DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI

H. Ohta, T. Ogata, K. Nakamura and T. Koyama
Central Research Institute of Electric Power Industry (CRIEPI)
Metal Fuel FBR & Pyro-process

Innovative fuel cycle system is under development in CRIEPI

U-Pu-Zr Fuel FBR: Excellent nuclear performances & safety features

Pyro-reprocessing: Simultaneous recovery of MA with U and Pu

Injection Casting Fuel Fabrication: Simple remote-control operation

Goals:
- Security of the long-term energy supply,
- Reduction of the amount and the toxicity of radioactive waste,
- Improvement of the proliferation resistance.

LWR Fuel Cycle

- U mining → Enrichment → Fuel Fabrication → LWR → Spent Oxide Fuel → Reprocessing (PUREX) → HLLW (MA, FP)

FBR Metal Fuel Cycle

- U mining → Enrichment → Fuel Fabrication → Reduction to Metal → Pyro-reprocessing → Fuel Fabrication → Metal Fuel FBR → Repository

HLLW: High-Level Liquid Waste
MA: Minor Actinides
FP: Fission Products
RE: Rare Earths

MA-Containing Metal Fuel Development

• How much content of MA should be loaded in metal fuel FBR?

 Evaluation of expected fuel compositions
 Burnup and recycle calculations of MA & RE in metal fuel FBR cycle
 Mass flow analysis based on the future fuel cycle scenario

• How about the effect of MA addition in metal fuel?

 Development of MA- and RE-containing U-Pu-Zr alloys
 Ex-reactor experiments
 Irradiation experiment
 postirradiation examinations
 Characterization of U-Pu-Zr-MA-RE

Various experimental studies on U-Pu-Zr-MA(-RE) alloys are performed in cooperation with JRC-ITU.
MA Burnup Performance in Metal Fuel FBR

Large-scale & high-burnup metal fuel core design is assumed as a model of commercial FBR.

<table>
<thead>
<tr>
<th>Output</th>
<th>1,500MWe / 3,900MWt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core residence time</td>
<td>6years</td>
</tr>
<tr>
<td>Coolant temp.</td>
<td></td>
</tr>
<tr>
<td>inlet / outlet</td>
<td>355 / 510ºC</td>
</tr>
<tr>
<td>Max. cladding temp.</td>
<td>650ºC</td>
</tr>
<tr>
<td>Max. linear power</td>
<td>500W/cm</td>
</tr>
<tr>
<td>Ave. discharge burnup</td>
<td>150GWD/t</td>
</tr>
</tbody>
</table>

Feed compositions and core performance parameters

<table>
<thead>
<tr>
<th></th>
<th>No-MA-makeup</th>
<th>MA-enriched</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA content, wt%</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>RE content 1, wt%</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Pu enrichment, wt%</td>
<td>16.6</td>
<td>16.4</td>
</tr>
<tr>
<td>Makeup MA ratio 2, %</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>Doppler const., Tdk/dT</td>
<td>-2.3×10⁻³</td>
<td>-2.2×10⁻³</td>
</tr>
<tr>
<td>Coolant coeff., Φ/ºC</td>
<td>0.254</td>
<td>0.273</td>
</tr>
</tbody>
</table>

1: D.F. = 10, 2: (MA from LWR) / (MA in FBR fuel)

Transition Scenario from LWRs to FBRs

Assumptions
- 50GWe of LWRs are operated for 50 years before FBR introduction,
- Reactor lifetime is 40 years,
- MA content in the feed is 2 or 5wt%.

Mass Balance of Pu & MA

MA content of 2wt%: MA & Pu are recycled at the almost same time,
5wt%: MA can be consumed in shorter-term.
Mass Flow Evaluation (2)

Transition Scenario from LWRs to FBRs (2)

Assumptions
- 50GWe of LWRs are operated for 75 years before FBR introduction,
- Reactor lifetime is 40 years,
- MA content in the feed is 2wt%.

Mass Balance of Pu & MA

MA content of 2wt%: MA & Pu are balanced.

Miscibilities among U-Pu-Zr-MA-RE

U-Pu-Zr-MA-RE alloys of different compositions were mixed by arc-melting.

→ U-Pu-Zr-MA alloys without RE can be blended homogeneously.

44U-18Pu-10Zr-9Np-5Am-3Ce-10Nd (wt%)

U-Pu-Zr-Np phase

Pu-Am-RE phase

In the alloys of high RE content, → Matrix segregates into upper and lower parts.

39U-22Pu-12Zr-15Np-10Am-0.6Ce-1.8Nd

Pu-Am-RE precipitates

U-Pu-Zr-Np phase

In the alloys of low RE content (≤5%), → RE-rich precipitates were uniformly dispersed.

