NUCLEAR ENERGY AGENCY
NUCLEAR SCIENCE COMMITTEE

and
COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

OECD-NEA/US-NRC Benchmark based on NUPEC BWR Full-size Fine-mesh Bundle Tests (BFBT) - Summary Record of the First Workshop

4th October 2004
Nara, Japan

This document is now classed as "Unclassified".

Cancels & replaces the same document of 03 November 2004
NUCLEAR SCIENCE COMMITTEE
and
COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

OECD-NEA/US-NRC Benchmark based on NUPEC BWR
Full-size Fine-mesh Bundle Tests (BFBT) – First Workshop
(BFBT-1)

4th October 2004
Nara, Japan

Hosted by
Japan Nuclear Energy Safety Organization (JNES), Japan

SUMMARY RECORD

Content:
- Background and Purpose of the Benchmark Workshop
- Opening Session - Introduction and Welcome
- Session 1 – Phase 1: Void Distribution Benchmark
- Session 2 – Phase 2: Critical Power Benchmark
- Closing Session - Conclusions and Recommendations
- Annex 1: Workshop Programme
- Annex 2: BFBT1 Workshop Participants
- Annex 3: Participants in BFBT1 Benchmark and codes

Background and Purpose of the BFBT Benchmark

In the past decade, a large amount of effort has been made toward the direct simulation of the boiling transition (BT) for BWR fuel bundles. The most advanced sub-channel codes explicitly take into account droplet along with liquid and vapor. They predict the dry-out process as disappearance of the liquid film on the fuel rod surface without employing any semi-empirical correlations. Through a series of benchmark comparisons with full length/scale bundle data, it was verified that the codes are reliable in predicting the critical power of the conventional BWR fuel types. However, these sub-channel codes are not yet utilized in new fuel design. Adequacy of fuel lattice geometries, spacer configurations, etc., is still confirmed mainly by costly experiments using partial- and full-scale mock-ups. The main reason for this situation is a shortage of high resolution and full-scale experimental databases under actual operating conditions.

The detailed void distribution inside the fuel bundle has been regarded as one of the important factors in the boiling transition in BWRs. With regard to the sub-channel wise void distribution, it is clear that the cross flow across the sub-channel gap dominates void distributions. Most of the well-known sub-channel codes still employ the classical Lahey’s Void Drift Model or its modified models. Although there have been substantial efforts to establish a sound theoretical background of detailed void distributions, the
numerical models that are verified in a wide range of geometrical and thermal-hydraulic conditions are not yet available. In this sense, this subject still remains the major unsolved problem in the two-phase flow of BWR fuel bundles. The main reason for this lack of resolution is the lack of reliable full bundle databases under operating conditions. Up to now, only partial bundle (3 × 3 or 4 × 4) test data under relatively low pressure (∼1 MPa) conditions have been made available.

It was during the 4th OECD/NRC BWR TT Benchmark Workshop on 6 October 2002 in Seoul, Korea, that the need to refine models for best-estimate calculations based on good-quality experimental data was discussed. The needs arising in this respect should not be limited to currently available macroscopic approaches but should be extended to next-generation approaches that focus on more microscopic processes. It is suggested that this international benchmark be based on data made available from the NUPEC (Nuclear Power Engineering Corporation) database. From 1987 to 1995, NUPEC performed a series of void measurement tests using full-size mock-up tests for both BWRs and PWRs. Based on state-of-the-art computer tomography (CT) technology, the void distribution was visualized at the mesh size smaller than the sub-channel under actual plant conditions. NUPEC also performed steady-state and transient critical power test series based on the equivalent full-size mock-ups. Considering the reliability not only of the measured data, but also other relevant parameters such as the system pressure, inlet sub-cooling and rod surface temperature, these test series supplied the first substantial database for the development of truly mechanistic and consistent models for void distribution and boiling transition.

