RADIATION LEVEL IN CHINA AND PROTECTION STANDARDS

PAN ZIQIANG CHINESE SOCIETY OF RADIATION PROTECTION

The 5th asian regional conference on the evolution of the system of radiological protection

Chiba, Japan 3-4 September 2009

- Contents
- 1. Radiation levels in China
 - (no citation for being unpublished)
- Natural radiation level
- Public exposure
- Occupational exposure
- Medical exposure
- Detriments caused by accidents
- 2. Problems to be studied in protection standards

Annual effective dose to the public in China from natural radiation exposure ($\mu S v$)

Ray sources		China		Worldwido	
		Current	1980's	wondwide	
	Cosmic rays	Ionizing component	260	260	280
External	5	Neutron	100	57	100
	Terrestrial γ radia	tion	540	540	480
	Rn-222 and progenies		1560	916	1150
Internal	Rn-220 and progenies		185	185	100
	⁴⁰ K		170	170	170
	Other nuclides		315	170	120
Total		~ 3 100	~ 2 300	2 400	

Rn-222 concentration

70% higher in the start of 21st century than in late-1980's

Analysis of causes:

- Error caused by measuring methods: grab sampling and accumulation
- Reuse of slag for building material
- Wide use of air-conditioner

 Differences in diet with western countries

Collective effective dose to China's populations during 1986-2005 from artificial

		-		
Year	1986 -1990	1991 -1995	1996 -2000	2001 -2005
Nuclear weapon test	9.48×10^{3}	4.10×10^{3}	3.13×10^{3}	2.95×10^{3}
Nuclear fuel cycle Nuclear technology	/./4×10	8.52×10	7.92×10	7.43×10
application			8.05×10 ⁻¹	1.51
Research	1.87	1.19	0.92	3.16

radiation (man·Sv)

Variation trend in occupational exposure countrywide

		Nuclear fuel cycle		Nuclear/rediction	NODM
Indicator	Indicator Year Other stages than uranium mining Uranium mining		technology application	radiation exposure	
Annual	1986-1990	9.91	6.80	189.90	
average monitored	1991-1995	12.20	4.43	114.2	
persons (thousand)	1996-2000	11.82	1.78	140.3	10588.4
Annual	1986-1990	22.51	117.38	372.37	
collective effective dose	1991-1995	17.71	104.31	164.17	
(man·Sv)	1996-2000	15.59	23.89	193.17	22347.7
Average annual	1986-1990	2.27	17.26	1.96	
effective dose	1991-1995	1.45	23.53	1.44	
(mSv)	1996-2000	1.32	13.46	1.38	2.1

Listing of occupational exposures countrywide during 1996-2000 (1)

	Practices and/or activities	Annual average monitored persons, thousands	Average collective effective dose (man·Sv)	Average annual effective dose (mSv)
N	uclear fuel cycle			
Μ	ining	1.80	27.67	15.35
	Milling	1.04	1.83	1.75
	Enrichment	3.39	0.78	0.23
	Fabrication	1.10	2.19	1.99
	Nuclear power	2.93	2.03	0.69
	reprocessing and waste management	1.30	4.06	3.13
	Research	2.06	4.70	2.28
	Sub-total	11.82	8.65	1.32

Listing of occupational exposures countrywide during 1996-2000 (2)

Practices and/or activities	Annual average monitored persons (thousands)	Average collective effective dose (man·Sv)	Average annual effective dose (mSv)
Nuclear/radiation application			
Medical uses	114.74	161.8	1.41
Industrial uses	24.00	28.22	1.18
Radioisotope production	1.56	3.15	4.90
Sub-total	140.3	193.17	1.38
Natural radiation			
Coal mine	6500	14600	2.4
Metal mine	1000	5532	5.53
Other types of mines	3000	2060	0.688
Underground workplaces other than mines	50	78	1.56
Aircrews	38.4	77.7	2.0 9
Sub-total	10588.4	22347.7	2.1

X-ray diagnosis-caused exposure

N/	Examinations, 10 ⁶	Annual frequency, 10 ⁻³		
Year		X ray	СТ	Total
1984- 1987	150.9	145.1	<0.01	145
1997- 1998	247	180.7	15.5	196.2

Number of patients receiving radiotherapy

Year	Tele-radiotherapy per year		brachy-radiotherapy per year		Total	
	10 ⁶	10-3	106	10-3	106	10-3
1987	0.0531	0.048	-	-		
1998	0.335 ²	0.279^{2}	-	-		
2006	0.409 ³	0.314	-	-		

Notes 1: The population, 590 million, for 17 provinces was estimated based on the countrywide population, 1.08 billion, in 1987; 2: This is the statistical result from 17 provinces; 3: This is an estimate from Chinese Cancer Association. Additionally, no data on number of patients receiving brachy-radiotherapy is available.

Accidental exposure-caused number of injuries during 1954-2007

Practice or activity	Death	Acute radiation sickness	Skin injury
Nuclear industry	0	0	52
Nuclear/radiation application	10	49	16
Nuclear test	-	2	-
Total	10	51	68

Radiation accident in medicine

Radiation accident	Case	Death
⁶⁰ Co therapy unit in Wuhan, in 1972	12	3
Medical accelerator in 1985	24	13
⁶⁰ Co therapy unit in 1992	15	2

Main conclusions

- Natural background 3.1 mSv/a
- Elevated Rn concentrations

- Nuclear power plants, and their fuel cycle facilities, contribute very low dose to workers and the public.
- Attention should be paid to reducing the dose to uranium workers.

- Artificially enhanced natural radiation is the major reason to result in the public exposure and occupational exposure in China.
- The resultant collective effective dose is 2-3 orders of magnitude higher than that from man-made radiation.

- Radiological diagnosis is the greatest contributor to the radiation dose to the public in China.
- CT examination causes far higher doses to the public than those from routine X ray examination.

GB18871, 2002 Basic Safety Standards against Ionizing Radiation Protection and Radiation Source Safety

Detailed guidance needing to be set No revision plan until now

NORM

• Management scope

Rn-222, Rn-220

- Rn-220 dose conversion coefficient
- No epidemiological investigation data for Rn-220
- Current epidemiological investigation relating to Rn-222 includes the contribution from Rn-220 to some extent.

- Standards on NORM-related waste
- Not completely same as the requirements for artificial radioactivity

DOSE CONSTRAINT

- Established principle
- Depending on the nature of work

Thank you