NEUTRON NUCLEAR DATA EVALUATION NEWSLETTER

NEA DATA BANK
BANQUES DE DONNÉES DE L’AEN
LEGAL NOTICE

Neither the Organisation for Economic Co-operation and Development, any of its Member Countries, or their agencies, nor any person or organisation acting either on behalf of any of them or otherwise in the development, compilation, publication or distribution of the information in this report:

1. makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information which it contains, or that the use of any information, apparatus, method, or process disclosed may not infringe privately-owned rights; or

2. assumes any liabilities with respect to the use of, or for damage resulting from the use of, any information, apparatus, method or process disclosed.

AVERTISSEMENT

L'Organisation de Coopération et de Développement Économiques, ses pays membres, ou leurs agences, les personnes ou organisation agissant en leurs noms ou pour le développement, la compilation, la publication ou la distribution de l'information dans ce rapport:

1. Ne garantissent, expressément ou implicitement ni que les informations jointes sont exactes et complètes, ni que l'utilisation de ces informations, ainsi que des appareils, méthodes ou procédés décrits ne portent pas atteinte à des droits acquis ; ou

2. N'assument aucune responsabilité en ce qui concerne l'utilisation des dites informations, appareils, méthodes ou procédés ainsi que les conséquences pouvant en résulter.

The N.E.A. Data Bank is part of the Organisation for Economic Co-operation and Development and is financed by the following seventeen member countries:

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

La Banque de Données de l'AEN fait partie de l'Organisation de Coopération et de Développement Économiques et est financé par les dix-sept pays membres suivants:

This Newsletter summarises evaluation activity in the OECD area. It should be noted that work in progress and future plans cited in this document may be changed without notice: consequently, the Newsletter should neither be quoted as a reference in publications nor be listed in an abstract journal.

The information contained in this Newsletter concerns:

1. Evaluation work on particular nuclides;
2. Development of codes for the manipulation of data and for the calculation of cross sections;
3. Publications relevant to the neutron data field.

Contributions on evaluation activities have been received from:

<table>
<thead>
<tr>
<th>Country</th>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>CEN, Bruyères-le-Châtel</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CEN, Cadarache</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>KFK, Karlsruhe</td>
<td>5</td>
</tr>
<tr>
<td>ITALY</td>
<td>CNEN, Bologna</td>
<td>6</td>
</tr>
<tr>
<td>JAPAN</td>
<td>Japanese Nuclear Data Committee</td>
<td>8</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>ECN, Petten</td>
<td>10</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>AERE, Winfrith</td>
<td>11</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>National Nuclear Data Center</td>
<td>14</td>
</tr>
</tbody>
</table>

Other information included in this issue:

The NEACRP ad-hoc Working Group on Evaluation Co-ordination.
Brief report of the meeting on 20th November, 1980