This international benchmark, based on the NUPEC database, encourages advancement in this uninvestigated field of two-phase flow theory with very important relevance to the nuclear reactor’s safety margins evaluation. Considering the immaturity of the theoretical approach, the benchmark specification is being designed so that it systematically assesses and compares the participants’ numerical models on the prediction of detailed void distributions and critical powers. Furthermore, the following points are kept in mind while the benchmark specification is being established:

- As concerns the numerical model of void distributions, no sound theoretical approach that can be applied to a wide range of geometrical and operating conditions has been developed.
- In the past decade, experimental and computational technologies have improved tremendously through the study of the two-phase flow structure. Over the next decade, it can be expected that mechanistic approaches will be more widely applied to the complicated two-phase fluid phenomena inside fuel bundles.
- The development of truly mechanistic models for critical power prediction is currently underway. These models must include elementary processes such as void distributions, droplet deposit, liquid film entrainment, etc.

The first workshop of the OECD/NRC Benchmark based on NUPEC BWR Full-size Fine-mesh Bundle Tests (BFBT) was held on 4th October 2004. The workshop was hosted by the Japan Nuclear Energy Safety (JNES) Organization. The BFBT Benchmark is sponsored by the US Nuclear Regulatory Commission (NRC), the OECD, and the Nuclear Engineering Program (NEP) of the Pennsylvania State University. The experimental data was produced during a measurement campaign by the NUPEC, Japan, and sponsored by the Japan Ministry of Economy, Trade and Industry (METI).

The BFBT benchmark consists of two parts (phases), each part consisting of different exercises:

- **Phase 1 – Void Distribution Benchmark**
 - Exercise 1 – Steady-state sub-channel grade benchmark
 - Exercise 2 – Steady-state microscopic grade benchmark
 - Exercise 3 – Transient macroscopic grade benchmark
Phase 2 – Critical Power Benchmark

Exercise 1 – Steady-state benchmark
Exercise 2 – Transient benchmark

It should be recognized that the purpose of this benchmark is not only the comparison of currently available macroscopic approaches but above-all the encouragement to develop novel next-generation approaches that focus on more microscopic processes. Thus, the benchmark problem includes both macroscopic and microscopic measurement data. In this context, the sub-channel grade void fraction data are regarded as the macroscopic data and the digitized computer graphic images are the microscopic data.

The international benchmark team is organised based on collaboration between Japan and the USA as shown.

Opening Session: Introduction and Welcome, Chair K. Ivanov

The meeting was opened by Prof. Kostadin Ivanov, Pennsylvania State University. The President of the hosting organization - Japan Nuclear Energy Safety Organization (JNES), Prof. Hideki Nariai, welcomed the participants and wished them to engage on and enjoy this benchmark to a successful completion. Dr. Enrico Sartori welcomed the participants on behalf of the OECD/NEA Secretariat and thanked in particular the local organizers for their hospitality. Dr. Sartori discussed the organization of the benchmark activities and introduced the benchmark team.

The meeting was attended by 30 participants representing 19 organisations, from 8 countries (see Annex I). The agenda was approved with minor adjustments (see Annex II). The list of those persons who expressed interest and the intention to participate in this benchmark, as well as the codes they intend to use in the benchmark study is given in Annex III.

Dr. Sartori summarised the activities of the Nuclear Science Committee in the area of coupled neutronics/thermal-hydraulics and transients involving the coupling of core and the plant. Several of these were successfully completed, others are in progress. The activities are now moving towards refined modelling involving CFD. In particular the BFBT benchmark is a challenging one, but will contribute to
the advancement of refined modelling. Refined modelling is needed as simplified, conservative approaches are not conservative in all cases as certain benchmark studies have demonstrated.

Session 1: Void Distribution Benchmark, Chair A. Hotta

Phase 1, Void Distribution benchmark, of the BFBT benchmark was discussed. Dr. Hideaki Utsuno (JNES) presented the specification of Phase 1, Exercises 1, 2 and 3. The presentation was followed by a discussion on the experimental data available to the participants.

One of the issues discussed at length was the dimensions of the spacer grids and ferrules. In the specification detailed graphs on a correct scale are provided. The exact dimensions not being made available by the vendor, it was agreed to make an estimate based on the graphs and overall dimensions given with an estimation of the uncertainty. This should be a guide to participants, but these are encouraged to carry out some sensitivity analysis concerning these dimensions. It is believed that this would provide further insight into detailed modelling of two-phase flow in bundles.

