ERAWAST – a New Production Route for Exotic Long-lived Radionuclides

(Exotic Radionuclides from Accelerator WAste for Science and Technology)

Dorothea Schumann, PSI Villigen, Switzerland
Overview

■ The idea
■ Description of PSI accelerator facilities
■ Concept of ERAWAST
■ Copper beam dump
■ Graphite targets
■ Lead targets
■ Separation techniques
■ Summary and Outlook
The idea

- Accelerator waste with high beam dose available at PSI
- 590 MeV protons produce several spallation products in shieldings, beam dump and targets
- Accelerator waste contains considerable amounts of long-lived exotic radionuclides

Application of exotic long-lived isotopes for several purposes

Collaboration between
 - Nuclide production facilities
 - Basic physics research/Nuclear Structure
 - Laser Spectrometry (RIMS)
 - Nuclear Astrophysics
 - Accelerator Mass Spectrometry (AMS)
 - Pharmaceutical chemistry

Workshop at PSI in Nov. 2006 (30 participants from 12 countries)

Chemical separation necessary!
Activated parts:
BX2-Target, Beam dump and shielding
(Beam Control, 71 MeV protons)

BMA-Target, Beam dump and shielding
(Pion therapy station, 590 MeV protons)

Target E, beam dump and shielding
(590 MeV protons)

Lead and Zirkalloy from the SINQ facility

Materials:
Copper
Beryllium
Tungsten
Aluminium
Cast iron
Stainless steel
Graphite
Lead
Concrete
Concept of ERAWAST

1. **Existing accelerator waste material**
 Copper beam dump irradiated at the 590-MeV proton beam station at PSI, dismounted about 15 years ago. 26Al, 59Ni, 53Mn, 60Fe, 44Ti or others can be separated. Other irradiated materials like carbon (10Be), stainless steel or concrete are also available.

2. **Target material from the SINQ facility**
 Two irradiated lead targets from the spallation source are available. Heavier isotopes like 182Hf or several rare earth elements (e.g. 146Sm, several Dy isotopes) can be obtained. In principle, targets from the SINQ will be available every second year.

3. **Special irradiations**
 The SINQ facility offers the possibility to irradiate materials with 590 MeV protons at special positions. Tended experiments for isotope production can be offered.
Characteristics of the copper beam dump

