Development of super-conducting spoke cavities for an ADS linac

Aurélien Ponton

Institut de Physique Nucléaire d'Orsay CNRS/IN2P3 UNIVERSITÉ PARIS-SUD 11

Fifth International Workshop on the Utilization and Reliability of High Power Proton Accelerators, Mol, Belgium, May 2007

Table of contents

- Needs for reliability
- Beam line specifications
- State of the art of reliability
- 2 Reliability guidelines for an ADS linac
 - Derating/overdesign
 - Redundancy
 - Fault tolerance
- 8 Reliability and spoke activities at IPN Orsay
 - SC spoke cavities
 - RF couplers and amplifiers
 - Next steps with CM0

★ 글 ▶ ★ 글 ♪

Needs for reliability Beam line specifications State of the art of reliability

Table of contents

- Needs for reliability
- Beam line specifications
- State of the art of reliability
- Reliability guidelines for an ADS linac
 - Derating/overdesign
 - Redundancy
 - Fault tolerance
- 3 Reliability and spoke activities at IPN Orsay
 - SC spoke cavities
 - RF couplers and amplifiers
 - Next steps with CM0

イロト イ理ト イヨト イヨト

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements

and also decrease

• the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements

and also decrease

• the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements

and also decrease

• the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements

and also decrease

• the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements

and also decrease

• the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements

and also decrease

• the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Why do we need special reliability?

Definition of reliability engineering

Facing each component failures of a complex system, such as a driver accelerator, i.e anticipating and monitoring the probability of these failures to achieve the nominal and required behavior of the system.

Consequences of beam failures

Frequently beam interruptions can seriously damage :

- the reactor structures
- the target
- the fuel elements
- and also decrease
 - the plant availability

Needs for reliability Beam line specifications State of the art of reliability

Special reliability for the proton beam

Maximum beam intensity	4mA CW on target			
Proton energy	600 <i>MeV</i>			
Beam entry	Vertically			
Beam trip number	<pre>< 5 per 3 month operation cycle (exceeding 1 second)</pre>			
Beam stability	Energy ±1% Intensity : ±2% Size ±10%			

ъ

Needs for reliability Beam line specifications State of the art of reliability

Special reliability for the proton beam

Maximum beam intensity	4mA CW on target			
Proton energy	600MeV Vertically < 5 per 3 month operation cycle (exceeding 1 second)			
Beam entry				
Beam trip number				
Beam stability	Energy ±1% Intensity : ±2% Size ±10%			

ъ

Needs for reliability Beam line specifications State of the art of reliability

Special reliability for the proton beam

Maximum beam intensity	4mA CW on target			
Proton energy	600 <i>MeV</i>			
Beam entry	Vertically			
Beam trip number	< 5 per 3 month operation cycle (exceeding 1 second)			
Beam stability	Energy ±1% Intensity : ±2% Size ±10%			

ъ

Needs for reliability Beam line specifications State of the art of reliability

Special reliability for the proton beam

Maximum beam intensity	4mA CW on target			
Proton energy	600 <i>MeV</i>			
Beam entry	Vertically			
Beam trip number	< 5 per 3 month operation cycle (exceeding 1 second)			
Beam stability	Energy ±1% Intensity : ±2% Size ±10%			

ъ

Needs for reliability Beam line specifications State of the art of reliability

Special reliability for the proton beam

Maximum beam intensity	4mA CW on target		
Proton energy	600 <i>MeV</i>		
Beam entry	Vertically		
Beam trip number	< 5 per 3 month operation cycle		
	(exceeding 1 second)		
Beam stability	Energy ±1%		
	Intensity : $\pm 2\%$ Size $\pm 10\%$		

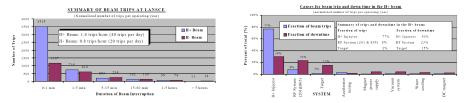
ъ

Needs for reliability Beam line specifications State of the art of reliability

Special reliability for the proton beam

Maximum beam intensity	4 <i>mA</i> CW on target
Proton energy	600 <i>MeV</i>
Beam entry	Vertically
Beam trip number	< 5 per 3 month operation cycle
	(exceeding 1 second)
Beam stability	Energy ±1%
	Intensity : $\pm 2\%$ Size $\pm 10\%$