Also the definition of microscopic and macroscopic for this benchmark was discussed. Microscopic is to be interpreted in the sense of the CFD framework.

In his presentation, “Predictions of the Phase Distribution in a Nuclear Fuel Bundle using MATRA, MARS (COBRA-TF) and CFX”, Dr. W. I discussed the experience of the Korea Atomic Energy Research Institute (KAERI) in two-phase flow phenomena modelling.

The presentations were followed by a discussion that identified the following issues:

- In the specification, only bundle average spacer pressure loss coefficients are provided. In order to define local (subchannel) loss coefficients more comprehensive information (grid thickness or grid blockage area) is required.
- The turbulent mixing coefficient will be independently modelled by participants.
- In addition to the exit void fraction distribution data, local (line averaged) measurement of the void fraction at different elevations is to be provided to each participant.
- Two transient cases – turbine trip without bypass and re-circulation pump trip – will be included as cases for Exercise 3 of Phase 1.
- The full set of test cases, defined in the test matrix in the document of JNES-04N-0015, including those non chosen as exercise cases, will be distributed to the participants.
- Participants will clarify the information they require for their analysis including detailed dimensions. The benchmark team will check the current confidential data against data that can be extracted from the drawings.
- Each participant will categorize their code system into one of the following groups:
 1) Subchannel code
 2) CFD
 Continuous Fluid Dynamics
 Interface Tracking Method
 Particle Method
 Others ()
 3) Combined CFD and subchannel (for what purpose CFD modules are applied)
 4) Other approaches (ex. 1-D Averaged, etc.).
Session 2: Critical Power Benchmark, Chair A. Hotta

Dr. Utsuno presented the specification of Phase 2, Critical Power benchmark, Exercises 1 and 2. In the follow-up discussion the issues listed below were clarified:

- Each participant will decide to use either a one-dimensional approach or a subchannel approach.
- The given two-phase pressure drop data are at steady state conditions.
- Data for the pressure drop along with a Reynolds number (Re) will be provided for the single-phase cases and spacer loss coefficient could be evaluated. Data for two-phase cases are available without a Reynolds number.
- No heat losses could be assumed - the measurements were performed at adiabatic conditions.
- The given axial power profile is discretised in 24 axial nodes.
- Fluid velocity and temperature distributions for each phase are not available.
- During the measurements, the transients were started after a steady state condition was reached. The codes’ simulations should follow the same sequence.
- Time constant for the heater can be determined based on the heater rod geometry and property, since the thermo-couples are located on the rod surface.
- Participant will use their own steam-water properties table. It was mentioned that use of different tables could cause errors in low pressure regions.
- The exit quality (thermo-dynamic quality) was calculated based on a thermal balance, not measured. Void fraction was directly measured. Perhaps, it is more appropriate to compare not only measured-to-predicted exit void fraction but also code-to-code exit quality.
- Participants have to clarify the needs of their constitutive equations, hydraulic diameter or spacer grid details.
- Microscopic void distribution data is available only for the steady state cases. During the transients only line averaged void fractions was measured.

Closing Session: Conclusions and Recommendations, Chair: E. Sartori

JNES has released the full set of BFBT bundle data to the OECD Nuclear Energy Agency for distribution to participants in the benchmark. It consists of 392 cases for steady state void distributions and 151 critical power distribution cases. Participants, before receiving the data and the descriptive information of the BFBT tests have to agree to the following “Conditions for Release, Rules and Restrictions Applying to the Use of the Information”:

- The data and information remain the property of the Japan Nuclear Safety Organization (JNES)
- The data and information is exclusively released to participants in the OECD/NRC BFBT Benchmark Study
- Recipients of the data will use it exclusively for model and code improvements in the two-phase flow area and agree to provide in return details of the methods and models used in the interpretation / simulation of the experiments, including results of sensitivity analysis.
- Recipients agree not to make copies of the information and not to further distribute or sell it to third parties
- Recipients agree to provide feedback on deficiencies or errors they may find in the data.
- Recipients agree to inform the benchmark organizers before publishing any study results for which the BFBT benchmark data have been used.

