Nuclear Data Activities at LANSCE

R. C. Haight
LANSCE-3

WPEC Meeting
Santa Fe, NM

April 12-13, 2001
Progress at LANSCE

- New management
- More beam time -- July - December, 2001
- PAC -- April 18-20, 2001
- Nuclear Data Measurements
- Improved Capabilities
 - Flight paths
 - Detectors
 - Computers
Nuclear Data Measurement Activities at LANSCE

• Completed
 – Total cross sections on 31 materials, $E_n = 5$ to 560 MeV
 – 239Pu(n,2n) from (n,xgamma), $E_n =$ threshold to 200 MeV
 – Oxygen(n,xgamma), $E_n = 4$ to 200 MeV
 – Spectroscopy

• Data being analyzed
 – (n,xgamma) on 9Be, 59Co, 58,60Ni, 99Tc(n,xgamma)
 – (n,xp) and (n,xalpha) on 92,94,96Mo

• Co-workers from LLNL, Pittsburgh, Notre Dame, Ohio, CEA (France), etc.
Improved Capabilities

- Flight paths
 - Moderated neutrons -- FP14 at Lujan
 - Fast neutrons -- Industrial irradiations

- Detectors
 - FIGARO -- n-gamma coincidences to measure neutron-emission spectra
 - (n,n’gamma)
 - (n,fission)
 - DANCE

- Computers -- MIDAS + ROOT
Total cross sections (LLNL, Ohio U, LANL)

- Nuclei from H to U-
 - 45 materials (31 new)
- E_n from 5 to 560 MeV
- 1% or better absolute accuracy in 1% energy bins -- defines state-of-the-art
- Major addition to data base - old data stopped ~ 30 MeV
- Essential data for neutron transport codes and for nuclear modeling
The 239Pu(n,2n)238Pu reaction cross section is determined from measured partial γ-ray yields (in red on the right) and theoretical calculations.
Oxygen(n,xgamma) -- example of data
23 gamma-ray transitions for $E_n = 4$ to 200 MeV
(in press)
Improved Capabilities

• Flight paths
 – Moderated neutrons -- FP14 at Lujan
 – Fast neutrons -- Industrial irradiations

• Detectors
 – GEANIE -- (n,xgamma)
 – FIGARO -- n-gamma coincidences to measure neutron-emission spectra
 • (n,n’gamma)
 • (n,fission)
 – DANCE

• Computers -- MIDAS + ROOT
Weapons Neutron Research (WNR)
Target Specifications

Target-2 (Blue Room)
Up to ~ 1 \(\mu \)A proton beam
- Proton induced reactions
- 6 flight paths
- Proton irradiations

Target-4
5 \(\mu \)A proton beam for high-energy neutron spallation source. Typical operation is 35,000 pulses/sec with 1.8 \(\mu \)sec spacing.
- 6 neutron flight paths
- Neutron induced reactions
- Energy spectrum depends on flight path angle
- Determine energy of neutron by time-of-flight
- Neutron irradiations
$^{235,238}\text{U}, ^{239}\text{Pu} (n,xn) (x=1,2,3..)$

- LLNL-LANL joint program
- Measure cross sections for $(n,x\gamma)$ with good resolution
- Relate $(n,x\gamma)$ to (n,n'), $(n,2n)$, $(n,3n)$. by nuclear model calculation (Chadwick)
- GEANIE detector array

contacts: J. Becker (LLNL)
R. Nelson (LANL)
FIGARO -- Fast neutron-Induced Gamma-Ray Observer

- High-resolution germanium detectors
- Neutron detectors for n-\(\gamma\) coincidences
- Complementary to GEANIE
 - germanium detectors - but fewer
 - ease scheduling on GEANIE, which is oversubscribed by a factor of 3
- Test bench for new techniques
 - timing
 - conversion-electron spectrometer

Figaro -- Mod 1
MLNSC -- Moderated spallation source

Manuel Lujan Jr. Neutron Scattering Center

Available FP
4, 8, 11a, 12, 13, 15

Moderators
1, 2, 16: high resolution H2O decoupled
3, 4, 5: high intensity H2O decoupled
6, 7, 8: high intensity H2O decoupled
9, 10, 11: H2 @ 20K decoupled
12, 13: H2 @ 20K partially decoupled
14, 15: H2O partially decoupled

LANSCE
Los Alamos Neutron Science Center
DANCE -
Device for Advanced Neutron Capture Experiments

- designed with Karlsruhe group; now in construction
- 162 element “soccer ball” array - 4π
- BaF$_2$ scintillators
- Acts as calorimeter to separate signal from background
- High sensitivity so that small samples (~ 1 mg) (radioactive) can be studied
- E_n from 1 eV to 500 keV