Proton Engineering Frontier Project

OECD Nuclear Energy Agency Fifth International Workshop on the Utilisation and Reliability of High Power Proton Accelerators (HPPA5) (6-9 May 2007, Mol, Belgium)

Yong-Sub Cho (choys@kaeri.re.kr)

Proton Engineering Frontier Project 양성자기반공학기술개발사업단

Project Goals of PEFP

I Project Name : Proton Engineering Frontier Project (PEFP) 21C Frontier Project, Ministry of Science and Technology

Project Goals :

- 1st : Developing & constructing an 100MeV proton linear accelerator with high duty
- 2nd : Developing technologies for proton beam utilizations & accelerator applications
- 3rd : Promoting industrial applications with developed technologies
- Project Period : 2002.7 2012.3 (10 years)

Project Cost : 128.6 B Won (130M\$) (Gyoungju City provides the land & the supporting facilities)

Basic Accelerator Parameters

- Particle
- Beam Energy
- Operational Mode
- Max. Peak Current
- RF Frequency
- Repetition Rate
- Pulse Width
- Max. Beam Duty

- : Proton
- : 20 MeV / 100MeV
- : Pulsed
- : 20 mA
- : 350 MHz
- : Max. 120Hz(20MeV) / 60Hz(100MeV)
- : Max. 2.0ms(20MeV) / 1.33ms(100MeV)
- : Max. 24%(20MeV) / 8%(100MeV)
- * High Duty Factor is a key issue.

PEFP Accelerator Layout

PEFP Proton Engineeri Frontier Project

- 102 : ST, BT
- 104 : LEPT,

Medical Application

- 105 : Neutron Science
- 101 : RI
- 103 : Material Science

- 25 : Material Science, Industrial Application
- 23 : IT, Semiconductor
- 22 : BT/ST, Medical Application
- 24 : Neutron Science
- 21 : RI

- The PEFP Accelerator composes of 50keV Proton Injector, 3MeV RFQ and 100MeV DTL.
- It can extract protons at 20MeV and 100MeV.
- AC magnets to distribute beams for each beam line simultaneously.

Proton Injector

1ms Beam

> 200us Beam

- Duoplasmatron ion source
- Max. Beam current : DC 40 mA H⁺ at 50kV
- Normalized emittance : 0.2 π mm mrad (90%)
- Proton fraction : >80%
- Operation Mode : DC & Pulse (50us ~ 2ms)
- Filament Lifetime (40mA) : 40hrs
- No trip during the filament lifetime : Reliable

Pulse Beam Extraction With HV switch

RFQ Fabrication Technology

Vane machining

Vane adjustment before Brazing

Leak test (< 1e-9torr.l/s)

3 MeV RFQ

□ Set up for Test of RFQ

- RFQ have been fabricated and tuned.
- Peak Power RF test has been done.
- Beam test with limited current has been done to check basic design parameters.

Results of the RF & Beam test

Cavity field and Beam current signal

7

EQM of the Drift Tube

EQM for 20MeV DTL

- Transformer wire
- Pool type cooling
- Compact
- Need assessment of long term reliability

EQM for 20~100MeV DTL

- Hollow Conductor
- Larger volume than pool type
- Well proven technology

20MeV DTL Tuning

- Frequency : 350MHz \pm 5kHz ,
- Field : design value \pm < 2 %
- -Tilt sensitivity : < 100%/MHz
- : Bead Pull Measurement

20 MeV DTL

- DTL has been fabricated and tuned.
- Peak Power RF test has been done successfully.
- Beam test with limited current has been done (20MeV, 2mA peak at 50us, 0.1Hz)
- Beam Transmission is ~100%.

Digital LLRF Development

- LLRF requirement : RF amplitude < 1%, RF phase < 1 degree
- Control system : Digital FPGA PMC board hosted in VME PowerPC board
- Control algorithm : Feedback (Proportional+Integral) + Feedforward (Implemented in VHDL)

- XC2V4000, 4million system gates

11

LLRF Test Results

- RF pulse width / repetition rate / peak power : 200 μ s / 0.1 Hz / ~ 150 kW per tank
- Control gain value (I set / Q set / Pgain / I gain) : 26,000 / 0 / 1.0 / 70,000
- RF stability (error in amplitude / error in phase) : < 0.08% / 0.12 degree

Pulse to pulse RF amplitude variation

Pulse to pulse RF phase variation

PEFP 20 MeV Proton Linac in Daejeon

20 MeV beam extraction into air for users

- Beam window : 0.5 mm aluminum
- Beam energy / average current : 20 MeV / 15 nA (3mA peak, 50µs, 0.1 Hz) (radiation safety license limit)
- Dose per beam pulse measured by using ion chamber : 62.24 Gy / pulse
- : The beam will be supplied to users for their beam applications.