Dr. Sartori, on behalf of the OECD NEA thanked the President of JNES and his staff for making such a comprehensive and valuable set of data available to the international community and for the large amount of work and competence they have invested to make the release possible.

This benchmark with its large set of good quality and very detailed data will substantially contribute to refining models for best estimate calculations for two-phase flow analyses.

Prof. Ivanov initiated a discussion about the BFBT benchmark schedule, actions to be carried out to achieve progress and the next workshop. As a result, the following BFBT schedule and list of actions were accepted by the workshop participants:

<table>
<thead>
<tr>
<th>Action</th>
<th>Deadline</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Cases in Specification as discussed at BFBT1</td>
<td>20 October 2004</td>
<td>Dr. H. Utsuno (JNES)</td>
</tr>
<tr>
<td>Prepare summary record of the workshop</td>
<td>31 October 2004</td>
<td>Penn State, JNES and OECD/NEA</td>
</tr>
<tr>
<td>Prepare CD-ROM with papers distributed at the 1st workshop</td>
<td>31 October 2004</td>
<td>OECD/NEA</td>
</tr>
<tr>
<td>Scan Spacer grids and ferrules and propose dimensions with range of</td>
<td>20 December 2004</td>
<td>Penn State and JNES</td>
</tr>
<tr>
<td>uncertainty for uniform use by participants and for sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalize the benchmark specifications taking account of discussion</td>
<td>20 December 2004</td>
<td>Penn State and JNES</td>
</tr>
<tr>
<td>with participants in BFBT-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrange for the distribution of the BFBT database to participants</td>
<td>20 December 2004</td>
<td>OECD/NEA</td>
</tr>
<tr>
<td>having agreed to conditions, rules and restrictions in the use of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up benchmark e-mail server, web-site and ftp site</td>
<td>20 December 2004</td>
<td>OECD/NEA, Penn State and JNES</td>
</tr>
<tr>
<td>Submit results for Exercises 1 of Phase 1 and Phase 2 including</td>
<td>30 April 2005</td>
<td>Participants</td>
</tr>
<tr>
<td>spacer-grid dimensions sensitivity analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organise Second Benchmark Workshop – BFBT-2 - Discussing the results</td>
<td>27-29 June 2005</td>
<td>Penn State and OECD/NEA</td>
</tr>
<tr>
<td>of First Exercises of Phases 1 and 2, and the modelling issues of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise 2 of Phase 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proceedings of the Workshop

Participants will receive with these proceedings a CD-ROM containing all papers discussed at the meetings.

Next workshop

PSU offered to host the 2nd workshop from 27-29 June 2005. It was agreed that the 3rd workshop should be held in Europe.
Annex I

BFBT1 (First OECD/NRC BWR BF BT Workshop, Nara, 4 October 2004)

List of Participants

FRANCE

VALETTE, Michel
Tel: +33 4 38 78 55 37
CEA-Grenoble
Fax: +33 4 38 78 51 95
SSTH/LMDL
Eml: michael.valette@cea.fr
17 avenue des Martyrs
38054 GRENOBLE CEDEX 9

GERMANY

GRAF, Udo
Tel: +49 (89) 32004 395
Gesellschaft fuer Anlagen-
und Reaktorsicherheit (GRS) mbH
Forschungsgelaende
D-85748 GARCHING

KOLEV, Nikolay Ivanov
Dept Manager Multi-phase Flow
Fax: +49 9131 18 4345
FRAMATOME ANP GmbH
Eml: nikolay.kolev@framatome-anp.com
NGPS1
P.O. Box 3220
D-91058 ERLANGEN

ITALY

PETRUZZI, Alessandro
Tel: +1 814 863 3926
Nuclear Engineering Programme
Fax: +1 814 865 8499
The Pennsylvania State University
Eml: axp46@psu.edu
334 Reber Building
University Park PA 16802, USA