January, 1981
1. NEW EVALUATIONS RECENTLY COMPLETED a), IN PROGRESS b), OR PLANNED IN THE NEAR FUTURE c)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Data Type</th>
<th>Energy Range</th>
<th>Pages a</th>
<th>b</th>
<th>c</th>
<th>Nuclide</th>
<th>Data Type</th>
<th>Energy Range</th>
<th>Pages a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-2</td>
<td>many</td>
<td>< 20MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>Pd-105</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-6</td>
<td>total, scat.</td>
<td>10 MeV</td>
<td>14</td>
<td></td>
<td></td>
<td>Pd-107</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-6</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>Pd-110</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-7</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>Ag-107</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>Ag-109</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na-22</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
<td>Sn-112</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>γ prod</td>
<td>1 MeV-20MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>Cs</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>γ prod</td>
<td>1 MeV-20MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>La</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar-38</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
<td>Pr</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar-40</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
<td>Ga</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>γ prod</td>
<td>1 MeV-20MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>Ta-181</td>
<td>many</td>
<td>1 MeV-20MeV</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>many</td>
<td>< 40 MeV</td>
<td>6</td>
<td></td>
<td></td>
<td>1 MeV-20MeV</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>γ prod</td>
<td>1 MeV-20MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>W</td>
<td>many</td>
<td>500 keV-20 MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>many</td>
<td>20 keV-50 MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>W</td>
<td>many</td>
<td>500 keV-20 MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>γ prod</td>
<td>1 MeV-20 MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>Pb</td>
<td>γ prod</td>
<td>1 MeV-20MeV</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-56</td>
<td>many</td>
<td>10^-5 eV-20 MeV</td>
<td>6</td>
<td></td>
<td></td>
<td>Bi-209</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-56</td>
<td>many</td>
<td>1 MeV-20 MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>Th-228</td>
<td>many</td>
<td>10 keV-12 MeV</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-59</td>
<td>capt.</td>
<td>0.25 eV-15 MeV</td>
<td>4</td>
<td></td>
<td></td>
<td>Th-230</td>
<td>many</td>
<td>10 keV-12 MeV</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>γ prod</td>
<td>1 MeV-20 MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>Th-233</td>
<td>many</td>
<td>10 keV-12 MeV</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>many</td>
<td>20 keV-50 MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>Th-234</td>
<td>many</td>
<td>10 keV-12 MeV</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-58</td>
<td>many</td>
<td>10^-5 eV-20 MeV</td>
<td>2</td>
<td></td>
<td></td>
<td>Pa-231</td>
<td>many</td>
<td>10 keV-12 MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>scat.</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>U-235</td>
<td>(n, x n)</td>
<td>10^-5 eV-20MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>γ prod</td>
<td>1 MeV-20 MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>U-237</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>spect(n, p)</td>
<td>keV</td>
<td>6</td>
<td></td>
<td></td>
<td>U-239</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>spect(n, p)</td>
<td>keV</td>
<td>6</td>
<td></td>
<td></td>
<td>U-235</td>
<td>(n, n'), (n, n'T)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>spect(n, p)</td>
<td>keV</td>
<td>6</td>
<td></td>
<td></td>
<td>U-235</td>
<td>(n, 2 n)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb-85</td>
<td>many</td>
<td>10^-5 eV-20 MeV</td>
<td>2</td>
<td></td>
<td></td>
<td>U-235</td>
<td>many</td>
<td>0.025 keV-30 keV</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb-87</td>
<td>many</td>
<td>10^-5 eV-20 MeV</td>
<td>15</td>
<td></td>
<td></td>
<td>U-233</td>
<td>many</td>
<td>resonance</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>many</td>
<td>10^-5 eV-20 MeV</td>
<td>2</td>
<td></td>
<td></td>
<td>U-235</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb-93</td>
<td>spect(n, p)</td>
<td>keV</td>
<td>6</td>
<td></td>
<td></td>
<td>U-235</td>
<td>many</td>
<td>10^-5 eV-20MeV</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>γ prod</td>
<td>1 MeV-20 MeV</td>
<td>9</td>
<td></td>
<td></td>
<td>Nb-237</td>
<td>many</td>
<td>5 MeV-15 MeV</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rh-103</td>
<td>spect(n, p)</td>
<td>keV</td>
<td>6</td>
<td></td>
<td></td>
<td>Pu-238</td>
<td>res. params</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclide</td>
<td>Data Type</td>
<td>Energy Range</td>
<td>Pages</td>
<td>Nuclide</td>
<td>Data Type</td>
<td>Energy Range</td>
<td>Pages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-241</td>
<td>many</td>
<td>10^{-5} eV-20MeV</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-239</td>
<td>(n,xn),</td>
<td>n spect</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-241</td>
<td>many</td>
<td>10keV-20MeV</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-238</td>
<td>many</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-239</td>
<td>(n,n'),</td>
<td>(n,n'f)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n,2n)</td>
<td></td>
</tr>
<tr>
<td>Am-242m</td>
<td>many</td>
<td>10^{-5} eV-20MeV</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-242</td>
<td>many</td>
<td>10^{-5} eV-20MeV</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-243</td>
<td>many</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>many</td>
<td>0.1MeV-15MeV</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-242</td>
<td>many</td>
<td>0.1MeV-15MeV</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-243</td>
<td>many</td>
<td>0.1MeV-15MeV</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>(n,n'),</td>
<td>(n,n'f)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n,2n)</td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>(n,p)</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm-244</td>
<td>many</td>
<td>0.1MeV-15MeV</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm-246</td>
<td>many</td>
<td>≤ 10keV</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm-247</td>
<td>many</td>
<td>≤ 10keV</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm-248</td>
<td>many</td>
<td>≤ 10keV</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm-242</td>
<td>many</td>
<td>≤ 15MeV</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.P.</td>
<td>many</td>
<td>0.025eV-15MeV</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.P.</td>
<td>capt.</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.P.</td>
<td>decay data</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy &</td>
<td>decay data</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Service de Physique Neutronique et Nucléaire
Centre d'Etudes de Bruyères-le-Châtel
France

Names: O. BERSILLON, M. COLLIN, J.P. DELAROCHE, J. JARY, Ch. LAGRANGE,
R. PERRIER, C. PHILIS, J. SALVY, G. SIMON, N. VERGES.

Address: Service de Physique Neutronique et Nucléaire
Centre d'Etudes de Bruyères-le-Châtel
B.P. n° 561
92542 Montrouge Cedex, France

Work recently completed and publications

- Ch. LAGRANGE, "Comments on some aspects of the use of optical statistical
 model for evaluation purposes", workshop on evaluation methods and procedures,

- Ch. LAGRANGE, J. LACHKAR, G. HAOUAT, R.E. SHAMU, M.T. McELLISTREM,
 "Quadrupole moments and nucleon excitation strengths in even-A Sm isotopes",

- J.P. DELAROCHE, G. HAOUAT, J. LACHKAR, Y. PATIN, J. SIGAUD, J. CHARDINE,
 "Deformations, moments and radii of 182,183,184,186W from fast neutron

- J. JARY, Ch. LAGRANGE, "Use of optical and statistical models for interpreting
 neutron cross sections at 0.7 MeV for 233U, 235U, 239Pu", in report
 INDC(FR) 41/L.

