DEVELOPMENT PROGRAM ON MINOR ACTINIDES BEARING BLANKETS AT CEA

Jean-Marc Bonnerot¹, S. Pillon¹, S. Bejaoui¹, E. D’Agata², R. Hania³, N. Herlet¹, A. Jankowiak¹, M. Auclair¹, S. Bendotti¹, T. Lambert¹, B. Valentin¹

¹ CEA, France, ² JRC-IE, the Netherlands, ³ NRG, the Netherlands
SUMMARY

- Introduction: current studies on minor actinides transmutation
- Minor Actinides Bearing Blanket concept – MABB
 Description of the concept
- Outline of development program on MABB
- Phase 1: Fuel selection
- Phase 2: Feasibility – first analytical experiments in MTR (Material test reactor)
- Phase 3: Optimization – semi-integral irradiation projects
- Phase 4: Qualification
- Conclusion
INTRODUCTION: CURRENT STUDIES ON MA TRANSMUTATION

Several options studied for minor actinides transmutation in GEN IV fast reactor or dedicated systems

✓ Homogeneous recycling:
 low amount of MA diluted in standard fuel (< 5 %)

✓ Heterogeneous recycling:
 • Transmutation targets with inert matrix support (MgO, Mo, ZrYO₂, …)
 • MA bearing blanket with UO₂ support – (U, MA)O₂₋ₓ
 • 10 to 20 % MA

✓ Dedicated systems ADS
 • Uranium free fuels
 • Metallic, nitride and oxide fuels: composite (Pu, MA)O₂ – MgO or Mo
 • High TRU content: up to 50 %
INTRODUCTION: CURRENT STUDIES ON MA TRANSMUTATION

Present knowledge

✓ Homogeneous recycling:
 • Several important results:
 SUPERFACT 1 in Phénix
 AM1 in JOYO
 AFC-2.C.D in ATR (on going)

Next step: pin scale and assembly scale demonstrations planned in MONJU in the frame of GACID

✓ Heterogeneous recycling:
 • Transmutation targets with inert matrix support (MgO, Mo, ZrYO₂, …)
 • Wide knowledge: MATINA, ECRIX, CAMIX-COCHIX experiments in Phénix
 very good behavior of MgO-AmO₂ targets

✓ Dedicated systems ADS
 • FUTURIX FTA program in Phénix
 • HELIOS Experiment in HFR
 ➔ First PIE results foreseen in 2011 and 2012

✓ Heterogeneous recycling:
 • MABB: very few data available for this concept
 • Important need of irradiation experiments

Most promising options for MA recycling in future GEN IV SFR reactors
MABB: DESCRIPTION OF THE CONCEPT

MABB concept: (U,MA)O₂ pellets

Incorporating a large amount of MA (10 to 20 w%) irradiated for a long time (4,100 EFPD) in radial blanket on the periphery of the outer core

Use of the substantial neutron flux that escapes from the SFR core to:
– Create Pu by using depleted UO₂ blankets (breeding)
– Burn minor actinides within the blankets (transmutation)

Low impact on the reactor operating parameters and core safety
Multirecycling scenario
Compatible with PUREX type process and the standard flow of spent MOX fuel at the reprocessing plant

Strong radial variation in the neutron flux inside subassembly located in radial blanket ⇒ very different operating conditions for MABB pins in a same subassembly (S/A)
Temperature range between ~500 – 1500°C
MABB : CURRENT STATE OF KNOWLEDGE

High production of He due to transmutation of 241Am
Possible gas swelling for MABB pellets

To homogenize the Burn-Up of the pins of the MABB S/A and the cladding damage

⇒ 180° S/A rotation at mid-life
⇒ Significant temperature transient which can result in additional gas swelling

Simplified assumption of behavior and swelling under irradiation

- $T < T_1$
 - 500 à 700°C
 - He Implantation and annealing tests
 - Low He swelling (He atoms isolated in small size defects)

- $T_1 < T < T_2$
 - Potentially significant He swelling.
 - MABB thermal conditions

- $T_2 < T$
 - 1100 à 1400°C
 - He Implantation and annealing
 - MOX annealing SUPERFACT
 - Low He swelling because of significant release

Potential swelling considering high production of He, moderate T° and operating transients
⇒ Risk of Fuel Cladding Mechanical Interaction (FCMI)
OUTLINE OF DEVELOPMENT PROGRAM

Schematic diagram of the development program for MABB concept:
Description of the main phases to be completed prior to qualifying a MABB S/A in the ASTRID demonstrator around 2040: prerequisite for MABB deployment in industrial-scale reactors

- Implementation of new manufacturing and irradiations means required
- **Rational irradiation program** with respect to the available means
PHASE 1: FUEL SELECTION

Started in 2007: compiling information for MABB pin and assembly specifications
- Operating conditions in future SFRs: pins and S/A calculations
- Various requirements related to frontend (manufacturing, transport and handling)
- and backend (handling, transport and treatment)

⇒ Specifications ➔ to elaborate the preliminary design studies

All available data that can help better understand and model the behavior of MABBS throughout their lifespan is analyzed during PHASE 1

SUPERFACT 1 experiment in Phénix is a useful source of experimental feedback
2 pins with \((U_{0.6}, Am_{0.2}, Np_{0.2})O_{2-x}\) pellets ➔ ➔ ➔ ➔
irradiated 382 EFPD inside the inner core
At relatively high linear power

Thermal simulation:
⇒ Central pellet temperature > 1,500°C during irradiation
Outside the nominal operating condition expected for MABB pellets in an SFR blanket