JAPAN

AKIMOTO, Hajime
Tel: +81 29-282-5097
Research Group for Thermal
and Fluid Engineering,
Japan Atomic Energy Research Institute,
Tokai-mura, Ibaraki-ken, 319-1195

HOTTA, Akitoshi
Tel: +81 (3) 4586 6742
In-Core Management Systems Dept.
TEPCO System Corporation
Eml: hotta-akitoshi@tepsoy.co.jp
Shibusawa City Place Bldg.
2-37-28, Eidaip,
Koto-ku, Tokyo

KAKINOKI, Shunpei
Tel: +81 29 287 8236
Nuclear Fuel Industries, Ltd.
Fax: +81 29 287 8222
Kumatori Works
Eml: kakinoki@nfi.co.jp
950 Anashiro-Nishi 1-chome Kumatori-cho
Sennan-gun, Osaka 590-0481

KASAHARA, Fumio
Tel: +81 (3) 4511 1530
Nuclear Power Facility Safety Analysis
Fax: +81 (3) 4511 1597
Safety Analysis & Evaluation Division
Eml: kasahara-fumio@jnes.go.jp
Japan Nuclear Energy Safety Organization
Kamiya-cho MT Bldg. 12F, 4-3-20, Toranomo
Minato-ku, Tokyo 105-0001

MASHIKO, Hiroyuki
Tel: +81 29 287 8236
Nuclear Fuel Industries, Ltd.
Fax: +81 29 287 8222
3135-41, Muramatsu,
Eml: mashiko@nfi.co.jp
Tokai-mura Naka-gun,
Ibaraki, 319-1196
KOREA (REPUBLIC OF)

CHANG, Soon Heung Tel: +82 42 869 3816
Department of Nuclear & Quantum Eng. Fax: +82 42 869 3810
Korea Advanced Institute of Science Eml: shchang@kaist.ac.kr
and Technology (KAIST)
Guseong-dong
Yuseong, Daejeon, 305-701

IN, Wangkee Tel: +82 42 868 2823
Advanced Reactor Technology Development Fax: +82 42 863 0565
Korea Atomic Energy Research Institute (K Eml: wkin@kaeri.re.kr
Dukjin150, Yuseong-gu
Daejeon 305-353

JEONG, Jae-Jun Tel: +82 42 868 2958
Thermal-Hydraulic Safety Research Team Fax: +82 42 868 8990
Korea Atomic Energy Research Institute (K Eml: jjjeong@kaeri.re.kr
Dukjin150, Yuseong-gu
Daejeon 305-353

SPAIN

CUERVO GOMEZ, Diana Tel: +34 336 7177
Dpto. Ingenieria Nuclear Fax: +34 336 3002
Universidad Politecnica de Madrid Eml: dcuervo@etsin.upm.es
Avda. Arco de la Victoria s/n
28040 MADRID

PEREZ, Julio Tel: +34 91 346 0230
Accident Analyses of NPPs Fax: +34 91 346 0588
Consejo de Seguridad Nuclear Eml: jps@csn.es
c/Justo Dorado, 11
28040 Madrid

SWEDEN

ADAMSSON, Carl Tel: +46 8 790 93 36
Royal Institute of Technology Fax: +46 8 20 30 07
Brinnellvägen 60 Eml: carl@energy.kth.se
SE-100 44 Stockholm

ANGLART, Henryk Tel: +46 8 790 74 82
Royal Institute of Technology (KTH) Fax: +46 8 20 30 07
Div. Nuclear Reactor Technology Eml: henryk@energy.kth.se
Brinnellvägen 60 SE-100 44 Stockholm

UNITED STATES OF AMERICA

AVRAMOVA, Maria N. Tel: +1 814 863 3926
Nuclear Engineering Programme Fax: +1 814 865 8499
The Pennsylvania State University Eml: mna109@psu.edu
334 Reber Building University Park PA 16802

HASSAN, Yassin A. Tel: +1 979 845 7090
Texas A & M University Fax: +1 979 845 6443
Department of Nuclear Engineering Eml: y-hassan@tamu.edu
MS 3133
College Station Texas 77843-3133