- Ch. LAGRANGE, O. BERSILLON, D. MADLAND, "Evaluation of nuclear data for
 241Pu in the neutron energy range from 10 keV to 20 MeV", in report INDC (FR)
 41/L.

- Ch. LAGRANGE, O. BERSILLON, "Coupled channel optical model calculations for
 evaluating neutron cross sections for odd-mass actinides", in report INDC (FR)
 41/L.

- Ch. LAGRANGE, "On the usefulness of coupled channel calculations for actinide
 nuclei", in report INDC(FR) 41/L.
- Phenomenological and microscopic optical model analyses of low energy nucleons interaction with 93Nb (Ch. LAGRANGE, A. LEJEUNE).

- Exact calculation of the penetrability of a two or three humped fission barrier in presence of damping. Application to the fission cross section of 231Pa (J. GUILLOT).

- Sensitivity of W neutron cross sections to target band mixing and β_6 deformation (J.P. DELAROCHE).

Work in progress

- Coherent optical and statistical model calculations of neutron cross sections for Gd isotopes (J.P. DELAROCHE, Ch. LAGRANGE).

- Calculation of neutron cross sections for some Pt isotopes (J.P. DELAROCHE).

- Evaluation of neutron cross sections for 241Pu in the energy range 10^{-5} eV - 20 MeV (O. BERSILLON, Ch. LAGRANGE, D. MADLAND).

- Calculations of neutron spectra from actinide (n,xn) reactions. Applications to 235U and 239Pu (J. JARY).

- Evaluation of 231Pa neutron cross sections from 10 keV to 12 MeV (J. JARY).

- Evaluation of 237,239U neutron cross sections from 10^{-5} eV to 20 MeV (C. PHILIS, J. JARY, Ch. LAGRANGE).

- Coherent optical and statistical model calculations of neutron cross sections for 233U (J. JARY).

- Improvements of the interactive nuclear data evaluation file interface and maintenance system SYNOPSIS (M. COLLIN, D. COTTEN).

- Evaluation of neutron cross sections for 85Rb and 87Rb from 10^{-5} eV to 20 MeV (A. PRINCE, G. SIMON).

- Evaluation of neutron cross sections and γ-ray production data for W isotopes in the energy range 500 keV - 20 MeV (E. ARTHUR, C. PHILIS, A.B. SMITH).

- Complete evaluation of neutron cross sections and γ-ray production from 10^{-5} eV to 20 MeV for 209Bi (O. BERSILLON, C.A. PHILIS, N. VERGES).

- Evaluation of neutron cross sections for 241Pu in the energy range 10^{-5} eV - 20 MeV (O. BERSILLON, Ch. LAGRANGE, D. MADLAND).

.../...
Carrying out of a Fortran code for generating multigroup γ-ray production cross sections (G. SIMON, R. PERRIER, C. PHILIS).

Plans for the near future

- Complete re-evaluation of 169Tm from 10^{-5} eV to 20 MeV (O. BERSILLON, C. PHILIS).

a) Western Michigan University (USA)
b) Los Alamos Scientific Laboratory (USA)
c) Centre de Recherches Nucléaires, Grenoble (France)
d) Brookhaven National Laboratory (USA)
e) Argonne National Laboratory (USA)
NAMEs: H. DERRIEN, E. FORT, D. LAFONT, JP. DOAT

ADDRESS: Section de Physique des Neutrons Rapides (SPNR)
Centre d'Etudes Nucleaires de Cadarache
Boîte Postale N°1
13115 - SAINT-PAUL-LEZ-DURANCE - (France)

WORK RECENTLY COMPLETED:

- Improvement of the evaluation of 237Np from 5 MeV to 15 MeV (E. FORT, JP. DOAT)
- Evaluation of resonance parameters for 238Pu (H. DERRIEN)
- Evaluation of 59Co (n,γ) cross-section from thermal energy to 15 MeV (H. DERRIEN)

WORK IN PROGRESS:

- Evaluation of a complete set of neutron cross-sections for 238Pu (H. DERRIEN)
- Participation to the NEANDC exercise to intercompare the methods to derive average spacings (E. FORT, JP. DOAT)

WORK PLANNED FOR THE NEAR FUTURE:

- Evaluation of a complete set of neutron cross-sections for 58Ni (H. DERRIEN, D. LAFOND).
Names: F.H. Fröhner, B. Goel, H. Jahn, B. Krieg

Address: Institut für Neutronenphysik und Reaktortechnik
Kernforschungszentrum Karlsruhe
Postfach 3640
7500 Karlsruhe, West Germany

Work recently completed

- Reassessment of the relationship between shell-model, optical-model and R-matrix resonance states
 (F.H. Fröhner)

- Conception of improvements to existing parameter estimation procedures by application of Bayes' theorem with the twofold aim (1) to include prior information in a mathematically sound way, (2) to take correlated data uncertainties properly into account. An iteration scheme for non-linear parameter estimation was developed and incorporated into the codes FITACS (curve fitting to average cross section data) and STARA (simultaneous strength function and level spacing estimation by statistical resonance analysis).
 (F.H. Fröhner)

