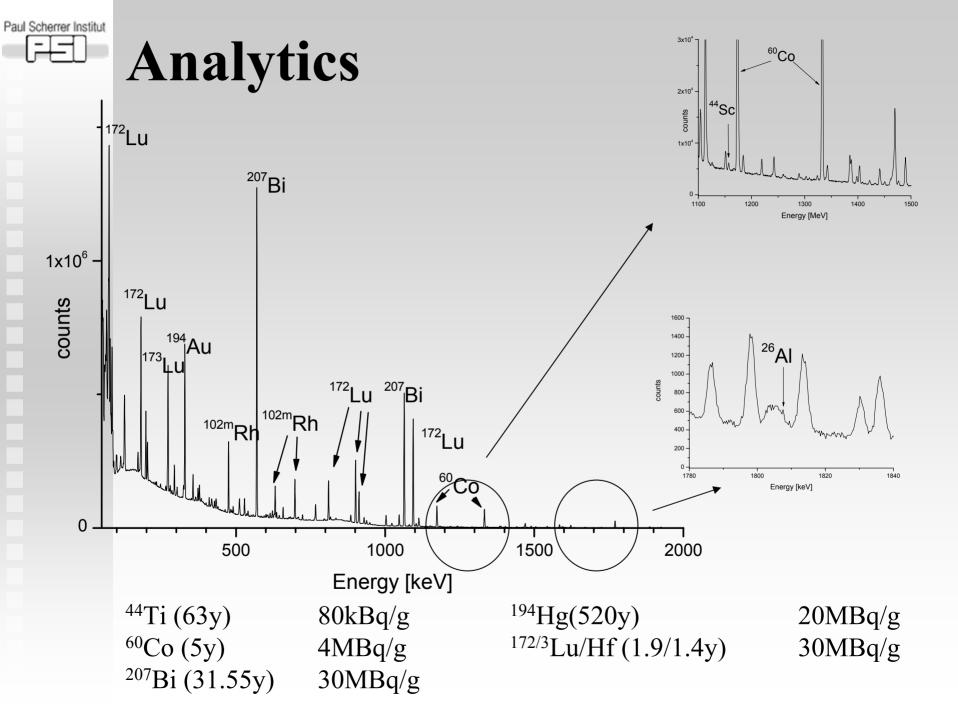
Paul Scherrer Institut

- Myon production station (target E)
  Up to 20% of the proton beam
- Typical operation time: 1-3 years
- Source for <sup>7</sup>Be and <sup>10</sup>Be
- Other radionuclides: <sup>14</sup>C, <sup>3</sup>H, impurities of <sup>22</sup>Na, <sup>54</sup>Mn, <sup>57/60</sup>Co



## **Results for 7/10Be**


#### beam doses 4 – 11 Ah


| Sample | <sup>10</sup> Be<br>[Bq/g]<br>ICP-MS | <sup>10</sup> Be<br>[Bq/g]<br>AMS | Total<br>amount of<br>atoms | Total<br>amount in<br>μg | <sup>7</sup> Be<br>[Bq/g]<br>EOB |
|--------|--------------------------------------|-----------------------------------|-----------------------------|--------------------------|----------------------------------|
| 1a     | 220                                  |                                   | 6.7·10 <sup>16</sup>        | 1.6                      | -                                |
| 1i     |                                      | 95                                |                             |                          |                                  |
| 2a     | 291                                  | 316                               | 8.4·10 <sup>16</sup>        | 1.4                      | 2.3.1011                         |
| 2i     |                                      | 7                                 |                             |                          |                                  |
| 3a     | 506                                  | 495                               | 6.5·10 <sup>16</sup>        | 1.1                      | 1.5.1011                         |
| 4a     | 2049                                 |                                   | 1.0.1018                    | 16.7                     | $8.4 \cdot 10^{10}$              |