- Beam stop from the former BMA station
- 0.1 Ah total beam dose (590 MeV protons)
- Copper cylinder of ~ 10 kg; diameter 80mm
- Sample taking from several parts by drilling
- Characterization of the radionuclide inventory including radial and depth distribution
<table>
<thead>
<tr>
<th>Sample</th>
<th>^{44}Ti [kBq/g]</th>
<th>^{36}Cl [kBq/g]</th>
<th>^{63}Ni [kBq/g]</th>
<th>^{55}Fe [kBq/g]</th>
<th>^{60}Fe [kBq/g]</th>
<th>^{26}Al [kBq/g]</th>
<th>^{110m}Ag [kBq/g]</th>
<th>^{108m}Ag [kBq/g]</th>
<th>^{59}Ni [kBq/g]</th>
<th>^{53}Mn [kBq/g]</th>
<th>^{60}Co [kBq/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6.1.1</td>
<td>4.8</td>
<td>4.06</td>
<td>220.3</td>
<td>233.6</td>
<td>0.154</td>
<td>1.21</td>
<td>1.77</td>
<td></td>
<td>224.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.1.2</td>
<td>0.54</td>
<td>0.49</td>
<td>133.7</td>
<td>37.3</td>
<td>0.016</td>
<td>1.98</td>
<td>2.52</td>
<td></td>
<td>85.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.2.1</td>
<td>1616.0</td>
<td>34151.1</td>
<td>42450.3</td>
<td>140</td>
<td>3.89</td>
<td>62.58</td>
<td>6900</td>
<td>49957.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.2.2</td>
<td>0.2</td>
<td>0.30</td>
<td>217.7</td>
<td>108.6</td>
<td>2.48</td>
<td>1.35</td>
<td>129</td>
<td>0.6</td>
<td>111.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.3.1</td>
<td>740.8</td>
<td>36566.7</td>
<td>44136.3</td>
<td>56</td>
<td>2.3</td>
<td>37.27</td>
<td>4310</td>
<td>37969.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.3.2</td>
<td>18.6</td>
<td>2006.0</td>
<td>2562.0</td>
<td>3.3</td>
<td>1</td>
<td>0.453</td>
<td>9.19</td>
<td>6620</td>
<td>112</td>
<td>2691.8</td>
<td></td>
</tr>
<tr>
<td>C6.3.3</td>
<td>1.5</td>
<td>1109.7</td>
<td>1552.4</td>
<td>1.9</td>
<td>0.2</td>
<td>1.32</td>
<td>9.22</td>
<td>2620</td>
<td>117</td>
<td>1239.4</td>
<td></td>
</tr>
<tr>
<td>C6.3.4</td>
<td>0.6</td>
<td>1841.6</td>
<td>257.0</td>
<td>0.5</td>
<td>0.03</td>
<td>0.92</td>
<td>1.69</td>
<td>759</td>
<td>6</td>
<td>663.2</td>
<td></td>
</tr>
<tr>
<td>C6.3.5</td>
<td>0.4</td>
<td>0.35</td>
<td>706.2</td>
<td>154.7</td>
<td>0.56</td>
<td>1.06</td>
<td>466</td>
<td>4.9</td>
<td>438.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.4.1</td>
<td>778.1</td>
<td>16776.3</td>
<td>26590.4</td>
<td>41</td>
<td>1.64</td>
<td>27.70</td>
<td>3600</td>
<td>47256.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.4.2</td>
<td>0.24</td>
<td>799.1</td>
<td>132.5</td>
<td>0.09</td>
<td>1.27</td>
<td>2.1</td>
<td>505.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.5.1</td>
<td>95.0</td>
<td>5764.1</td>
<td>11520.4</td>
<td>20.2</td>
<td>3</td>
<td>11.70</td>
<td>13.64</td>
<td>998</td>
<td>10091.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.5.2</td>
<td>0.27</td>
<td>545.6</td>
<td>157.8</td>
<td>0.59</td>
<td>1.80</td>
<td>422</td>
<td>2.0</td>
<td>415.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.6.1</td>
<td>-</td>
<td>0.13</td>
<td>1005.7</td>
<td>287.6</td>
<td>0.012</td>
<td>3.75</td>
<td>3.93</td>
<td>459.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.6.2</td>
<td>-</td>
<td>0.08</td>
<td>233.2</td>
<td>127.8</td>
<td>0.0019</td>
<td>0.49</td>
<td>0.94</td>
<td>169.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.7.1</td>
<td>-</td>
<td>0.08</td>
<td>170.2</td>
<td>350.7</td>
<td>1.4</td>
<td>1.34</td>
<td></td>
<td>148.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.7.2</td>
<td>-</td>
<td>0.04</td>
<td>118.8</td>
<td>233.6</td>
<td>0.0013</td>
<td>1.85</td>
<td>0.86</td>
<td>91.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.7.3</td>
<td>-</td>
<td>0.04</td>
<td>0.1</td>
<td>0.0012</td>
<td>3.86</td>
<td>1.72</td>
<td>1</td>
<td>56.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.7.4</td>
<td>-</td>
<td>0.04</td>
<td>0.0009</td>
<td>0.18</td>
<td>1.03</td>
<td></td>
<td>0.5</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schematic view of the beam dump

* - Area of drilling Ø 20mm

Drilling of appr. 500g of copper from the inner part containing about 80% of activity
Estimation of available radionuclides (no separation)

^{44}Ti: 100 MBq
^{53}Mn: 500 kBq (10^{19} atoms)
^{26}Al: 7 kBq (10^{17} atoms)
^{60}Fe: (50 kBq – 10^{18} atoms)
^{59}Ni: ?
(^{60}Co: 5 GBq)

All these radionuclides can be provided without carrier, but some of them contain other long-lived isotopes ($^{55}\text{Fe}/^{63}\text{Ni}$)
Graphite targets

- Myon production station (target E)
- Up to 20% of the proton beam
- Typical operation time: 1-3 years
- Source for 7Be and 10Be
- Other radionuclides: 14C, 3H, impurities of 22Na, 54Mn, $^{57/60}$Co
Results for $^7/^{10}$Be

beam doses 4 – 11 Ah

<table>
<thead>
<tr>
<th>Sample</th>
<th>10Be [Bq/g] ICP-MS</th>
<th>10Be [Bq/g] AMS</th>
<th>Total amount of atoms</th>
<th>Total amount in μg</th>
<th>7Be [Bq/g] EOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>220</td>
<td></td>
<td>6.7·1016</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>1i</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>291</td>
<td>316</td>
<td>8.4·1016</td>
<td>1.4</td>
<td>2.3·1011</td>
</tr>
<tr>
<td>2i</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>506</td>
<td>495</td>
<td>6.5·1016</td>
<td>1.1</td>
<td>1.5·1011</td>
</tr>
<tr>
<td>4a</td>
<td>2049</td>
<td></td>
<td>1.0·1018</td>
<td>16.7</td>
<td>8.4·1010</td>
</tr>
</tbody>
</table>
Lead targets from SINQ

2 Samples from target 4, 2 years operation; EOB 1999
Analytics

- $^{172}_{77}$Lu (606.5 keV) 80 kBq/g
- $^{173}_{77}$Lu (202.2 keV) 310 MBq/g
- $^{207}_{83}$Bi (207.7 keV) 310 MBq/g
- $^{194}_{79}$Au (194 keV) 80 kBq/g
- $^{102}_{49}$Rh (205 keV) 102 MBq/g