Work in progress

- Evaluation of 241Am, 242Am, 243Am, 244Cm in the range 0.1 - 15 MeV
 (B. Goel, H. Jahn)

- Assessment of available nuclear level density formulae for fission cross calculations
 (H. Jahn, A. Anzaldo)

- Study of combinatorial methods for level density calculations
 (A. Anzaldo, H. Jahn)

Work recently published

- "New Techniques for Multi-Level Cross Section Calculation and Fitting", Proc. Conf. on Evaluation Methods and Procedures, Brookhaven, Sept. 22 - 26, 1980; also: KfK 3081 (in print)
Work recently completed and publications

1. Theoretical Methods for Nuclear Data Evaluation. The BCS microscopic calculations of level density were extended to nuclei with odd number of neutrons and/or protons, on the basis of the single-particle level blocking due to unpaired nucleons. The results concerning nuclei in the mass range $90<A<250$ were published on "Il Nuovo Cimento", 57, 4, 427 - authors: G. Maino, E. Menapace, A. Ventura.

2. Actinide Data.
In the frame of IAEA research agreement no. 2114/CF, evaluations for Cm246,247,248 have been extended to the unresolved region (up to 10 keV) using the average parameters from the statistical analysis of the resonances based on maximum likelihood criteria applied to the proper statistical distributions.
In the frame of the cooperation with CEA-Cadarache and KFK-Karlsruhe the complete evaluation up to 15 MeV was performed for Cm242. In addition, (n,n'), (n,n',f), $(n,2n)$ cross sections (including preequilibrium contributions) were estimated for U235, Pu239 and Am241. G. Maino, T. Martinelli, E. Menapace, M. Motta, A. Ventura.

Isomeric ratio of neutron radiative capture have been calculated for Am-241 in the keV energy range. G. Reffo, F. Fabbri

Capture Cross Section Calculations.
Neutron radiative capture process has been considered for Rh103, Nb93, Ta181, stable Kr, Se and Br isotopes, in the keV energy range.
Complete γ-ray spectra have been calculated. G. Reffo, F. Fabbri.

Work in progress.
Preliminary results of Fe56 evaluation in the whole incident neutron energy range up to 20 MeV have been obtained. E. Menapace, M. Motta, G.C. Panini (in cooperation with CNEN laboratories involved in integral experiments on Fe56 and their analysis) and G. Reffo, F. Fabbri.
Work planned for the next future

An activity for the evaluation of Structural Materials is planned referring to recent differential data measurements and to the indications of integral experiment analyses from other CNEN laboratories (and possibly external ones). Activity on Cross Section Data for Dosimetry is also planned.

Contribution to Neutron Nuclear Data Evaluation Newsletter-29

Japanese Nuclear Data Committee
(Nuclear Data Center, JAERI)

Work Recently Completed and Publications:

(i) Neutron Nuclear Data Evaluation of Rare Isotopes of Thorium: 228Th, 230Th, 233Th and 234Th

T. Ohsawa and M. Ohta
Memoirs of the Faculty of Engineering, Kyushu University, Vol. 40, No. 3, 149 (1980)

Consistent set of neutron cross sections and νp-values have been obtained for minor thorium isotopes 228Th, 230Th, 233Th and 234Th. Because no or very incomplete experimental information is available for these nuclei, evaluations based on semi-empirical systematic and model calculations are the only way to assess the nuclear data. In this work an attempt has been made to make use of the presently available newer information as much as possible. This paper describes the methods and results of evaluation of neutron nuclear data for 228Th, 230Th, 233Th and 234Th.

(ii) Evaluation of Neutron Nuclear Data for 242mAm and 242gAm

T. Nakagawa and S. Igarasi

Evaluation of neutron nuclear data for 242mAm and 242gAm was performed in the energy range of 10^{-5} eV to 20 MeV. For 242mAm, resonance parameters were used up to 3.5 eV to represent the cross sections. Experimental data for the fission cross section were reproduced by spline functions up to 1.5 keV, and by a semi-empirical formula up to 20 MeV. Other cross sections were estimated by taking account of structure of the fission cross section below 1.5 keV, and were calculated with the optical and statistical models from 1.5 keV to 20 MeV. Cross sections for the $(n,2n)$ and $(n,3n)$ reactions were obtained with Pearlstein's method. Optical potential parameters were determined so that they might reproduce the neutron strength function and the compound nucleus formation cross sections suitable for the fission cross section calculation. For 242gAm, there are no experimental data except thermal energy. The fission and capture cross sections were assumed to be $1/\nu$ form below 0.225 eV, and the elastic scattering cross section to be a constant. Above 0.225 eV, the fission cross section was estimated from that of 242mAm, and the $(n,2n)$ and $(n,3n)$ reaction cross sections were assumed to be the same as those of 242mAm. Other cross sections were calculated with the optical and statistical models. Angular distributions of elastically scattered neutrons were calculated with the optical model for both 242mAm and 242gAm. Those of the inelastic scattering, $(n,2n)$ and $(n,3n)$ reactions were assumed to be isotropic in the center-of-mass system. Furthermore, ν was given for both states. Present results were compiled in the ENDF/B format.
Work in Progress:

(i) The thermal and resonance cross sections of 233U were evaluated for JENDL-2. The cross sections below 1 eV are given as point-wise data and were evaluated by the use of the measured fission and capture cross sections. The resolved resonance parameters are given up to 100 eV. The cross sections from 100 eV to 30 keV are represented by the unresolved resonance parameters. (from Y. Kikuchi, JAERI)

(ii) Level density parameters are being determined for more than 100 nuclides, which are important from the viewpoint of the reactor application. These include the fertile and fissile materials, structure materials, and the fission products. The level density formula adopted is the Gilbert-Cameron type composite formula. The systematics of the determined parameters is examined, and is used to extrapolate the results to the nuclides with no experimental information. (from T. Yoshida, NAIG)

(iii) Analyses of gamma-ray production cross section for Al, Si, Ca, Cr, Fe, Ni, Cu, Nb, Pb and Ta have been carried out in the energy range from 1 MeV to 20 MeV with the multi-step evaporation model taking yrast level into consideration. The effects of yrast levels, level density parameters and gamma-ray strength functions were also examined. The preliminary results were published in JAERI-M 8163 and presented at Knoxville Conference GB-6 in October, 1979. (from M. Kawai, NAIG)

Work Planned for the Near Future:

(i) Reevaluation of neutron cross sections for about 80 FP nuclides is planned in the energy region from thermal to 15 MeV. (from M. Kawai, NAIG)

(ii) Evaluation of neutron nuclear data for deuterium is planned in the energy region up to 20 MeV. (from K. Shibata, Rikkyo University)

S. Igarasi

Nuclear Data Center
Tokai Research Establishment
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken, Japan

November 12, 1980
1. Names

2. Recent publications and preprints

/2/ Gruppelaar, H. and J.M. Akkermans, Comparison of experimental and calculated neutron emission spectra and angular distributions, Paper contributed to the Symposium on Neutron Cross Sections from 10 to 50 MeV, Brookhaven, May 12-14, 1980 (also ECN-80-071).

3. Work recently completed

The revised and adjusted RCN-3 evaluation of neutron cross sections for fission products (KEDAK format) has been supplemented with three natural elements: Cs, La and Pr. The total number of materials in this library amounts 30.

4. Work in progress

Re-evaluations for $^{105}_{\text{Pd}}$, $^{107}_{\text{Pd}}$ and $^{110}_{\text{Pd}}$ using recent experimental data.

5. Work planned for the near future

- Continuation of efforts in evaluation and adjustment of capture cross sections for about 20 fission-product nuclides.
- Further evaluation of neutron cross sections for nuclides in the primary cooling circuit of a LMFBR, i.e. for $^{22}_{\text{Na}}$, $^{38,40}_{\text{Ar}}$, $^{112}_{\text{Sn}}$.

6. Computer codes

The INGRID package /4/ is a system of library routines which is designed to process neutron cross section data with the help of an interactive graphics display terminal (TEKTRONIX-4014) connected to a CDC-CYBER-175 computer. The cross section data of the NEA Data Bank (NEA computational format) are stored in a data base management system (SIR), together with evaluated neutron cross sections from files available in ENDF/B or KEDAK format and group constants in the Russian ABN 26-group structure. The user may select a certain class of data from the data base for graphical intercomparisons.
The following graduate personnel are currently working on nuclear data evaluation:

UK Atomic Energy Authority

i) **Winfrith, Nuclear Data Group**
 J S Story - M F James - R W Smith
 Address: Building B21, Atomic Energy Establishment, Winfrith, Dorchester, Dorset. Telephone Dorchester 3111; Telex No 41231

 Winfrith Technology Branch
 - A L Nichols
 Address: Building A50, Atomic Energy Research Establishment, Winfrith, Dorchester, Dorset. Telephone Dorchester 3111, Telex No 41231

ii) **Harwell, Electron Accelerator Group (Building 418)**
 J E Lynn - M C Moxon - M G Sowerby - C A Uttley
 Address: Atomic Energy Research Establishment, Harwell, Oxfordshire, OX11 ORA. Telephone Abingdon 24141; Telex No 83135

 Harwell Chemistry Division (Building 220)
 - J Cuninghame - E A C Grouch - Katherine M Glover - M King
 Address: Atomic Energy Establishment, Harwell, Oxfordshire, OX11 ORA. Telephone Abingdon 24141; Telex No 83135

iii) **Central Electricity Generating Board**
 Berkeley Nuclear Laboratory
 - B S J Davies - A Tobias

iv) **British Nuclear Fuels Limited**
 Windscale and Calder Works
 - V Barnes
 Address: Windscale and Calder Works, Sellafield, Seascale, Cumbria. Telephone Seascale 333.
2 WORK COMPLETED

The set of decay data for fission-products has been extensively revised by Davies and Tobias (CEGB, Berkeley Nuclear Labs). Measured half-lives have replaced theoretical estimates for many of the short-lived nuclides, and a number of measured beta and gamma decay spectra have been inserted where none existed previously. The new data set, known as UKFPDD-2 contains data on 855 nuclides, of which 736 are radioactive, 596 being in their ground states; beta and/or gamma spectra are given for 390 nuclides.

