Design of a test cryomodule for the high energy section of the Eurotrans linac

EUROPEAN RESEARCH PROGRAMME FOR THE TRANSMUTATION OF HIGH LEVEL-

HPPA5 workshop Mol, May, 6-9, 2007 INFN Milano, LASA Serena Barbanotti

- Cryomodule task in EUROTRANS
 - Deliver an operational prototype cryomodule to be extensively tested (without beam, but at high RF power levels as in its operating condition)
 - Design by INFN & IPN
 - Assembly and testing at IPN Orsay
- ADS accelerator features
 - High availability and reliability
 - Easy disconnection from beam line and cryogenic plant

Layout of the cryomodule

- Guarantees the cryogenic environment for cavity operation
 - subatmospheric LHe operation at 2 K, where superconductor surface resistance is extremely small
- Limits the heat inleak to the He bath from the outer room temperature environment

[thermal cycle 1 W @ 2 K = 750 W r.t.]

- by conduction (choice of materials and geometries)
- by convection (vacuum vessel in isolation vacuum)
- by radiation (r.t. thermal radiation intercepted at higher temperatures with thermal shielding and attenuated with use of multilayer insulation)
- Structural support for the RF cavities
 - controlled and reproducible alignment (from warm to cold)

LIDD 15 workshop

HPPA5 workshop

Main design constraints

- Cavity supporting scheme
 - Simplified handling and assembly (no vertical movement)
- Coupler interface
 - Vertical position (IPN request)
- Minimized long. dimensions for linac footprint
 - Flat heads VS standard PV heads
- Pipe connection to the cryogenic plant (and valve box)
 - Thermal shielding with LN

Module components: cavity

- The two existing cavities are being tuned and equipped with ancillary components
 - He reservoir, tuner, couplers ...
- More details on tuner, tanks and cavity will be presented by N. Panzeri

- RF warm window divides the "clean" vacuum volumes (inner cavity surface) from the ambient pressure RF waveguide
- Coupler components up to the RF window need to be assembled in the clean room, to prevent contamination of the cavity surface
- RF window sensitive to transverse stresses
 - Vertical orientation (no dead load)
 - From bottom of vessel (reduced dust contamination)
- To prevent transverse stresses on the coupler window, differential longitudinal termal contractions have to be taken in account

Choice of cavity support scheme

Simple coupler assembly

0

- No vertical translation is needed
- Cavity and coupler mounted on spaceframe
- Spaceframe is then rolled in vessel

Choice of coupler connection

Coupler-vessel interface

• The coupler constrains the vessel design

- Final detailed layout still to be defined
- Preliminary design based on coupler geometry under study at CEA/Saclay for the cavity tests in the horizontal module CryHoLab

HPPA5 workshop

0

Coupler cooling scheme (IPN)

o Inner conductor: Water cooling

From S. Bousson, IPN

HPPA5 workshop

12

INFN

The IPN CMO valve box

- Nominal capacity of 50 W
 - Line for precooling of the cavity with He vapor/LHe (entering from bottom)
 - Stationary 4.5 K mode: red line sends 4.5 K LHe in cryomodule from cold box (2.5 g/s, 50 W)
 - JT valve and counterflow heat exchanger to fill the phase separator with 2.2 g/s LHe at 2 K
 - No independent circuit for LHe at 4.5 K (coupler cooling)
 - No separate 40 K/50 K He gas circuit for shields

From C. Commeaux & F. Lutton, IPN

Functional interface and inner cryo piping

Routing of the cryogenic piping

- Green: cool down helium
- Violet: 70 K nitrogen
- Blue: 2 K in liquid helium
- Pink: 2 K out gas helium (and 2K bath pumping line, with sufficient pumping speed)

Thermal design: Heat inleak estimation

- INFN
- Analysis of the direct conduction paths to the low temperature circuits using temperature dependent material properties
- Estimation checked "a posteriori" with FEM models

Thermal design: Heat load assessment

	2 K ci	2 K circuit		
	Static	Dynamic		
RF load @ 8.5 MV/m & 5 109		22.58		
Tie rods connections from shield	0.12			
Phase separator support frame	0.44			
Thermal radiation ¹	0.40			
Cabling	0.10			
Coupler ²	1.00	6.77		
¹ Based on 0.1 W/m ² from 77 K surfaces and	2 W/m ² from 300	К.		
² Static from SNS estimates (30% conductio	n, 70% radiation)			
Dynamic based on SNS estimate, 30% of F	F load			
Total [W]	2.07	29.35		
	70 K c	70 K circuit		
	Static	Dynamic		
Tie rods connections to shield	8.14			
G10 shield supports	52.10			
Phase separator support frame	18.33			
Thermal radiation ¹	15.08			
Coupler				
Cabling	1.00			
Total [W]	94.65	0.00		