IVANOV, Kostadin Tel: +1 (814) 865 0040
Professor Fax: +1 (814) 865 8499
Nuclear Engineering Programme Eml: kni1@psu.edu
The Pennsylvania State University 230 Reber Building
University Park PA 16802
International Organisations
SARTORI, Enrico
OECD/NEA Data Bank
Le Seine-Saint Germain
12 boulevard des Iles
F-92130 ISSY-LES-MOULINEAUX

Tel: +33 1 45 24 10 72 / 78
Fax: +33 1 45 24 11 10 / 28
Em: sartori@nea.fr

30 participants from 19 organisations, from 8 countries
Annex II

OECD/NRC Benchmark based on NUPEC BWR
Full-size Fine-mesh Bundle Tests (BFBT) – First Workshop
(BFBT-1)

Asu-Nara Big Meeting Room (2F)
Mitsui Garden Hotel, Nara, Japan

4th October 2004

Hosted by
Japan Nuclear Energy Safety Organization (JNES), Japan

PROGRAMME [03]

Opening Session (13:30-13:45) – Chair: K. Ivanov

- Introduction and Welcome – H. Nariai (JNES)
- Introduction of Workshop [01] and Benchmark [02] Participants
- Approval of Agenda [03]
- Organization of benchmark activities and benchmark team – E. Sartori (OECD/NEA) [04]

Session 1 (13:45-15:15) – Chair: A. Hotta

Phase 1 – Void Distribution Benchmark
- Presentation of the specification of Phase 1, Exercises 1-3 – H. Utsuno (JNES) [05]
- Presentation of related topics from participants
 using MATRA, COBRA-TF and CFX [06]
- Discussion of the specification – K. Ivanov (PSU) [07]

Session 2 (15:30-16:45) – Chair: A. Hotta

Phase 2 – Critical Power Benchmark
- Presentation of the specification of Phase 2, Exercises 1-2 – H. Utsuno (JNES) [05]
- Presentation of related topics from participants
- Discussion of the specification – K. Ivanov (PSU)

Closing Session (16:45-17:00) – Chair: E. Sartori

- Action item and schedule of benchmark activities - next Workshop (BFBT-2), etc – K. Ivanov (PSU) [08]
- Conclusion and Closing Remarks – E. Sartori (OECD/NEA) [09]
- Summary and Actions [10]

[] indicate the identification on the CD-ROM
NUPEC BFBT BENCHMARK EXPECTED PARTICIPANTS