These high thermal conditions in SUPERFACT 1 pellets led to the full release of He
⇒ Not the case for MABB in normal operating conditions
PHASE 2: FEASIBILITY

To demonstrate the feasibility of the MABB pin concept to achieve the predicted transmutation performance while ensuring safe and reliable operation under all circumstances

At the end of this phase:

– Technological choices for MABB fuel element consolidated
– Reference manufacturing process for MABB pellets defined

Chronological order of this program:

– First series of analytical experiments (separate-effect tests) on MABB samples in available MTR such as OSIRIS, HFR or JHR (soon to be commissioned)

 • Study the behavior of MABB under irradiation (He swelling, gas release) within the temperature range of normal conditions [500 – 1500°C]
 • Correlate the irradiation behavior with MABB manufacturing process to optimize the microstructure

– Second series of ‘semi-integral’ experiment with fuel pellets and cladding

 • Understand the phenomena preventing high transmutation rate
 Mechanical and/or chemical interaction between cladding and MABB, neutron damages to the cladding, internal pressure, gas swelling during normal or incident transient
FIRST ANALYTICAL EXPERIMENTS IN MTR

TWO IRRADIATION EXPERIMENTS:

- **MARIOS** in HFR Petten
- **DIAMINO** in OSIRIS Saclay

Main objectives:

- Rapid acquisition of first data on **He swelling as a function of given temperatures**
- Screening experiment on the impact of **MABB microstructure**

<table>
<thead>
<tr>
<th>COMPOSITION</th>
<th>TARGETED TEMPERATURE (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td>(U,Am)O₂ (15% Am)</td>
<td></td>
</tr>
<tr>
<td>Standard microstructure</td>
<td>X</td>
</tr>
<tr>
<td>Optimised microstructure</td>
<td>X</td>
</tr>
<tr>
<td>(U,Am)O₂ (7.5% Am)</td>
<td></td>
</tr>
<tr>
<td>Standard microstructure</td>
<td>X</td>
</tr>
<tr>
<td>Optimised microstructure</td>
<td>X</td>
</tr>
</tbody>
</table>

Stable, well-controlled and homogeneous temperatures → disc irradiation (with instrumentation)

Two microstructures:

- ‘Standard’ microstructure with a high density (~ 92 % T.D.)
- Optimized microstructure with a lower density (~ 88 % T.D.) and tailored open porosity

+ Test of the conservative effect of the increased He production rate on swelling

Only 241Am: main responsible of the He production

MARIOS
Jan. 2011

DIAMINO
mid 2012

Low He production rate
DIAMINO IN OSIRIS

Mini pin with MABB discs

Sample holder with 6 mini-pins for DIAMINO

MABB disc Ø = 4.5 mm
thickness = 1.5 mm

Mo alloy crucible

MABB disc
W foil
ZrYO₂ thin disc

Radial and axial gas gaps → free swelling of discs

MABB disc fabricated at ATALANTE
FABRICATION OF MABB DICS

FOR MARIOS

Standard microstructure:

14 discs \((U_{0.85},^{241}Am_{0.15})O_{2-x}\)

Fabricated in the ATALANTE Facility

Optimized microstructure with tailored open porosity:

14 discs \((U_{0.85},^{241}Am_{0.15})O_{2-x}\)

Powder metallurgy process
Non organic pore former used for optimized microstructure

X-Ray diffraction analysis ➔ single fluorite-type phase
NEXT STEP: SEMI INTEGRAL IRRADIATION EXPERIMENTS

- Test the whole fuel element: MABB pellets + cladding in a suitable geometry
- Reproduce the different temperatures and the thermal gradient in the fuel
- Study the migration of species, fuel restructuring, oxide-cladding interaction

Where possible irradiation in a fast reactor
Otherwise in MTR with screening of the thermal component of the flux
PHASE 3: OPTIMIZATION

- Optimize the reference concept and improve performance level
- Prepare the finals specification for industrial partners and regulatory reports for the Safety Authority
- Validate modeling for off-normal conditions
- Guarantee control over the process in the pilot facility: reproducible characteristics according to specification

INTEGRAL IRRADIATION EXPERIMENTS:
True geometry of MABB fuel element under representative conditions

Irradiation in the ASTRID prototype reactor
⇒ Special irradiation rig to be designed
Pins fabricated in the ALFA Facility commissioned in ~2025

- Normal operating conditions
- Incidents and accident transients

Code develop to model the behavior of MABB fuel element validated for normal and off-normal conditions
PHASE 4: QUALIFICATION

✓ Demonstrate the manufacturing process on an industrial scale:
 fuel ➔ MABB S/A
✓ Qualify the production line
✓ Confirm the correct behavior of the S/A in incident and accident conditions
✓ Demonstrate core safety

Test of a whole MABB S/A in the ASTRID prototype reactor
In radial blanket position

Qualification ➔ Irradiation performed up to levels exceeding the nominal conditions targeted for this technology

+ Specific monitoring program to be set up for S/A qualification operation
CONCLUSION

Complete development program to study and qualify the MABB concept
From the fuel material to the whole MABB subassembly

First analytical irradiation experiments currently being prepared in HFR
and OSIRIS with European partners JRC- IE and NRG

Fabrication of MABB samples in the hot lab of ATALANTE
With two different microstructures

Beginning of the MARIOS experiment early 2011
and DIAMINO experiment mid-2012

First post-irradiation examinations expected early 2012

Next step: semi-integral irradiation experiments
MABB pellets + cladding → 2013

In parallel: development of a specific code to model the behavior of
MABB fuel element in normal and off-normal conditions
Thank you for your attention