- $^{60}_{28}$Co (1332.5 keV) 60 MBq/g
- $^{172/3}_{77}$Lu/Hf (1.9/1.4 y) 30 MBq/g
Examples for separation

- 60Fe for determination of half-life, with carrier, 10^{15} atoms, collaboration with TUM
- 60Fe for neutron capture, carrier-free, 10^{16} atoms, collaboration with FZK
- 44Ti for Ti/Sc generator (radiopharmaceutical use), carrier-free, 1 MBq, collaboration with University Mainz
- 44Ti, probably for studies of core collapse supernovae, carrier-free, 3.5 MBq (collaboration with Uni Edinburgh)
- 26Al, with carrier, standard material for AMS, 10 Bq; collaboration with ETH Zürich
- 26Al, carrier-free, laser spectrometry (RIMS), 10^{13} atoms, collaboration with Uni Mainz
- 10Be, carrier-free, radioactive ion beam, 5 μg, collaboration with UCL
- 10Be, carrier-free, laser spectrometry, 10^{13} atoms, collaboration with GSI
Special Problem:

\[^{60}\text{Fe} \ (1.5 \cdot 10^6 \text{ y}) \xrightarrow{\beta^-} ^{60}\text{mCo} \ (10.5 \text{ min}) \xrightarrow{\gamma} ^{60}\text{Co} \ (5.3 \text{ y}) \xrightarrow{\gamma, \beta^-} ^{60}\text{Ni} \ \text{(stable)} \]

\(^{60}\text{Fe}: \text{no } \gamma \text{ radiation, low } \beta^- \text{ energy}\)

Measurement of the increase of the Co-daughter → very good chemical separation from Co necessary

- Dissolution of 3.8g Cu (beam dump) in 7 M HNO\(_3\)
- Evaporation to dryness
- Dissolution in 7 M HCl
- + 5 mg Fe\(^{3+}\) and 5 mg Co\(^{2+}\) as carrier
- Extraction with Methylisobutylketone (MIBK)
- Aqueous phase: Ni, Co, Cu, organic phase: Fe
- Back Extraction with 0.1 M HCl, repetition of procedure
- Additional purification by precipitation of Fe(OH)\(_3\)
- Result: \(\sim 10^{15}\) \(^{60}\text{Fe}\) atoms, decontamination factor (Co) < 10\(^{-7}\)
Chemical separation of 44Ti

- Aliquot from the remaining solution of the Fe-separation (500 ml 7 M HCl)
- Contains Cu, 60Co, 44Ti and others
- Carrier free required

Dissolution in 7 M HCl

DOWEX1x8 Adsorption of Fe
DOWEX1x8 Adsorption of Ti
Evaporation to dryness
Fuming with conc. HF
Dissolution in 1 M HF

Result:
~ 4.5 MBq 44Ti
Decontamination Factor 60Co $< 10^{-6}$
Chemical separation of 26Al

- Aliquot from the remaining solution of the Fe-separation (500 ml 7 M HCl)
- Contains Cu, 60Co, 26Al and others
- With carrier required

Cu$(\text{NH}_3)_4^{2+}$/Co$(\text{NH}_3)_4^{2+}$ (40-60%)

26Al = 10^{14} atoms
Decontamination Factor 60Co < 10^{-6}
Chemical separation of 10Be

- Graphite of Target E contains mainly: 14C, 3H, 10Be (7Be - decayed)
- 10B as the stable isobaric isotope of 10Be has to be separated nearly completely
- Carrier (stable 9Be) not suitable for radioactive beam

Dissolution
In 7 M HCl

$\text{Fe(OH)}_3 + \text{Be(OH)}_2 \xrightarrow{\text{Filtration}} + \text{Fe}^{3+}, +\text{NH}_3$

DOWEX1x8
Adsorption of Fe
Elution of Be

DOWEX50x8
Adsorption of Be
Rinsing with 0.1 M HNO$_3$ (for removal of boron)
Elution of Be with 4 M HCl

Evaporation to dryness
Dissolution in 0.1 M HNO$_3$

Result:
$\sim 16 \mu g \ 10^{18}$ atoms
Summary and Outlook

- Cu- and C-samples available
- Work on Pb-targets ongoing
- 10^{15-17} atoms of several radionuclides (^{26}Al, ^{60}Fe, ^{44}Ti) separated and available
- Up to 10^{18} atoms of ^{10}Be separated and available
- Possibilities for other irradiation positions (SINQ, beam dumps, collimators)
- ESF-funded Research-Network-Program launched
- Next step: Automated system for stepwise separation of big amounts of radionuclides from copper and carbon in a hotcell or glovebox
- Development of a similar system for the lead targets
- Routine production facility