Status Report of
NEANSC Working Party on International Evaluation Cooperation:
Subgroup 13: Intermediate Energy Nuclear Data Evaluation

Coordinators:

Tokio Fukahori
Nuclear Data Center
Department of Reactor Engineering
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun
Ibaraki-ken 319-11
Japan
Tel: +81-29-282-5907
FAX: +81-29-282-6122
E-mail address:
fukahori@cracker.tokai.jaeri.go.jp

Arjan Koning
Netherlands Energy Research Foundation
ECN
Nuclear Analysis Department
P.O. Box 1
1755 ZG Petten
The Netherlands
Tel: +31 2246 4051
FAX: +31 2246 3490
E-mail address: koning@ecn.nl

1. Members

Y. Kikuchi (Monitor) JAERI, Japan
T. Fukahori (Coordinator) JAERI, Japan
A. Koning (Coordinator) ECN, The Netherlands
F. Atchinson PSI, Switzerland
H. Beijers KVI, Groningen
E. Betak IP/SAS, Slovakia
M.B. Chadwick LLNL, USA
A. Daniel Dubna, Russia
A. Ferrari INFN, Italy
T.A. Gabriel ORNL, USA
H. Gruppelaar ECN, The Netherlands
K. Ishibashi Kyushu, Japan
Y. Kadi PSI, Switzerland
S. Leray CEA, France
S.G. Mashnik Dubna, Russia
R. Michel Hannover, Germany
C. Nordborg NEA, France
R. Prael LANL, USA
G. Retfo ENEA, Italy
M. Salvatores CEA, France
N. Sobolevsky INR/RAS, Russia
H. Takada JAERI, Japan
H. Tang East Fishkill Lab, USA
Y. Watanabe Kyushu, Japan
P. Wydler PSI, Switzerland
V. Avrigeanu CEA, France
O. Bersillon LLNL, USA
M. Blann JAERI, Japan
S. Chiba Julich, Germany
D. Filges WIS, Israel
Z. Fraenkel ZSR, Germany
M. Gloris LANL, USA
R.C. Haight Dresden, Germany
H. Kalka CRC, Japan
N. Kishida CRL, Canada
M.A. Lone ENEA, Italy
E. Menapace NEA, France
P. Nagel IAEA, Vienna
P. Oblozinsky Uppsala, Sweden
E. Ramstrom ORNL, USA
R.W. Roussin IAE, People's Republic of China
Q. Shen Obninsk, Russia
Y.N. Shubin BNL, USA
H. Takahashi INR/HAS, Hungary
F. Tarkanyi NASA, USA
J.W. Wilson LANL, USA
P.G. Young
2. Meetings

May 11, 1994 at Park Vista Hotel, Gatlinburg, USA
Dec. 9, 1994 at NEA Data Bank, Paris, France
(Upcoming) October 23–27 1995, Smolenice, Slovakia

3. Current Tasks

- Possible new data needs and a high-priority request list were produced and reviewed.
- An intercomparison of high-energy model codes has been held and discussed.
- A summary of the inquiry for intermediate energy nuclear data needs was reported.
- Format for intermediate energy nuclear data was proposed and discussed.
- Status reports of members were collected (attached as appendix).
- Summary of experiments and status of databases was reported.
- A pilot evaluation for Fe and Th is proposed.

4. Future Tasks

- A further specification of data needs (sensitivity aspects) and a revision of the high-priority request list.
- An Intermediate Energy Activation Yields intercomparison has been approved and will be held in 1995.
- It is proposed to organize a NEA Specialist Meeting on the Optical Model above 20 MeV.
- The pilot evaluations will be performed by different participants and intercompared.
- All presently existing high-energy evaluations should be stored at a central place, the NEA Data Bank.
- Compilation of experimental data will be continued.
- Evaluated activation files should be extended to higher energies.

5. List of documents

Doc.s13.07 D. Filges, summary report of the Thick Target Group, Meeting on the

Doc.s13.10 M.B. Chadwick and M. Blann: Status of LLNL intermediate-energy data activities

Doc.s13.11 A. Ferrari: Activities on intermediate-energy modelling/data going on in Milan/Cern

Doc.s13.12 S.G. Mashnik: Intermediate-energy modeling/data activities going on in Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

The Quantum Molecular Dynamics (QMD)

In this theory, degree-of-freedom of every nucleon in the target + projectile system is taken into consideration as Gaussian distributions in the coordinate and momentum spaces. Time evolution of the parameters which represent the centroids of each nucleon in the coordinate and momentum spaces (6 parameters, 3 for coordinate and 3 for momentum space) is determined by the Newtonian equation and the stochastic nucleon-nucleon collision as similar to the cascade model. The mean-field potential appearing in the Newtonian equation is calculated in a self-consistent way from an effective nucleon-nucleon interaction. The mean-field potential gives rise to self-bound target and projectile, the quantum refraction/reflection and acceleration/deacceleration. The collision is responsible for energy dissipation. In QMD, the Fermi statistics is contained only in the collision part as the Pauli blocking effects.

The QMD calculation is performed until a certain time, and the remaining fragments are identified as well as their excitation energy. If the fragments are in excited states, statistical particle emission is also taken into consideration. In the figures below, (p,xn) cross sections of Fe at 113 and 800 MeV calculated by QMD+statistical decay model are compared with data measured at LANL and those calculated by cascade + evaporation code NUCLEUS.