Evaluation of heavy element decay data has now been completed. The heavy element decay data library, UKHEDD-I, is compiled in ENDF/B5 format and contains comprehensive data, for 125 nuclides ranging from Hg-206 to Es-253, of the following kinds:

- half-life, Q-values, branching fractions, alpha decay data,
- beta-decay data (including transition classifications), gamma decay data (including internal conversion data).

Data uncertainties are included.

3 WORK IN PROGRESS

i) Efforts are being made to incorporate spontaneous fission data into the heavy element decay data library, UKHEDD-I.

ii) Preparations are being made for re-evaluation of the UKCND activation products decay data library; it is planned to extend this to include data for over 200 nuclides.

4 COMPUTER PROGRAMMES

The resonance cross-section code SIGAR7 has been implemented on the ICL-2976 computer, using the IBM compatible compiler, and is undergoing final tests. The programme allows for calculation of distant resonance correction terms (from resonance statistical data), and includes Doppler broadening routines; output can be written to tape in the format of the UK Nuclear Data Library. The code sets up its own energy mesh for representation of unbroadened and broadened cross-sections; an improved algorithm has been adopted for estimation of the "broadened total widths" or resonances. If required, Lamb's effective temperature is calculated, from the physical and Debye temperatures of the material, and is used in the Doppler broadening operation.

The BASIC interactive programme DEEBAR has been implemented on the ICL-2976 computer, and extensively revised. This programme is used to calculate mean resonance spacings from the energies of the first n resonances, with n = 2, 3, ..., using the Dyson-Mehta optimum statistic. For materials such as iron, for which the observed resonances extend nearly to 1 MeV, corrections are made for the expected energy dependence of the mean spacing. When the user has surveyed the table of DBAR values and typed in his preference, the level density parameters, of a back-shifted Fermi-gas model, are adjusted to fit. Tables showing the expected energy dependence and spin dependence of DBAR are presented. Expectation energies of the top negative energy resonances are estimated, using Dyson's "Conlomb gas" analogy. Finally, to exploit "the essentially crystalline character" of the level series, the resonance energies are listed alongside an energy ladder of evenly spaced rungs.
This is a formalisation of the old-fashioned staircase plot, and provides a clearer indication of the locations and numbers of missed resonances. A user's guide is in preparation.

PAPERS

A L Nichols, Heavy Element Decay Data; Progress Report for the IAEA Co-ordinated Research Programme on the Measurement and Evaluation of Transactinium Isotope Nuclear Decay Data (May 1980).

J S STORY

Reactor Physics Division
AEE Winfrith

November 1980
USA CONTRIBUTION TO NNDEN-29
VIA THE NATIONAL NUCLEAR DATA CENTER

Recent Publications

ANL/NDM-52 1980, February
"Neutron Total and Scattering Cross Sections of Lithium-6 in the Few
MeV Region."
P. Guenther, A. Smith, and J.F. Whalen

ANL/NDM-53 1980, May
"Neutron Source Investigation in Support of the Cross Section Program
at the Argonne Fast-Neutron Generator."
J.W. Meadows and D.L. Smith

ANL/NDM-54 1980, June
"The Nonelastic-Scattering Cross Sections of Elemental Nickel."
A.B. Smith, P.T. Guenther, and J.F. Whalen

BNL-NCS-51152 (ENDF-286)
"Evaluation of Natural Chromium Neutron Cross Sections for ENDF/B-V."
A. Prince and T.W. Burrows

BNL-NCS-51184 (ENDF-248)
"Evaluation of 235U Neutron Cross Section and Gamma Ray Production
Data for ENDF/B-V."
M.R. Bhat

UCRL-50400 Vol. 17, Part A, Rev. 2 1979, October
"Program LINEAR (version 79-1): Linearize Data in the Evaluated Nuclear
Data File/Version B (ENDF/B) Format."
D.E. Cullen

UCRL-50400 Vol. 17, Part B, Rev. 2 1979, October
"Program SIGMA1 (version 79-1): Doppler Broaden Evaluated Cross Sections
in the Evaluated Nuclear Data File/Version B (ENDF/B) Format."
D.E. Cullen
EVALUATIONS RECENTLY COMPLETED OR IN PROGRESS