Beam profile at 85 mm apart from the beam window (MD55- Gafchromic film)

Beam dump with beam extraction window located at the end of the DTL

20 MeV Beam Lines for User Facilities

Beam Line	Energy	Avg. Current	Irrad. Condition	Max. Irrad. Dia.	Application Field
BL20	20 MeV	~4.8 mA	Horizontal Vacuum	_	- Beam Dump - Material Test - with High Current Beam
BL21	20 MeV	120 μA ~1.2 mA	Horizontal Vacuum	100mm	- RI Production
BL22	3~20 MeV	10 nA ~60 μA	Vertical External	300mm	- BT, ST - Detector Test - Space Radiation Effect - Liquid, Powder Sample Available
BL23	3~20 MeV	60 μA ~1.2 mA	Horizontal External	300mm	 Power Semi. Device Development Semiconductor Application
BL24	20 MeV	120 μA ~1.2 mA	Horizontal Vacuum	100mm	- BNCT - Low Energy Neutron Source
BL25	20 MeV	120 μA ~1.2 mA	Horizontal Vacuum	300mm	- Industrial Application for Mass Production

Layout of the 20 MeV Beam Lines

100 MeV Beam Lines for User Facilities

Beam Line	Energy	Avg. Current	Irrad. Condition	Max. Irrad. Dia.	Application Field
BL100	100 MeV	~1.8 mA	Horizontal Vacuum	Ι	 Beam Dump Material Test with High Current Beam
BL101	33,45,57, 69,80,92, 103 MeV	30~ 300 μΑ	Horizontal Vacuum	100mm	- RI Production
BL102	20~ 103 MeV	~10 μA (10 nA)	Vertical External	300mm	 BT, ST, Medical Application Detector Test Space Radiation Effect Liquid, Powder Sample Available
BL103	20~ 103 MeV	30~ 300 μΑ	Horizontal External	300mm	 Industrial Application for Mass Production
BL104	20~ 103 MeV	10 nA ~10 μA	Horizontal External	300mm	 Low Energy Proton Therapy Medical Applications Pencil Beam Available
BL105	103 MeV	30~ 300 μΑ	Horizontal Vacuum	100mm	 Neutron Source Nuclear Material Test Nuclear Data Measurement

Experimental Hall Layout

SL R&D for Future Extension

Vibration Calculation

Cavity Design

Strategy

- To do feasibility study for a low beta cavity
- To develop basic technologies for SC linac for the future extension.

lon type	Proton
Operation mode	Pulse
Injector frequency	350 MHz
Operation frequency	700 MHz
Beam current	20 mA *
Pulse length	1.3 ms *
Pulse repetition rate	60 Hz *
Energy range	80 MeV~140 MeV
Duty factor	8.0% *
SRF cavity geometrical beta	0.42

RCS R&D for Future Extension

Conceptual design for Injection

Stage	Injection [MeV]	Extraction [GeV]	Repetition Rate [Hz]	RF voltage [KV]	Beam Power [KW]
Initial	100	1	15	45	58
Upgrade #1	100	1	30	90	116
Upgrade #2	100	2	30	130	232
Upgrade #3	100	2	60	260	466
Upgrade #4	200	2	60	260	900

RCS Lattice Study

• Basic parameters of PEFP RCS

Beam power (kW)	58 ~ 900
Iniection energy (GeV)	0.1 ~ 0.2
Injection type	Charge Exchange
Extraction type	Fast & Slow
Extraction energy (GeV)	1~2
Repetition rate [fast/slow] (Hz)	15~30 ~ 60 / 1
Circumference (m)	223.824
Number of cells	20
Lattice structure	FODO
Super-period	4
Tunes of Q_{χ} / Q_{γ}	4.39/4.29
Transition gamma	4.4
Number of dipole	32
Dipole field at 1 GeV (T)	0.56
Power supply type	Resonant
RF harmonic number	2
Required RF voltage at 30 Hz	90 kV 22

Bird's Eye View of the Site

Site Preparation Plan for the 100MeV Facility -

□ Site Arrangement for Phase I

Area : 400m(W)×450(L) = 180,000 m²

Construction Milestone for the100MeV Accelerator

Milestone	Major Activities
2006. 4	Project contract between Gyeongju and PEFP/KAERI Site work started
2007. 6	Purchasing the land and attaining the construction License
2007. 10	Construction will start - Ground Breaking, excavation, utility & building etc.
2008. 7	Start of the 20MeV Accelerator Installation
2009. 12	Extraction of a 20MeV Proton Beam
2011. 12	100MeV Accelerator Installation and Commissioning
2012. 3	Completion of the PEFP project

Summary

- At KAERI Daejeon site,
 - Many technologies for a proton linac with high duty factor have been developed.
 - Technical issues, especially reliability, have been solved step by step.
 - 20 MeV machine has been installed and is being tested.
 - 100 MeV machine has been designed and being fabricated.
 - 20/100MeV proton beam lines is being developed.
- In Gyeongju,
 - Gyeongju city is the site for PEFP.
 - We will move the machine to the site in 2008.
 - Beams to users will be supplied from 2012.
 - Full duty (24%, 8%) operation will be performed.
- We are considering the future plan of this facility.
 - Superconducting Linac, RCS design study
 - Spallation Neutron, Isotope Production, and ADS Study