ъ


LANSCE

Needs for reliability Beam line specifications State of the art of reliability

Beam failure statistics of the accelerator facility

Systems responsible for trips and downtime in the H^+ beam

イロト イ理ト イヨト イヨト

- Injector : 77% of the trips and 30% of the downtime
- RF system : 8% of the trips but accountable for 23% of the downtime

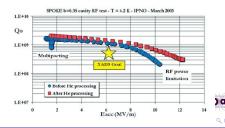
Derating/overdesign Redundancy Fault tolerance

Table of contents

- Reliability for a waste transmutation ADS
 - Needs for reliability
 - Beam line specifications
 - State of the art of reliability
- 2 Reliability guidelines for an ADS linac
 - Derating/overdesign
 - Redundancy
 - Fault tolerance
 - 3 Reliability and spoke activities at IPN Orsay
 - SC spoke cavities
 - RF couplers and amplifiers
 - Next steps with CM0

イロト イ理ト イヨト イヨト

Derating/overdesign Redundancy Fault tolerance


Component overdesign

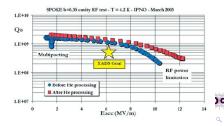
Overdesign

Any components of the linac must operate well below their technological upper limit.

For the SC spoke $\beta = 0.35$, the maximum accelerating field is twice as much as the working one : $E_{acc,max} = 2E_{acc,nominal}$

A. Ponton ponton@ipno.in2p3.fr

Derating/overdesign Redundancy Fault tolerance


Component overdesign

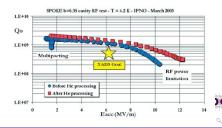
Overdesign

Any components of the linac must operate well below their technological upper limit.

For the SC spoke $\beta = 0.35$, the maximum accelerating field is twice as much as the working one : $E_{acc,max} = 2E_{acc,nominal}$

A. Ponton ponton@ipno.in2p3.fr

Derating/overdesign Redundancy Fault tolerance

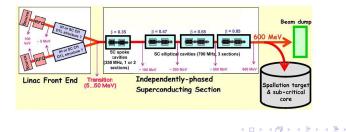

Component overdesign

Overdesign

Any components of the linac must operate well below their technological upper limit.

For the SC spoke $\beta = 0.35$, the maximum accelerating field is twice as much as the working one : $E_{acc,max} = 2E_{acc,nominal}$

A. Ponton ponton@ipno.in2p3.fr

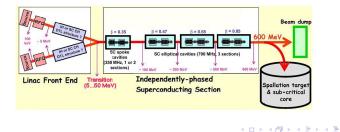

Derating/overdesign Redundancy Fault tolerance

High degree of redundancy

Redundancy

Several components achieve the same function. In case of failure of one, the other component could be turn on to ensure the well running of the function.

The first ~ 20 MeV structure is duplicated

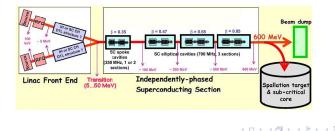

Derating/overdesign Redundancy Fault tolerance

High degree of redundancy

Redundancy

Several components achieve the same function. In case of failure of one, the other component could be turn on to ensure the well running of the function.

The first \sim 20*MeV* structure is duplicated

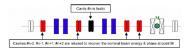

Derating/overdesign Redundancy Fault tolerance

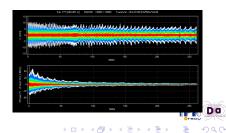
High degree of redundancy

Redundancy

Several components achieve the same function. In case of failure of one, the other component could be turn on to ensure the well running of the function.

The first $\sim 20 \text{MeV}$ structure is duplicated


Derating/overdesign Redundancy Fault tolerance

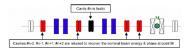

Fault tolerance capabilities

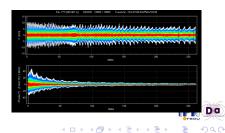
Fault tolerance

Monitoring the system in such a way that component failures do not lead to system failure.

The local compensation method

A. Ponton ponton@ipno.in2p3.fr Development of SC spoke cavities for an ADS linac


Derating/overdesign Redundancy Fault tolerance

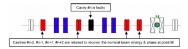

Fault tolerance capabilities

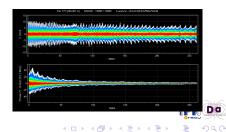
Fault tolerance

Monitoring the system in such a way that component failures do not lead to system failure.

