

An Overview of CRIEPI Pyroprocessing Activities

Tadashi Inoue CRIEPI

2-11-1, Iwato-kita, Komae-shi Tokyo E-mail;inouet@criepi.denken.or.jp

presented by Tadafumi Koyama, CRIEPI

Objective of R & D on Pyroprocessing in CRIEPI

Objective:

To propose effective scenario and method for SF treatment for establishment of a fuel cycle including fast reactor cycle

Target of R & D on pyroprocessing:

- 1. To establish the compact method for treating various kinds of oxides fuel
- 2. To establish the effective fuel cycle for fast reactor
- 3. To establish the technology for recovering TRUs for HLLW from aqueous reprocessing

Metal Fuel Cycle Integrated with Oxide Fuel Treatment

Process Flow of Pyroprocessing

Overview of Collaboration with domestic and overseas organizations

CRIEPI

Role: Developing process technology
Extending to engineering scale
development

- Process technology by use of molten salt and liquid metal
- Installation of experimental facility/equipment by use of actinides and genuine material
- Design study of facility/equipment for commercial base

ITU(EU-Germany)

TRU/Genuine material (1989 -) Contribution to EUROPART

Kyoto University Research Reactor

Uranium (1990 -

INL

Mass tracking in ER

JAEA(JAERI)

Plutonium

(Electrorefining, Fuel fabrication For irradiation) (1996 -)

Government support program (Contract basis)

- Metal fuel cycle: 2 subjects
- Electrochemical reduction of oxide fuel: 2 subjects

JAEA(JNC)

Plutonium (Series demonstration of process)

(2000 -)

at CPF

Other collaborations

- Toshiba (1987-
- DOE/ANL(1989-1994)
- Rockwell International/U. of Missouri (1988-1995)
- · AEAT (1997-2000)

Participation to cooperation research: *EUROPART*Bi-lateral information exchange agreements: *BNFL*, *CEA*

Joint study with JAEA: Basics of Electrorefining with Pu

Electrorefiner for Pu separation (U,Pu:100g)

Recovery rate into Cd cathode

- :1.2t-An/y(per one electrorefiner)
- →Equivalent cathode current density 125mA/cm²

Cd ingot with U+Pu (Cd:120g, U+Pu:14.7g)

Composition change of Cd cathode

Joint study with JAEA: Series verification of pyroprocess with Pu

Evaluation of material balance through reduction to casting

Joint Study with JRC-ITU: Test with HLLW and Metal Fuels

Caisson with high purity Ar atmosphere and manipulating operating system

Dismantling and transfer to hot cell after experience with non irradiated TRU-containing material

Set up of caisson in hot cell

Cross section after anodic dissolution of U-Pu-Zr-MA

Model of anodic dissolution and anode potential change

Uranium deposit

Pu,MA,U in cadmium

Engineering Technology development: High-throughput Electrode

U collection rate based on the solid cathode ca.8.8g-U/h/L (at unit volume of electrode)

After the improvement with clearance, scraper, etc.,

more than 40 g-U/h/L was achieved

Uranium metal recovered(ca.5kg)

Engineering Technology development: Transport technology & Equipments

PYRO-STATION: Pyroprocess Scaled-up Test Apparatus for Industrialization

Metal Transport & Distillation Rig

Ar atmosphere Large Glove Box

Engineering Technology development: Metal/Salt Contactor for TRU recovery

- The separation experiments were carried out with Ce,
 Gd, Y as substitutes of U, Pu(MA), REs, respectively.
- The flow rates of the experiments were about 3 liters of both salt and Cd in 1-3 hr.
- The concentration of each solute was found to reach steady state immediately. As expected, effective extraction were achieved at high agitation speed and low flow rate.
- In the case of low flow rate experiment, more than 97% of Ce and Gd (substituted for actinides) were recovered in one stage.
- Further experiments are now under way with using 3-staged extractor.