### Lead targets from SINQ

#### 2 Samples from target 4, 2 years operation; EOB 1999

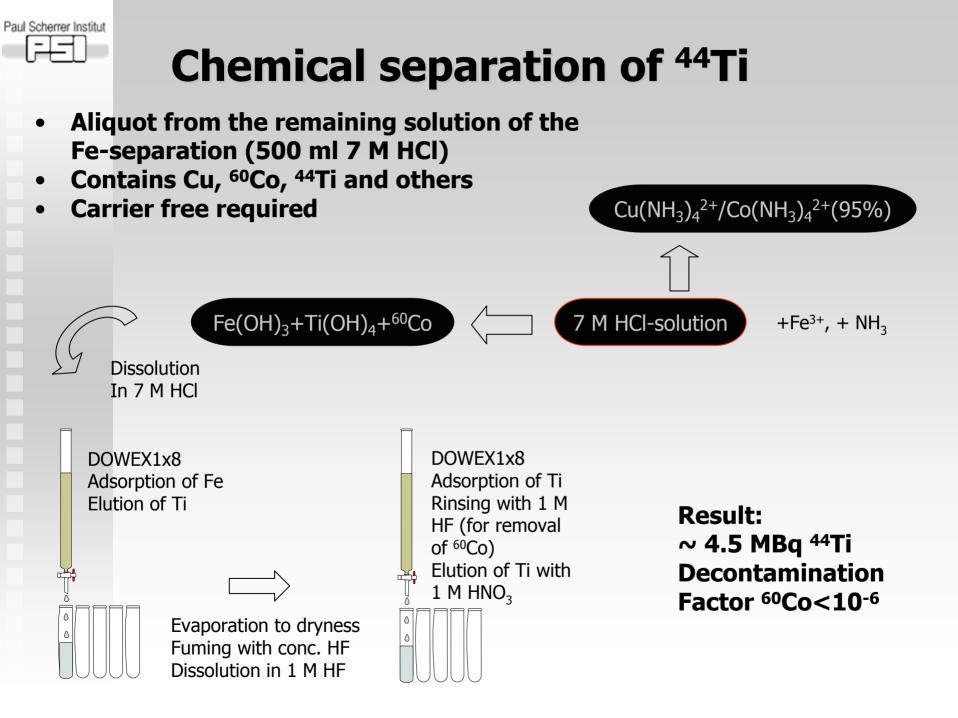


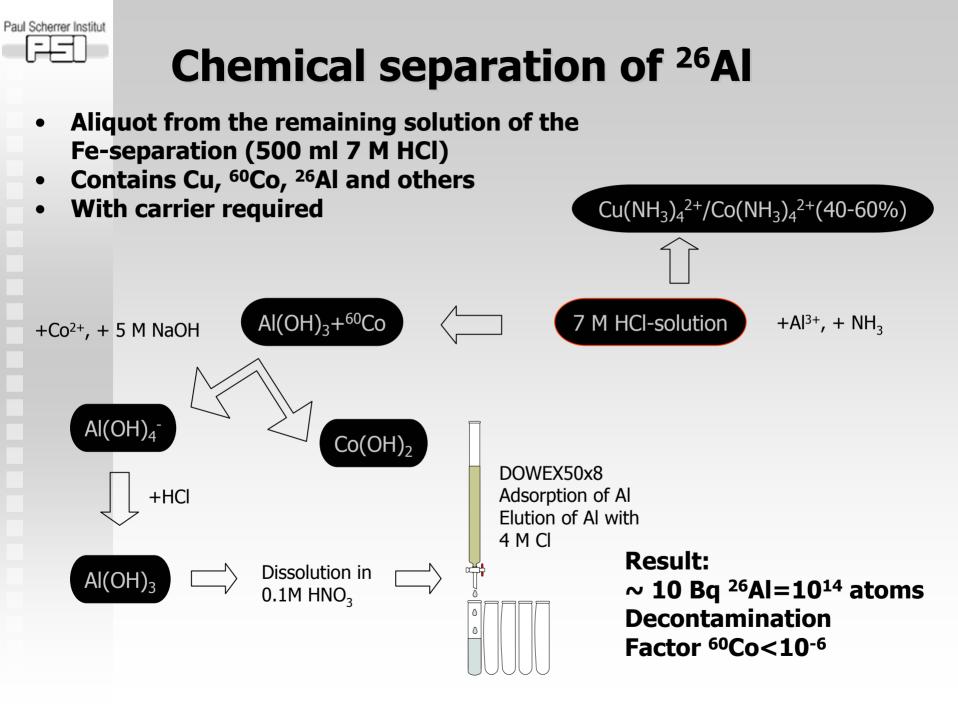


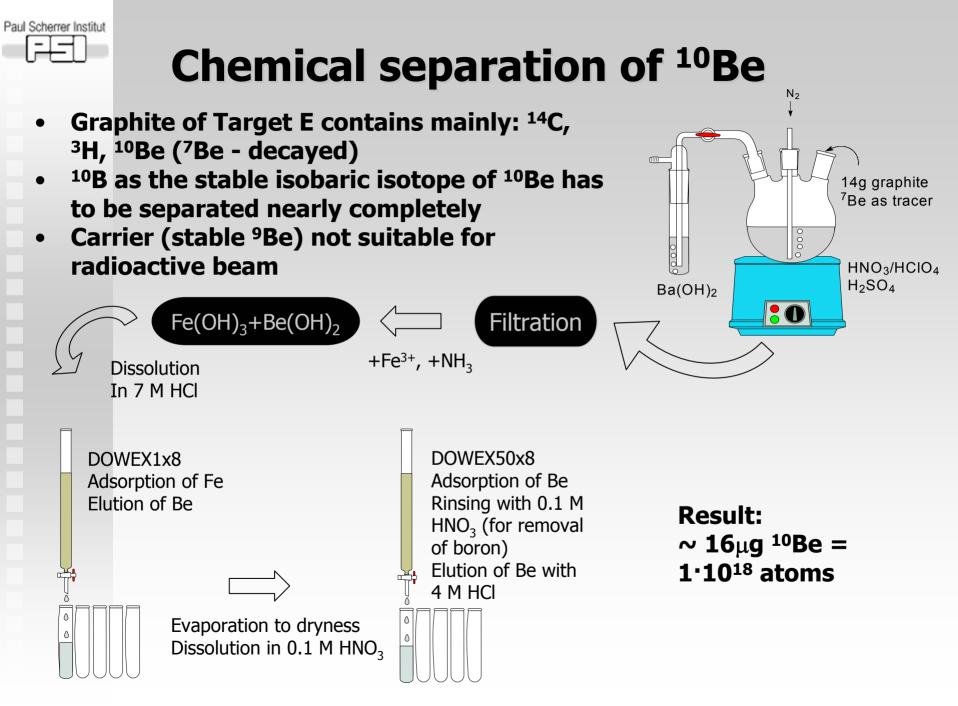
## **Examples for separation**

Paul Scherrer Institut

- <sup>60</sup>Fe for determination of half-life, with carrier, 10<sup>15</sup> atoms, collaboration with TUM)
- <sup>60</sup>Fe for neutron capture, carrier-free, 10<sup>16</sup> atoms, collaboration with FZK
- <sup>44</sup>Ti for Ti/Sc generator (radiopharmaceutical use), carrier-free, 1 MBq, collaboration with University Mainz
- <sup>44</sup>Ti, probably for studies of core collapse supernovae, carrierfree, 3.5 MBq (collaboration with Uni Edinburgh)
- <sup>26</sup>Al, with carrier, standard material for AMS, 10 Bq; collaboration with ETH Zürich
- <sup>26</sup>Al, carrier-free, laser spectrometry (RIMS), 10<sup>13</sup> atoms, collaboration with Uni Mainz
- <sup>10</sup>Be, carrier-free, radioactive ion beam, 5µg, collaboration with UCL
- <sup>10</sup>Be, carrier-free, laser spectrometry, 10<sup>13</sup> atoms, collaboration with GSI


### Chemical separation of <sup>60</sup>Fe


#### **Special Problem:**


Paul Scherrer Institut