<table>
<thead>
<tr>
<th>Material</th>
<th>Laboratory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>^6Li</td>
<td>LASL</td>
<td>In Progress</td>
</tr>
<tr>
<td>^7Li</td>
<td>LASL</td>
<td>In Progress</td>
</tr>
<tr>
<td>Na</td>
<td>ORNL</td>
<td>Complete</td>
</tr>
<tr>
<td>Ca</td>
<td>ORNL</td>
<td>Completed up to 40 MeV</td>
</tr>
<tr>
<td>Cr</td>
<td>BNL</td>
<td>Extension up to 50 MeV in progress</td>
</tr>
<tr>
<td>^{56}Fe</td>
<td>ORNL</td>
<td>In Progress</td>
</tr>
<tr>
<td>Ni</td>
<td>BNL</td>
<td>Extension up to 50 MeV in progress</td>
</tr>
<tr>
<td>$^{85,87}\text{Rb}$</td>
<td>BNL</td>
<td>Complete</td>
</tr>
<tr>
<td>$^{107,109}\text{Ag}$</td>
<td>BNL</td>
<td>Complete</td>
</tr>
<tr>
<td>NAT W + isotopes</td>
<td>LASL, ANL</td>
<td>In Progress</td>
</tr>
<tr>
<td>^{233}U</td>
<td>LASL</td>
<td>In Progress</td>
</tr>
<tr>
<td>^{235}U</td>
<td>BNL</td>
<td>Resolved resonance region revision to agree with ENDF/B-V standards is in progress</td>
</tr>
</tbody>
</table>
This meeting was organised at the request of the NEA Committee on Reactor Physics (NEACRP) following discussions at their 23rd meeting in September 1980. Participants were nominated by NEACRP, and in addition to two members of NEACRP, included the chairman of the NEA Data Bank Committee and five nuclear data specialists.

At the NEACRP meeting, the objectives of this ad-hoc meeting had been defined as follows: to agree on a common format for evaluation files; to discuss common evaluation procedures; to establish a mechanism for selection of existing evaluations and co-ordination and review of new evaluations; in the absence of a timetable for general release of the ENDF/B5 file, to establish a common data file for use by participating countries.

1. Evaluated Data Format

There was consensus that the ENDF/B5 format would be most appropriate, in the interest of both wide use and possible future comparison with US evaluations. In some cases, restriction to a sub-set of the ENDF/B5 structures may be adopted, however detailed discussions of the format were deferred for discussion in a sub-group of experts in the light of experience of the initial phases of file assembly.

2. Co-ordination of Data File assembly

The meeting agreed that a selection of existing evaluations to constitute a first data file should be made, and would be co-ordinated by a management group, reporting to NEACRP and the NEA Data Bank Management Committee, and composed of NEACRP representatives from France, Germany, UK and Japan and the Chairman of the Data Bank Management Committee together with appropriate data experts engaged in the work and those representing NEANDC. As far as possible meetings of this Management Group will be co-ordinated with other meetings of common interest. In 1981 further meetings will be held in association with the Topical Meeting of NEANDC on 8th April, at Cadarache, France, and with the 24th meeting of NEACRP, September 1980, at Winfrith, UK.

The Management Group will assign to appropriate data experts the task of recommending, as far as possible, a unique evaluation for particular elements. It was recognised that in this initial phase of construction of a common file from existing evaluations, there may be difficulties in choosing between alternative, but comparable, evaluations for certain isotopes. The selection of data should be based on the adequacy of the representation of all available experimental microscopic data, rather than on reactor integral measurements. Once a common file has been established, the Management Group will co-ordinate the distribution of new evaluation work amongst experts in the participating member countries, and will establish priorities taking into account current needs in reactor physics.
In the initial phase of assembly of a common file, the Data Bank will be asked to assist, both in the preparation of graphical comparisons of alternative evaluations and recent experimental data, and in the translation of chosen evaluations in the ENDF/B5 format. The meeting accepted that computing assistance could be necessary from laboratories in participating member countries in view of the additional load this work represents, and which will have to be absorbed in the Data Bank computing and manpower allocations for 1981.

The objective for 1981 is to create a common file containing evaluations for the Structural Materials, Primary and Secondary Actinides, and Fission Products. As a first step towards realisation of this objective, the responsibility for the choice of evaluations for the principal structural materials, iron, nickel and chromium was assigned to the following participants in the meeting:

<table>
<thead>
<tr>
<th>Material</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Dr. M. Sowerby (UK)</td>
</tr>
<tr>
<td>Nickel</td>
<td>Dr. E. Fort (France)</td>
</tr>
<tr>
<td>Chromium</td>
<td>Dr. F. Fröhner (FRG)</td>
</tr>
</tbody>
</table>

3. The organisational framework for the project

The meeting emphasised that while the initiative for co-ordination of evaluation work had come from NEACRP representatives from the UK, France and Germany, all NEA member countries are welcome to participate, providing that they make a contribution to the project commensurate with their resources, and that they respect the spirit of co-operation. Two alternative formal frameworks within the NEA were discussed by the meeting.

The first would involve a submission to the OECD Steering Committee for Nuclear Energy, requesting that those member countries wishing to participate give a formal commitment to collaborate in a joint project.

The second would take advantage of the existing framework of the NEA Data Bank. All member countries of the NEA contributing to the Data Bank budget would be invited to participate, and the Management Group co-ordinating assembly and revisions of the common Data File would report to the Data Bank Management Committee.

