Proposal for Covariance Processing Subgroup

Processing Covariance Data for the Resonance Region

Michael E. Dunn and Luiz C. Leal
Oak Ridge National Laboratory

WPEC Meeting
Aix-en-Provence
May 26-28, 2004
Participants

SG Chairman
M. E. Dunn (ORNL)

SG Monitor
Ali Nouri (OECD/NEA)

Project Participants

ENDF/B
R. E. MacFarlane (LANL), T. Kawano (LANL), L. C. Leal (ORNL), M. E. Dunn (ORNL), M. W. Herman (BNL)

JEFF
R. Jacqmin (CEA), O. Bouland (CEA), S. Tagesen (IRK)

JENDL
M. Ishikawa (JNC), K. Shibata (JAERI), G. Chiba (JNC), Soo-Youl Oh (KAERI)

BROND
T. Ivanova (IPPE), A. Tsiboulia (IPPE)
Background

• SG20 made significant progress in covariance data generation
 – Covariance data generated for Gd, Rh and Fe
 – New evaluations include resonance-parameter (RP) covariance data and higher energy covariance data
 – SAMMY updated with capability to retroactively generate RP covariance data
 – “Compact Covariance Format” developed and implemented in SAMMY
 – ERRORJ processes existing ENDF/B-VI RP formats
 – New evaluations processed with ERRORJ
 – Demonstrated the generation of group constants from covariance data
 – Covariance data generated for ^{235}U in Compact Covariance Format

• SG20 addressed evaluation and formatting issues

• Covariance processing methods have not been sufficiently developed to produce covariance data files for use in transport applications
Justification for Subgroup

- Many new evaluations use Reich-Moore (RM) formalism
- RM resonance-parameter covariance formats have been developed
- Major processing systems (AMPX, NJOY, PREPRO, etc.) have not been updated to process RM covariance formats
 - JENDL community has developed ERRORJ module to process RM covariance formats
 - No code can process the Compact Covariance Format that is needed for evaluations with large number of resonances (e.g., U-235: 3193 resolved resonances)
- In the past few years, adjoint-based sensitivity/uncertainty (S/U) methods have been developed to propagate covariance data to calculated quantities of interest such as k_{eff} (SCALE 5 system: TSUNAMI sequences)
- Need:
 - Update processing methods and demonstrate covariance data implementation for specific radiation transport applications
Subgroup Objectives

- Develop & implement methods for processing RP covariance data in cross-section processing systems (NJOY, AMPX, etc.)
- Produce RP covariance data evaluations for important nuclides
 - SG20 produced covariance data for some nuclides
 - Additional evaluations must be developed to further demonstrate the covariance processing methods
- Investigate the generation and use of RP covariance data
 - Use new processing methods to generate covariance data files for use in radiation transport applications
 - Use existing S/U methods to demonstrate the use of the covariance data in various applications—propagate cross-section uncertainty to calculated quantities of interest
Deliverables

- Cross-section evaluations with covariance data for important nuclides
- Updated cross-section processing systems with new processing methodologies
- Generation of covariance data files for use in S/U analyses
- Demonstration S/U calculations that propagate cross-section uncertainty data to calculated quantities of interest
Time Schedule and Milestones

- **2004—2005**
 - Generate RP covariance data evaluations for selected nuclides
 - Initiate RP covariance processing development
 - Update evaluation checking codes to test new covariance formats
- **2005—2006**
 - Complete RP covariance evaluations for selected nuclides
 - Complete covariance processing methods development
 - Test new evaluations with evaluation checking codes
 - Process new evaluations and generate cross-section covariance data files
 - Perform demonstration S/U calculations with cross-section covariance data
- **2006—2007**
 - Prepare final report for subgroup activities