<table>
<thead>
<tr>
<th>Organization</th>
<th>Country</th>
<th>Contact Persons</th>
<th>Address</th>
<th>Software</th>
<th>Participation/report only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecole Polytechnique Montreal</td>
<td>Canada</td>
<td>A. Tapucu, Alberto Teyssedou</td>
<td>altan.tapucu@polymtl.ca, alberto.teyssedou@polymtl.ca</td>
<td>ASSERT</td>
<td>yes</td>
</tr>
<tr>
<td>VTT</td>
<td>Finland</td>
<td>Antti Daavittila</td>
<td>Antti.Daa.vitlla@vtt.fr</td>
<td>COBRA/PORFFLO</td>
<td>yes</td>
</tr>
<tr>
<td>CEA</td>
<td>France</td>
<td>E. Royer, Michel Valette, D. Bestion,</td>
<td>Eric.royer@cea.fr, VALETTEMi@chartreuse.cea.fr, Dominique.bestion@cea.fr</td>
<td>NEPTUNE 1D / 3D modules</td>
<td>yes, yes, yes</td>
</tr>
<tr>
<td>Framatome ANP</td>
<td>Germany</td>
<td>M. Glück, P. Knabe, F. Wehle</td>
<td>Markus.Glueck@framatome-anp.de, Pawel.Knabe@framatome-anp.de, Franz.Wehle@framatome-anp.de</td>
<td>F-COBRA-TF</td>
<td>yes</td>
</tr>
<tr>
<td>Framatome ANP</td>
<td>Germany</td>
<td>Nikolay I. Kolev</td>
<td>Nikolay.Kolev@framatome-anp.com</td>
<td>IVA 5M, IVA 2005</td>
<td>yes</td>
</tr>
<tr>
<td>FZK</td>
<td>Germany</td>
<td>W. Hering</td>
<td>hering@irs.fzk.de</td>
<td>Trace, CFX*</td>
<td>yes</td>
</tr>
<tr>
<td>FZK</td>
<td>Germany</td>
<td>X. Cheng</td>
<td>xu.cheng@iket.fzk.de</td>
<td>MATRA</td>
<td>yes</td>
</tr>
<tr>
<td>GRS</td>
<td>Germany</td>
<td>U. Graf, K. Velkov</td>
<td>gra@grs.de, yek@grs.de</td>
<td>RELAP5</td>
<td>yes</td>
</tr>
<tr>
<td>University Pisa</td>
<td>Italy</td>
<td>D’Auria Francesco, Alessandro Petruzzi</td>
<td>dauria@ing.unipi.it, axp46@psu.edu</td>
<td>RELAP5</td>
<td>yes</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>Akihiko Minato</td>
<td>akihiko_minato@pis.hitachi.co.jp</td>
<td>RELAP5</td>
<td>yes</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Japan</td>
<td>Koji Nishida</td>
<td>kouji_nishida@pis.hitachi.co.jp</td>
<td>RELAP5</td>
<td>yes</td>
</tr>
<tr>
<td>JAERI</td>
<td>Japan</td>
<td>Hajime Akimoto</td>
<td>akimoto@hflwing.tokai.jaeri.go.jp</td>
<td>NASCA</td>
<td>yes</td>
</tr>
<tr>
<td>JNES</td>
<td>Japan</td>
<td>H. Utsuno, F. Kasahara, Y. Masuhara,</td>
<td>Utsumo-hideaki@jnes.go.jp, Kasahara-fumi@jnes.go.jp, Yasuhiro-masuhara@jnes.go.jp</td>
<td>TCAPE-INS/B</td>
<td>yes, yes, yes</td>
</tr>
<tr>
<td>Kumamoto Univ.</td>
<td>Japan</td>
<td>Michio Sadatomi</td>
<td>sadatomi@mech.kumamoto-u.ac.jp</td>
<td>NASCA</td>
<td>yes</td>
</tr>
<tr>
<td>Nuclear Fuel Industry</td>
<td>Japan</td>
<td>Hiroyuki Mashiko, Tetsuhiro Ozaki,</td>
<td>mashiko@nfi.co.jp, te-ozaki@nfi.co.jp, kakinoki@nfi.co.jp</td>
<td>COBRA-TF</td>
<td>yes, yes, Report only</td>
</tr>
<tr>
<td>Nuclear Fuel Industry</td>
<td>Japan</td>
<td>Keizo Matsuura, Shunpei Kakinoki</td>
<td>matsuura@nfi.co.jp, sanbe@nfi.co.jp</td>
<td>IMPACT/CAPE-BWR</td>
<td>yes</td>
</tr>
<tr>
<td>NUPEC</td>
<td>Japan</td>
<td>Masanori Naitoh</td>
<td>Ms-naito@nupec.or.jp</td>
<td>IMPACT/CAPE-BWR</td>
<td>yes</td>
</tr>
<tr>
<td>Organization</td>
<td>Country</td>
<td>Contact Persons</td>
<td>Address</td>
<td>Software</td>