<sup>60</sup>Fe (1.5<sup>·</sup>10<sup>6</sup> y)  $\stackrel{\beta}{\rightarrow}$  <sup>60</sup>mCo (10.5 min)  $\stackrel{\gamma}{\rightarrow}$  <sup>60</sup>Co (5.3 y)  $\stackrel{\gamma,\beta}{\rightarrow}$  <sup>60</sup>Ni (stable) <sup>60</sup>Fe: no  $\gamma$  radiation, low  $\beta$ -energy **Measurement of the increase of the Co-daughter**  $\rightarrow$  **very good chemical separation from Co necessary** 

- Dissolution of 3.8g Cu (beam dump) in 7 M  $HNO_3$
- Evaporation to dryness
- Dissolution in 7 M HCl
- + 5 mg Fe<sup>3+</sup> and 5 mg Co<sup>2+</sup> as carrier
- Extraction with Methylisobutylketone (MIBK)
- Aqueous phase: Ni, Co, Cu, organic phase: Fe
- Back Extraction with 0.1 M HCl, repetition of procedure
- Additional purification by precipitation of Fe(OH)<sub>3</sub>
- Result: ~ 10<sup>15 60</sup>Fe atoms, decontamination factor (Co) < 10<sup>-7</sup>







## **Summary and Outlook**

Cu- and C-samples available

Paul Scherrer Institut

- Work on Pb-targets ongoing
- 10<sup>15-17</sup> atoms of several radionuclides (<sup>26</sup>Al, <sup>60</sup>Fe, <sup>44</sup>Ti) separated and available
- Up to 10<sup>18</sup> atoms of <sup>10</sup>Be separated and available
- Possibilities for other irradiation positions (SINQ, beam dumps, collimators)
- ESF-funded Research-Network-Program launched
- Next step: Automated system for stepwise separation of big amounts of radionuclides from copper and carbon in a hotcell or glovebox
- Development of a similar system for the lead targets
- Routine production facility