The local compensation method

A. Ponton ponton@ipno.in2p3.fr Development of SC spoke cavities for an ADS linac


Derating/overdesign Redundancy Fault tolerance


Fault tolerance capabilities

Fault tolerance

Monitoring the system in such a way that component failures do not lead to system failure.

The local compensation method

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Table of contents

- Reliability for a waste transmutation ADS
 - Needs for reliability
 - Beam line specifications
 - State of the art of reliability
- Peliability guidelines for an ADS linac
 - Derating/overdesign
 - Redundancy
 - Fault tolerance
- 8 Reliability and spoke activities at IPN Orsay
 - SC spoke cavities
 - RF couplers and amplifiers
 - Next steps with CM0

イロト イ理ト イヨト イヨト

SC spoke cavities RF couplers and amplifiers Next steps with CM0

2 spoke prototypes $\beta = 0.35$ and $\beta = 0.15$

Labs	Spoke-type	Geometrical /Optimal betas	Eacc max* [MV/m]	Epk [MV/m]	Bpk [mT]	Voltage gain [MV]	Limitation
IPN Orsay	Single	0.15/0.20	4.77	32	69	0.81	Quench
	Single	0.35/0.36	8.15	38	104	2.49	Power
ANL	Single	0.29/0.29	8.46	40	106	2.21	Quench
	Single	0.40/0.40	7.57	46	123	2.63	Quench
	Double	0.40/0.40	8.60	40	79	4.40	Quench
	Triple	0.50/0.50	7.65	28	88	6.65	Quench
	Triple	0.63/0.63	8.61	34	104	9.40	Quench
LANL	Single	0.175/0.21	7.50	38	99	1.34	Quench

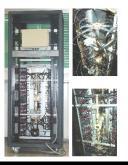
- 2-gap-structure
- super-conducting cavity
- large beam aperture : 50mm to 60mm

Mean values :

- $E_{acc} = 8MV/m$
- $E_{pk} = 38MV/m$

イロト イポト イヨト イヨト

• $B_{pk} = 100 mT$

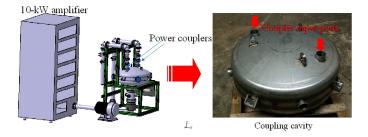

SC spoke cavities RF couplers and amplifiers Next steps with CM0

10kW Solid-state amplifier

- several modules of 315W each
- one module failure does not affect significantly the amplifier behavior
- circulators can support the total reflected power

RF amplifier

RF module test bench



A. Ponton ponton@ipno.in2p3.fr De

SC spoke cavities RF couplers and amplifiers Next steps with CM0

High power RF test bench

- All components ordered (some already delivered as the coupling cavity, the vacuum pumping system, the supporting frame . . .)
- Final location and installation are almost finished
- June/July 2007 : first tests

イロト イ理ト イヨト イヨト

SC spoke cavities RF couplers and amplifiers Next steps with CM0

A small scale horizontal cryostat

- Cryomodule for fully equipped Spoke cavities (with power coupler & tuning system)
- Cool down at 2K and 4.2 K
- Useful space : $L_{max} = 690 mm$ & $diam_{max} = 490 mm$

Cryostat operation close to an accelerator configuration (without beam !)

ヘロト ヘワト ヘビト ヘビト

SC spoke cavities RF couplers and amplifiers Next steps with CM0

A small scale horizontal cryostat

• Cryomodule for fully equipped Spoke cavities (with power coupler & tuning system)

- Cool down at 2K and 4.2 K
- Useful space : $L_{max} = 690 mm$ & $diam_{max} = 490 mm$

Cryostat operation close to an accelerator configuration (without beam !)

・ロン ・雪 と ・ ヨ と

SC spoke cavities RF couplers and amplifiers Next steps with CM0

A small scale horizontal cryostat

- Cryomodule for fully equipped Spoke cavities (with power coupler & tuning system)
- Cool down at 2K and 4.2 K
- Useful space : $L_{max} = 690 mm$ & $diam_{max} = 490 mm$

Cryostat operation close to an accelerator configuration (without beam !)