The NEA Secretariat was requested to investigate the merits of these two possibilities and to prepare appropriate recommendations and draft alternative submissions for presentation either to the Steering Committee for Nuclear Energy or the NEA Data Bank Committee.
GENERAL RECOMMENDATIONS TO CONTRIBUTORS

Contents and Presentation

These newsletters are meant to be informal: nevertheless, we think it useful to give some recommendations concerning the contents, presentation, distribution, etc.

The Newsletters are concerned with evaluation activities - with evaluation work itself and with computer programs useful for evaluation.

Experimenters should be careful to distinguish between "evaluating" all the good data and the more customary process of simply analysing their own measurements.

When compiling your contribution, the following headings may serve as a guide:

1. Names, address, telephone number, telex code.
2. Work recently completed and publications.
3. Work in progress - please give names of physicists doing each evaluation.
4. Work planned for near future, i.e., work expected to start within six months (before publication of the next newsletter).

Any note or report mentioned should be available on request to another evaluator for his own use but not necessarily for widespread copying and re-distribution. The distribution list of each newsletter will be attached to it.

Contributions should be forwarded typewritten in single spacing, as the newsletters will be produced directly from this typescript.

IMPORTANT NOTE

Future Neutron Nuclear Data Evaluation Newsletters will be distributed on 1st June and 1st December each year.

Evaluators are requested to send their contributions by:

15th May and 15th November
to:

NEA DATA BANK
91191 GIF SUR YVETTE CEDEX
France
<table>
<thead>
<tr>
<th>Country</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>W. Gemmell</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>F. Putz, H. Ceulemans, F. Motte</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>G.C. Hanna, C. Keating, W.B. Lewis, W.H. Walker</td>
</tr>
<tr>
<td>DENMARK</td>
<td>N. Neltrup</td>
</tr>
<tr>
<td>EURATOM</td>
<td>K.H. Boeckhoff, H. Liskien, H. Rief, G. Rohr, E. Wattecamps, H. Weigmann</td>
</tr>
<tr>
<td>FINLAND</td>
<td>P. Silvennoinen</td>
</tr>
<tr>
<td>GERMANY</td>
<td>S. Cierjacks, F.H. Froehner, B. Goel, E. Kiefhaber, H. Kuesters, M. Mattes, M. Rittberger</td>
</tr>
<tr>
<td>GREECE</td>
<td>M. Ditsa</td>
</tr>
<tr>
<td>ICELAND</td>
<td>M. Magnusson</td>
</tr>
<tr>
<td>IRELAND</td>
<td>T.A. Nevin</td>
</tr>
<tr>
<td>ITALY</td>
<td>V. Benzi, U. Farinelli.</td>
</tr>
<tr>
<td>NEA</td>
<td>L. Garcia de Viedma, N. Tubbs, J.A.G. Rosén</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>M. Bustraan, H. Gruppelaar, H. Van Dam</td>
</tr>
<tr>
<td>NORWAY</td>
<td>E. Andersen, J.O. Berg</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>F. Gama Carvalho</td>
</tr>
<tr>
<td>SPAIN</td>
<td>A. Carbo, G. Manero, C. Sanchez del Rio, G. Velarde</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>J. Hadermann, R. Richmond, W. Seifritz, F. Widder</td>
</tr>
<tr>
<td>TURKEY</td>
<td>Ç. Ertek</td>
</tr>
</tbody>
</table>
Neutron Data Services from NEA Data Bank

This cover illustrates the three formats now in use for answering user requests for experimental neutron data. These data are compiled and exchanged with the three other neutron data centers in "EXFOR" format, and stored at the Data Bank together with the CNND bibliography in an integrated data base.

NEA Data Bank makes selective searches in this database for users in its member countries, and supplies either listings structured as in EXFOR of data and associated comments (experiment description and bibliography) or data on tape in one of the computational formats shown on this cover, accompanied by a listing of comment information. NNDC (Brookhaven) supplies data in similar formats to its customers in USA and Canada.

Users are asked to specify their requests in as precise and selective a form as possible; that avoids the delay and expense of sending out quantities of data much larger than the researcher really wants. Data sent out to users are accompanied by documentation or other explanation of the formats used, and a list will be sent on request of all the other files of neutron and non-neutron nuclear data, experimental or evaluated, available from the Data Bank.

Resonance Parameters Computational Format

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATA COMPONENT</th>
<th>TOTAL WIDTH</th>
<th>ERROR</th>
<th>NEUTRON WIDTH</th>
<th>ERROR</th>
<th>PARAMETER WIDTH</th>
<th>ERROR</th>
<th>GAMMA WIDTH</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATA COMPONENT</th>
<th>TOTAL WIDTH</th>
<th>ERROR</th>
<th>NEUTRON WIDTH</th>
<th>ERROR</th>
<th>PARAMETER WIDTH</th>
<th>ERROR</th>
<th>GAMMA WIDTH</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>