Single stage counter-current extraction

9th OECD/NEA P&T IEM, Nimes, France

Development of Oxide Fuel Treatment : flowsheet development

Development of Oxide Fuel Treatment: experimental achievements

Electrowinning of UO2 in LiCI-KCI

SEM image of UO2 deposit (Radial cross section)

Magnified

Electrochemical reduction

Reduction of MOX (55U-5Np-40Pu) was confirmed with small scale

Reduction of UO₂ in larger scale was confirmed in ~100g scale

Objectives of irradiation of metal fuel

Fuel performance to be verified for commercial use

Item	Objective	Target value	Target for oxide
Burn up	Cost-effective	ca. 200GWd/t	ca. 200GWd/t
Linear heat rate	Core-compactness	ca. 500W/cm	ca.450W/cm
High temperature	Heat efficiency >40%	Cladding temp. ≧650C	Cladding temp.≧675C
MA-transmutation	Environmental friendly	Several %/year	70-80% compared with metal fuel

List of irradiation test of metal fuel

	ANL record	JOYO. planned	Phenix-METAPHIX-
Item of verification	High B.U., High LHT	High temp. operation	MA transmutation
Fuel composition	U-Pu-Zr	U-Pu-Zr	U-Pu-MA(RE)-Zr
Fabrication	Injection casting	Injection casting	Arc-melting
Number of pins	ca. 600 pins	ca. 10 pins	9 pins
Max. cladding temp.	Less than 600 ℃	More than 650 C	Less than 580 C
Max. burn-up	ca. 200GWd/t	<u>ca. 200GWd/t</u>	ca.100GWd/t
Linear heat rat	450 ~ 500 W/cm	ca. 500 W/cm	ca. 350 W/cm
Schedule	Finished(~'95)	Fab.:'03 ~'06 Irrad.:'07 ~'15	Fab. finished(~'94) Irrad.;'03 ~'10

Phenix irradiation of MA-metal fuel - METAPHIX -

- Irradiation of metal fuel pin with U-Pu-Zr contained minor actinides(Np,Am,Cm) and rare earths
- Fuel fabrication, PIE and recycling with pyro-process in ITU

Irradiation	2003	2004	2005	2006	2007	2008	2009	2010
2.4 at.%	Start	→		Trans.	PIE			
7.0 at.%	Start	→	→	→	Trans.	PIE		
11.0 at.%	Start	→	→	→	→	Trans	PIE	→

- Finished the non-destructive analysis on pins with 2.4at% burnup at PHENIX

U-Pu-Zr-MA-RE'

MA; Np, Am, Cm
RE; Ce, Nd, Y, Gd

(Fabricated by arc-melting)

<Pin configuration>

A•C:U-Pu-Zr, B:U-Pu-Zr-MA-RE

<Appearance after irradiation>
No failure and no visual deformation

<u>Transport to ITU for destructive analysis etc.</u>

<Configuration of capsule>

Irradiation of 3 pins in the same capsule at different burnup

Composition of region B, wt%

Pin1: U-19Pu-10Zr

Pin2: U-19Pu-10Zr-2MA -2RE Pin3: U-19Pu-10Zr-5MA -5RE

Collaboration with ITU

Metal fuel development -Fabrication of fuel pins for JOYO irradiation-

- Installed electrorefiner for reduction and separation, Injection casting in former JAERI
- Fabricated U-Pu-Zr rod
- Fabricate 10pins until 2007, and put into the core of JOYO at 2008, low, medium and high B.U.

Cathode product (Cd-Pu-U)

Cd distillation

U-Pu ingot

fuel fabrication apparatus

 \Rightarrow

Collaboration with JAEA(JAERI)

Engineering scale model of injection casting for U-Zr

Inside view during casting

Molds injected U-Zr

Heel and dross in crucible

- 20kg/batch :~400mm length, 50~60slugs/batch

Future study

Outline:

- Verification of process by use of genuine material
- Development of engineering scale model
- Safeguard and material accounting
- Irradiation of metal fuel

R&D item:

- Verification of pyro-process by use of irradiated metal alloy at PHENIX
- Verification of reduction process by use of spent oxide fuel
- Development of engineering scale model of electrorefiner, TRU extractor, waste treatment & solidification
- Safeguard and material accounting measures
- Design study of reprocessing facility and economic analysis

Process Flow of Pyroprocessing of Metal Fuel Cycle