RE ≤ 5% can be mixed in U-Pu-Zr-MA matrix.

Phase Structures of annealed U-Pu-Zr-MA-RE

U-Pu-Zr-MA-RE alloys were annealed and quenched.

Metallography of U-Pu-Zr-2MA-2RE.

Matrix phase

- ≤ 600°C: Two phase structures
 - \(\zeta + \delta\) at 500°C
 - \(\gamma + \delta\) (or \(\zeta + \delta\)) at 600°C
- ≥ 700°C: Single \(\gamma\)-phase

Am & RE-rich precipitates
- Uniformly dispersing
- Cohesion at grain boundary
 - (≥700°C)
- ~3µm (-2MA-2RE),
- ≥10µm (-5MA-5RE)

Metallography of U-Pu-Zr-5MA-5RE.
Phase transition temperature

Phase transition temperature of U-Pu-Zr(-MA-RE) were measured by dilatometry method.

Dilatometric curves

(a) U-Pu-Zr-2MA-2RE

\[\zeta + \delta \leftrightarrow \gamma + \delta \]
\[\gamma + \delta \leftrightarrow \gamma \]

(b) U-Pu-Zr-5MA-5RE

\[\zeta + \delta \leftrightarrow \gamma + \delta \]
\[\gamma + \delta \leftrightarrow \gamma \]

(c) U-Pu-Zr

\[\zeta + \delta \leftrightarrow \gamma + \delta \]
\[\sim 630^\circ C \quad \gamma + \delta \leftrightarrow \gamma \]
\[\sim 580^\circ C \quad \zeta + \delta \leftrightarrow \gamma + \delta \]

For all samples,

two distinctive phase transition temperatures at \(\sim 580^\circ C \) & \(\sim 630^\circ C \)

→ Insignificant influence of MA and RE addition up to 5wt%
Other properties

<table>
<thead>
<tr>
<th></th>
<th>U-19Pu-10Zr-5MA-5RE</th>
<th>U-19Pu-10Zr</th>
<th>Reported U-19Pu-10Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point [°C]</td>
<td>1207±10</td>
<td>1217±10</td>
<td>1214±75 [2]</td>
</tr>
<tr>
<td>Elasticity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young’s modulus [GPa]</td>
<td>93.31</td>
<td>85.22</td>
<td></td>
</tr>
<tr>
<td>Shear modulus [GPa]</td>
<td>35.39</td>
<td>32.65</td>
<td></td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.32</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Compatibility with SS *</td>
<td>920-960</td>
<td>970-990</td>
<td></td>
</tr>
</tbody>
</table>

*: Metallurgical reaction temperature between the alloy and stainless steel.

Thermal conductivity

Influence of MA and RE addition ≤ 5wt% is not significant.

Fabrication of MA-containing Metal Fuel

Fuel Fabrication:
U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA,
U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr
MA=60Np-30Am-10Cm, RE=10Y-10Ce-70Nd-10Gd.

<table>
<thead>
<tr>
<th>Fuel Rod diameter</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U-19Pu-10Zr-2MA-2RE</td>
</tr>
<tr>
<td></td>
<td>U-19Pu-10Zr-5MA-5RE</td>
</tr>
<tr>
<td></td>
<td>U-19Pu-10Zr-5MA</td>
</tr>
<tr>
<td></td>
<td>U-19Pu-10Zr</td>
</tr>
<tr>
<td>4.9 mm</td>
<td>14.73 g/cm³</td>
</tr>
<tr>
<td>20-50 mm</td>
<td>14.66 g/cm³</td>
</tr>
<tr>
<td></td>
<td>15.31 g/cm³</td>
</tr>
<tr>
<td></td>
<td>15.77 g/cm³*</td>
</tr>
</tbody>
</table>

*: Reported value =15.8 g/cm³, J.H.Kittel, et al., N.E.D. 15 (1971)
MA-containing alloys were irradiated in Phénix. 3 metal fuel pins & 16 oxide fuel pins were arranged in an capsule.

- Pin No.1 : U-19Pu-10Zr
- Pin No.2 : U-19Pu-10Zr-2MA-2RE
- Pin No.3 : U-19Pu-10Zr-5MA / -5MA-5RE

Cladding material : 15-15Ti

Burnup goals ~2.5at.% (METAPHIX-1), ~ 7at.% (METAPHIX-2), ~10at.% (METAPHIX-3).

Schematic views of irradiated fuel pins.

Fuel pin arrangement in irradiation capsule.

- Irradiation experiments were carried out from Dec. 2003 to May 2008 in Phénix.
- After cooling, NDT were carried out.
 No excessive damage due to neutron irradiation was observed.
- Irradiated fuel pins are transported to ITU for nondestructive & destructive PIE.
- After the PIE, pyro-reprocessing experiment is planned.
Irradiation Conditions

Irradiation parameters were analyzed taking account of the operation diagram of the Phénix reactor.