 $P_{RF} = \frac{\left(E_{acc}L_{act}\right)^2}{R/Q \ Q_0}$

Cryo spreadsheet: Mass flow assessment 1/2

Coolant		LN	LHe		
Temperature levels		77 K	2 K		
		Shield circuit	Cavity circuit		
Temp in	(K)	77.00	2.0		
Press in	(bar)	1.0	1.0		
Enthalpy in	(J/g)	-122.5	1.642		
Entropy in	(J/gK)	2.8	0.958		
Density in	(kg/m3)	808.2	145.7		
Temp out	(K)	78.00	2.0		
Press out	(bar)	1.0	SV @ 33		
Enthalpy out	(J/g)	78.0	25.04		
Entropy out	(J/gK)	5.4	12.58		
Density out	(kg/m3)	4.5	0.8		
Δ Entalphy	(J/g)	200.5	23.4	/	Dynamic RF is based on
Computed static heat load	(W/module)	94.6	2.07		
Computed dynamic heat load	(W/module)	0.0	29.35		$E_{acc} = 0.5 MV/m$ and a
Number of modules		1.0	1.0		conservative Q=5 10 ⁹
Total static heat	(W)	94.65	2.07		
Total dynamic heat	(W)	0.00	29.35		Contributions from colo
Other heat (valves, boxes)	(W)	0.0	0.0		
Total predicted heat	(W)	94.65	31.42		box to the system
Heat uncertainty factor (on static only)		1.00	1.00		
Heat uncertainty factor (on dynamic only)		1.00	1.00		
Design heat load	(W)	94.65	31.42		P
Design mass flow	(g/s)	0.47	1.34		$\dot{m} = \frac{1}{1000}$
					ΔH

HPPA5 workshop

(...)

18

INFN

Cryo spreadsheet: Mass flow assessment 2/2

- Estimations only for the LN shield circuit and the 2 K subatmospheric cooling
- Coupler cooling and additional 4.5 K thermalizations need to be integrated
 - SNS design: supercritical LHe from 4.5 K to 300 K requiring 0.0375 g/s (2/3 static, 1/3 dynamic)

Shield cool down

Cryomodule assembly procedure 1/6

- Cavity, helium tank and cold coupler part to RF window preassembled in clean room
- Cavity supported via the support pads, tuner assembled
- Space-frame pre-assembled

Cryomodule assembly procedure 2/6

- Cavity slid into spaceframe
- Cavity connected to the spaceframe via tension rods and prealigned
- Cavity supports removed

Cryomodule assembly procedure 3/6

- Inserted bottom parts of the 70 K shield (front and rear)
- Wheels mounted on the spaceframe rings
- Spaceframe slid in the vessel

HPPA5 workshop

INF

Cryomodule assembly procedure 4/6

- Cool down pipe (green) assembled
- Connection pipes and shield to the cold box assembled

Cryomodule assembly procedure 5/6

• Shield heads and 70 K piping assembled

Cryomodule assembly procedure 6/6

ASME code verification

 Formal ASME procedure followed to verify design data:

- pressure and thickness requirements for main body (cylindrical shell) and coupler and cold box openings;
- reinforcements for coupler and cold box openings;
- pressure and thickness requirements for flat heads.

		25.55/200
	ASME CODE VERIFICATION OF VESSEL	
This rep	ort summarize the ASME verifications for the Eurotrans cryomodule, regarding:	
 pre 	ssure and thickness requirements for main body (cylindrical shell) and coupler	and cold bo
open	ings;	
 rei 	nforcements for coupler and cold box openings;	
 pre 	ssure and thickness requirements for flat heads.	
Index		
1 Cod	es, specification and reference documents	
2 Mate	rials	
3 Desi	gn data	
3.1	Geometry	
3.1.1	Summary of most important parameters	
3.2	Site conditions	
4 ASN	E computations: cylindrical body	
4.1	Maximum allowable design pressure and minimum required thickness under e	external design
pressu	re	
4.2	Maximum allowable design pressure and minimum required thickness under	er internal tes
pressu	re	
5 ASN	E computations: nozzles	
5.1	Maximum allowable design pressure and minimum required thickness	4
5.2	Reinforcing areas	
6 ASN	E computations: heads	
6.1	Maximum allowable design pressure	

EUROTRANS VESSEL - ASME VERIFICATION - V. 3.0

1/7

- High power RF sources
 - 350 MHz (for EURISOL and EUROTRANS): 10 kW units
 - 700 MHz sources : 80 kW unit (I.O.T.)
- A clean room for cryomodule assembly
 - a 85 m² clean room, with 45 m² of class 10/100
 - Include ultra-pure water production and HPR facility
- An Helium liquifier
- A cavity chemistry facility
 - A new addition to Supratech

Orsay site for module installation

NUCLEAR WASTE IN AN ACCELERATOR DRIVEN SYSTEM

- Module Design to be completed soon
 - Beam vacuum
 - Adaptation to final coupler choice
 - Review and finalize cryo piping and interface with Orsay facility
 - Issue drawings for construction bids (fall/end 2007)
- o Timeline
 - 12/2007 final engineering and start procurement
 - Fall 2008, assembly in Orsay