・ロン ・雪 と ・ ヨ と

SC spoke cavities RF couplers and amplifiers Next steps with CM0

A small scale horizontal cryostat

- Cryomodule for fully equipped Spoke cavities (with power coupler & tuning system)
- Cool down at 2K and 4.2 K
- Useful space : $L_{max} = 690 mm \& diam_{max} = 490 mm$

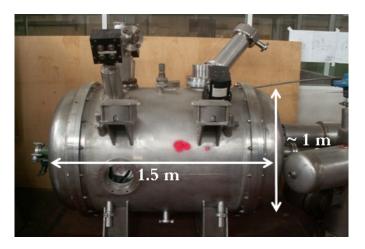
Cryostat operation close to an accelerator configuration (without beam !)

イロト イポト イヨト イヨト

SC spoke cavities RF couplers and amplifiers Next steps with CM0

A small scale horizontal cryostat

- Cryomodule for fully equipped Spoke cavities (with power coupler & tuning system)
- Cool down at 2K and 4.2 K
- Useful space : $L_{max} = 690 mm$ & $diam_{max} = 490 mm$


Cryostat operation close to an accelerator configuration (without beam !)

イロト イポト イヨト イヨト

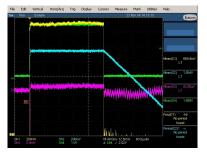
SC spoke cavities RF couplers and amplifiers Next steps with CM0

CMO cryostat

・ロト ・回ト ・ヨト ・ヨト

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Soke $\beta = 0.15$ cavity inside the cryostat



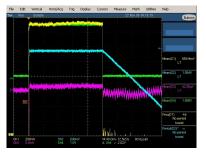
SC spoke cavities RF couplers and amplifiers Next steps with CM0

First results of the digital LLRF With the $\beta = 0.15$ Spoke cavity at 4.2K in a vertical cryostat

Amplitude : 0.1% (< 0.1%) and Phase : 0.6% (< 0.5%)Preliminary results

Without regulation

Development of SC spoke cavities for an ADS linac

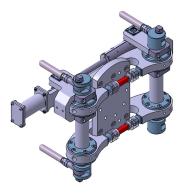

A. Ponton ponton@ipno.in2p3.fr

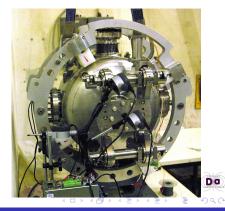
SC spoke cavities RF couplers and amplifiers Next steps with CM0

First results of the digital LLRF With the $\beta = 0.15$ Spoke cavity at 4.2K in a vertical cryostat

Amplitude : 0.1%(< 0.1%) and Phase : 0.6%(< 0.5%)Preliminary results

Without regulation

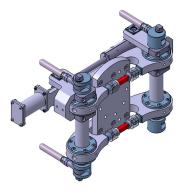

A. Ponton ponton@ipno.in2p3.fr

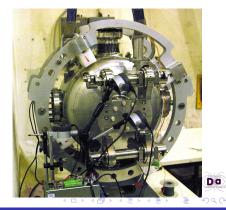

Development of SC spoke cavities for an ADS linac

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Cold tuning system Test at 300K

Average sensitivity : 0.887 Hz per motor step




Development of SC spoke cavities for an ADS linac

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Cold tuning system Test at 300K

Average sensitivity : 0.887Hz per motor step

A. Ponton ponton@ipno.in2p3.fr

Development of SC spoke cavities for an ADS linac

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

イロト イポト イヨト イヨト 一日

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

イロト イポト イヨト イヨト 三日

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

イロト イポト イヨト イヨト 三日

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

イロト イポト イヨト イヨト 三日

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

SC spoke cavities RF couplers and amplifiers Next steps with CM0

Outlooks with CM0

June/July 2007

CM0 is almost ready for the first cryogenic test including :

- an upgraded digital LLRF system
- the cold tuning system

October/November 2007

A long duration test will be run with a fully equipped Spoke $\beta = 0.15$ cavity :

- beam coupler supplied with the 10kW solid state amplifier
- tuning system with piezo actuators
- upgraded digital LLRF

Summary

Promising results :

- Amplifier module characterization
- Spoke cavities performances
- Digital LLRF system in vertical cryostat
- Room temperature tuning system test

At IPN Orsay :

Many efforts to achieve a fully equipped spoke cavity cold test in CM0 with high degree of component reliability

Summary

Promising results :

- Amplifier module characterization
- Spoke cavities performances
- Digital LLRF system in vertical cryostat
- Room temperature tuning system test

At IPN Orsay :

Many efforts to achieve a fully equipped spoke cavity cold test in CM0 with high degree of component reliability