Projected Irradiation Conditions for METAPHIX Experiment

<table>
<thead>
<tr>
<th></th>
<th>Pin No.1 U-19Pu-10Zr</th>
<th>Pin No.2 U-19Pu-10Zr +2MA +2RE</th>
<th>Pin No.3(lower) U-19Pu-10Zr +5MA</th>
<th>Pin No.3(upper) U-19Pu-10Zr +5MA +5RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin of Irradiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Linear Power (^1) [W/cm]</td>
<td>350</td>
<td>327</td>
<td>343</td>
<td>332</td>
</tr>
<tr>
<td>Max. Cladding Temp. (^2) [°C]</td>
<td>581</td>
<td>581</td>
<td>581</td>
<td>←</td>
</tr>
<tr>
<td>End of METAPHIX-1 (120EFPD (^3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Linear Power (^1) [W/cm]</td>
<td>330</td>
<td>308</td>
<td>325</td>
<td>313</td>
</tr>
<tr>
<td>Max. Cladding Temp. (^2) [°C]</td>
<td>572</td>
<td>572</td>
<td>572</td>
<td>←</td>
</tr>
<tr>
<td>Max. Burnup [at.%]</td>
<td>2.4</td>
<td>2.5</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>End of METAPHIX-2 (360EFPD (^3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Linear Power (^1) [W/cm]</td>
<td>295</td>
<td>276</td>
<td>294</td>
<td>282</td>
</tr>
<tr>
<td>Max. Cladding Temp. (^2) [°C]</td>
<td>556</td>
<td>556</td>
<td>556</td>
<td>←</td>
</tr>
<tr>
<td>Max. Burnup [at.%]</td>
<td>6.9</td>
<td>7.1</td>
<td>7.0</td>
<td>7.5</td>
</tr>
<tr>
<td>End of METAPHIX-3 (900EFPD (^3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Linear Power (^1) [W/cm]</td>
<td>268</td>
<td>251</td>
<td>269</td>
<td>256</td>
</tr>
<tr>
<td>Max. Cladding Temp. (^2) [°C]</td>
<td>543</td>
<td>543</td>
<td>543</td>
<td>←</td>
</tr>
<tr>
<td>Max. Burnup [at.%]</td>
<td>10.9</td>
<td>11.2</td>
<td>11.2</td>
<td>11.9</td>
</tr>
</tbody>
</table>

\(^1\): Top of the test alloy, \(^2\): Top of the fuel stack, \(^3\): EFPD=Effective Full Power Days.

Three concentric regions are formed.
$\gamma \leftrightarrow \gamma + \zeta \leftrightarrow \zeta + \delta$
(center) \hspace{1cm} (periphery)

Two concentric regions are formed. (γ-phase is not observed.)
\rightarrow Irradiation temperature $< 630^\circ C$
Matrix morphology is similar to that of U-Pu-Zr fuel (b). Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in the $\gamma + \zeta$ zone. In low-temperature region, some dark spots (MA and RE inclusions) are visible.
Matrix morphology is similar to that of U-Pu-Zr fuel (a). Large precipitates (MA and RE inclusions) appear in γ phase zone. Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in γ+ζ zone. In low-temperature region, small dark spots (MA and RE inclusions) are observed.
Characteristics of Irradiated MA-Containing Metal Fuel

1. The radial distribution of fuel matrix morphology is similar to that of U-Pu-Zr ternary fuels.

2. Some large precipitates (MA and RE inclusions) appear in the high-temperature phase.

3. In the dense matrix zone, some narrow layered phases (MA and RE inclusions) spread along grain boundaries.

4. In low-temperature region, some dark spots (MA and RE inclusions) are visible.
Mass flow of Pu and MA was analyzed for future LWR-FBR transition scenario. MA content in the FBR fuel was estimated to be 2wt%. With using 5wt% MA content fuel, MAs recycling from LWRs can be accelerated for several decades.

Relevant characteristics of U-Pu-Zr-MA-RE were examined. In the case of ≤5wt% MA and ≤5wt% RE additions,
- Am-RE-rich precipitates are dispersed almost uniformly in the alloy,
- Basic properties are practically unchanged.

MA-containing U-Pu-Zr alloys were irradiated in Phénix.
- Compositions: U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA(-5RE)
- Peak burnups: ~2.5at.%, ~7at.% and ~10at.%.

NDT of the METAPHIX-1, -2 & -3 pins
- No critical damage had occurred during irradiation.

Metallography of METAPHIX-1
- Matrix structure is similar to that of U-Pu-Zr fuels.
- Large precipitates appear in γ-phase zone.
- Some layered phase spread along grain boundaries in γ+ζ phase region.