<td>Participation/report only</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TEPCO</td>
<td>Japan</td>
<td>Akitoshi Hotta</td>
<td>hotta-akitoshi@tepsys.co.jp, shirai-hiroshi@tepsys.co.jp</td>
<td>NASCA</td>
<td>yes</td>
</tr>
<tr>
<td>Tokyo Institute of Technology</td>
<td>Japan</td>
<td>Hisashi Ninokata, Masanori Aritomi, Emilio Baglietto</td>
<td>hninokat@nr.titech.ac.jp, maritomi@nr.titech.ac.jp, 01d51276@nr.titech.ac.jp</td>
<td>NASCA</td>
<td>yes</td>
</tr>
<tr>
<td>KAERI</td>
<td>Korea</td>
<td>Dae-Hyun Hwang</td>
<td>dhhwang@kaeri.re.kr</td>
<td>MATRA</td>
<td>yes</td>
</tr>
<tr>
<td>KAERI</td>
<td>Korea</td>
<td>Jae-Jun Jeong</td>
<td>jjjeong@kaeri.re.kr</td>
<td>COBRA-TF</td>
<td>yes</td>
</tr>
<tr>
<td>KAERI</td>
<td>Korea</td>
<td>Wang-Kee In</td>
<td>wkin@kaeri.re.kr</td>
<td>CFX</td>
<td>yes</td>
</tr>
<tr>
<td>KAIST</td>
<td>Korea</td>
<td>Soon Heung Chang</td>
<td>shchang@kaist.ac.kr</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>NRG</td>
<td>Netherlands</td>
<td>S.M. Willemsen</td>
<td>willemsen@nrg-nl.com</td>
<td>CFX 5</td>
<td>probably</td>
</tr>
<tr>
<td>UPM</td>
<td>Spain</td>
<td>Jose M. Aragonos, Carol Ahnert, Diana Cuervo</td>
<td>arago@din.upm.es, carol@din.upm.es, dcuervo@etsin.upm.es</td>
<td>COBRA-IIIC-MIT-2/SEANAP-SIMTRAN, COBRA-TF / PSU</td>
<td>yes</td>
</tr>
<tr>
<td>CSN</td>
<td>Spain</td>
<td>Jose Manuel Conde, Julio Perez, Fernando Pelayo</td>
<td>jmcl@csn.es, jps@csn.es, fpl@csn.es</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Westinghouse ABB</td>
<td>Sweden</td>
<td>D. Panayotov</td>
<td>dobromir.panayotov@se.westinghouse.com</td>
<td>MONA</td>
<td>yes</td>
</tr>
<tr>
<td>Royal Institute of Technology</td>
<td>Sweden</td>
<td>Henryk Anglart, Carl Adamsson</td>
<td>henryk@energy.kth.se, carl@energy.kth.se</td>
<td>MONA, ABC</td>
<td>yes</td>
</tr>
<tr>
<td>PSI</td>
<td>Switzerland</td>
<td>M. Andreani</td>
<td>Michele.Andreani@psi.ch</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>PSI</td>
<td>Switzerland</td>
<td>P. Coddington</td>
<td>paul.coddington@psi.ch</td>
<td>VIPRE-02</td>
<td>yes</td>
</tr>
<tr>
<td>PSI</td>
<td>Switzerland</td>
<td>Y. Aounallah</td>
<td>Yacine.Aounallah@psi.ch</td>
<td>CORETRAN/VIPRE</td>
<td>yes</td>
</tr>
<tr>
<td>ISL Inc.</td>
<td>USA</td>
<td>C. Delfino</td>
<td>cdelfino@islinc.com</td>
<td>CFX5</td>
<td>yes</td>
</tr>
<tr>
<td>Purdue Univ.</td>
<td>USA</td>
<td>M. Ishii</td>
<td>ishii@ecn.purdue.edu</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>PSU/Framatome ANP</td>
<td>USA</td>
<td>L. Hochreiter, K. Ivanov, M.N. Avramova</td>
<td>lehnu@engr.psu.edu, knl1@psu.edu, mna109@psu.edu</td>
<td>F-COBRA-TF</td>
<td>yes</td>
</tr>
<tr>
<td>RPI</td>
<td>USA</td>
<td>M. Podowski</td>
<td>podowski@rpi.edu</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Texas A&M Univ.</td>
<td>USA</td>
<td>Y.A.Hassan</td>
<td>y-hassan@tamu.edu</td>
<td>CFX; RELAP-3D</td>
<td>yes</td>
</tr>
<tr>
<td>OECD/NEA</td>
<td>USA</td>
<td>E. Sartori</td>
<td>sartori@nea.fr</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

Last update 6.1.2005 yes = confirmed participation in benchmark