Quantitative analyses are being carried out.
- Fuel constituent redistribution,
- MA transmutation performance

Thank you for your attention!!
Compositions of Metal Fuel Alloys

4 types of metal fuel alloy were prepared.

Average Compositions of Fabricated Metal Fuel Alloys [wt%]

<table>
<thead>
<tr>
<th>Target</th>
<th>71U-19Pu-10Zr</th>
<th>67U-19Pu-10Zr +2MA+2RE</th>
<th>66U-19Pu-10Zr +5MA</th>
<th>61U-19Pu-10Zr +5MA+5RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>71.00</td>
<td>66.85</td>
<td>66.30</td>
<td>63.50</td>
</tr>
<tr>
<td>Pu</td>
<td>18.93</td>
<td>19.80</td>
<td>19.35</td>
<td>19.75</td>
</tr>
<tr>
<td>Zr</td>
<td>10.19</td>
<td>9.46</td>
<td>8.97</td>
<td>8.19</td>
</tr>
<tr>
<td>MA</td>
<td>0.03</td>
<td>2.08</td>
<td>4.74</td>
<td>4.78</td>
</tr>
<tr>
<td>Np</td>
<td>-</td>
<td>1.23</td>
<td>2.97</td>
<td>3.04</td>
</tr>
<tr>
<td>Am</td>
<td>0.03</td>
<td>0.67</td>
<td>1.45</td>
<td>1.52</td>
</tr>
<tr>
<td>Cm</td>
<td>-</td>
<td>0.18</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>RE</td>
<td>-</td>
<td>1.73</td>
<td>-</td>
<td>3.40</td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
<td>0.12</td>
<td>-</td>
<td>0.31</td>
</tr>
<tr>
<td>Ce</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>0.45</td>
</tr>
<tr>
<td>Nd</td>
<td>-</td>
<td>1.25</td>
<td>-</td>
<td>2.30</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>0.16</td>
<td>-</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Impurities < 0.3wt%
Specifications of Metal Fuel Pins

Fuel pins were manufactured according to Phénix geometry.

Fuel Pin Specifications in this Irradiation Experiments

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin length [mm]</td>
<td>1,793</td>
</tr>
<tr>
<td>Outer cladding diameter [mm]</td>
<td>6.55</td>
</tr>
<tr>
<td>Cladding material</td>
<td>15-15 Ti</td>
</tr>
<tr>
<td>Fuel length [mm]</td>
<td>485</td>
</tr>
<tr>
<td>Fuel diameter [mm]</td>
<td>4.9</td>
</tr>
<tr>
<td>Initial fuel-cladding gap [mm]</td>
<td>0.375</td>
</tr>
<tr>
<td>Fuel smear density [%]</td>
<td>75.2</td>
</tr>
<tr>
<td>Sodium level above fuel* [mm]</td>
<td>~10</td>
</tr>
<tr>
<td>Plenum length [mm]</td>
<td>464</td>
</tr>
</tbody>
</table>

* : Sodium is filled into fuel-cladding gap as thermal bonding.
Axial Swelling of Fuel alloy

Fuel stack position was estimated by axial gamma-ray distribution from 106Ru.

Fuel elongation behavior is independent of MA and RE additions. Axial swelling of METAPHIX fuels is within the range of the prediction.
FP gas release fraction of MA & RE-containing fuel pins is the same level as that of U-Pu-Zr alloy fuel pins, and consistent with EBR-II ternary test fuel data.

Matrix morphology is similar to that of U-Pu-Zr fuel (b). Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in $\gamma + \zeta$ zone. In low-temperature region, small dark spots (MA and RE inclusions) are dispersed.
Irradiation Behavior Analysis

-Fuel Temperature Distribution-

420°C < Temp. < 685°C

Fig. Evaluated irradiation temperature for METAPHIX-1 fuel pin at EOI (Pin No.1: U-19Pu-10Zr).
Discussion - Irradiation Temperature -

Fig. Relative γ-ray intensity emitted from 106Ru and axial power profile of Pin No. 1

Analyzed Linear Power ~275 W/cm (by 104Nd method)

- Linear Power [W/cm]
- Relative γ-ray intensity from 106Ru
- Evaluated Linear Power
- Uncertainty width of Linear Power

Axial position of fuel stack [mm]

Discussion - Irradiation Temperature -

Due to the uncertainty of linear power,

- Temperature fluctuation for each fuel rod reaches ~20°C at the fuel center,
 → Irradiation temperature at higher axial level can be lower than that at lower level,

- The highest temperature can be ~660°C.
 → High-temperature γ-phase appears at only limited fuel rods.

Fig. Evaluated irradiation temperature for METAPHIX-1 fuel pins, taking account of the uncertainties of linear power.