Design, development and qualification of advanced fuels for an industrial ADS prototype

OUTLINE:
• Objectives & Background
 • Addressed topics
 • Some results:
 Core configuration and performances
 Thermomechanical behaviour of the pins
 FUTURIX-FTA, HELIOS, BODEX tests
 Thermo-chemical compatibility tests
 • Conclusion
Objectives & background for fuel developments

• Objectives:
 - Ranking of fuel concepts according to in-pile behaviour, out-of-pile properties, predicted behaviour in normal operating conditions and safety performance.
 - Recommendations for the most promising fuel.

• Background:
 - Emphasis in Europe on oxide-based fuels
 - CERCER (Pu, MA)O$_2$ + MgO and CERMET (Pu, MA)O$_2$ + 92Mo
 - First development in the frame of the FP5 - FUTURE program: best candidates according to performance, safety and fabricability criteria, synthesis of oxide compounds, out-of-pile characterisation.
 - Strong synergy with transmutation target programs
 - Large industrial experience on oxide fuel fabrication for critical reactors
 - Nitride-based fuels: (Pu,MA,Zr)N
 - Development in the frame of the FP5 - CONFIRM program: (Am,Zr)N synthesis, irradiation of (Pu,Zr)N pellets in HFR, out-of-pile measurements
 - Development by JAEA

backup solution

reference fuels
Topics addressed within the project

• **TRU-fuel design and performance assessment:**
 – Neutronic design of CERCER and CERMET cores
 – Neutronic and thermo-mechanical behaviour from BOL to EOL

• **Safety Analysis:** transients conditions (ULOF, UTOP, …) and accidents

• **In-pile experiments:**
 – PIE on an irradiated CONFIRM pin: (Pu,Zr)N fuel
 – FUTURIX-FTA test in PHENIX
 – HELIOS test in HFR
 – BODEX test in HFR and Post Irradiation Examinations

• **Out of pile experiments:**
 – Thermal and mechanical properties of CERMET, CERCER fuels
 – Chemical compatibility: fuels/clad, fuels/coolant, TRU compounds/Inert Matrices
 – Oxygen potential measurements
 – Phase diagrams: Pu-Am-O, Pu-Am-Zr-O
92Mo-CERMET core configuration and performances

EFIT design specifications:
• 400MWth
• proton beam: 800MeV - 20mA
• Pb target: 11MW - Φ 782mm
• $k_{\text{eff}} \approx 0.97$
• fuel vector
• inlet-outlet Pb T°: 400-480°C
• clad and wrapper: T91
• efficiency: ~42kg MA/TWh$_{th}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inner</th>
<th>Medium</th>
<th>Outer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly number</td>
<td>42</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Wrapper inner width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin number/assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clad outer diameter (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel pellet diameter (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel/clad gap (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel/matrix ratio</td>
<td>35/65</td>
<td>43/57</td>
<td>50/50</td>
</tr>
<tr>
<td>Pu/MA ratio</td>
<td>45/54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. fuel power density (W.cm$^{-3}$)</td>
<td>270</td>
<td>262</td>
<td>211</td>
</tr>
<tr>
<td>Peak pellet linear power (W.cm$^{-1}$)</td>
<td>190</td>
<td>172</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k_{eff}</th>
<th>k_{source}</th>
<th>Void worth</th>
<th>Beta eff.</th>
<th>Doppler Contant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97336</td>
<td>0.93337</td>
<td>7335 pcm</td>
<td>192 pcm</td>
<td>-68 pcm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial mass (kg)</th>
<th>Variation (3 year cycle + 3 year cooling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>3610</td>
</tr>
<tr>
<td>Pu</td>
<td>3055</td>
</tr>
<tr>
<td>Total</td>
<td>6665</td>
</tr>
</tbody>
</table>
Thermo-mechanical behaviour at BOL

- fuel, clad and coolant temperatures for the hottest pin in the inner zone
 - 24 hours after start:

- CERCER fuel (T_{limit}: 1860°C)
- CERMET fuel (T_{limit}: 2180°C)
- T_{clad} (T_{limit}: 550°C)
- T_{coolant}
FUTURIX-FTA test in PHENIX

- In-pile behaviour comparison of 3 fuel types: oxide, nitride, metallic
- Collaboration DOE-JAEA-ITU-CEA
- CERMET and CERCER studies under EUROTRANS project

<table>
<thead>
<tr>
<th>Fuel composition</th>
<th>Max. linear power (W/cm)</th>
<th>T° max. estimated (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Pu}{0.80}\text{Am}{0.20}\text{O}_{2-x} + 86 \text{ vol}%\text{Mo}$</td>
<td>140</td>
<td>1590</td>
</tr>
<tr>
<td>$\text{Pu}{0.23}\text{Am}{0.24}\text{Zr}{0.53}\text{O}{2-x} + 60 \text{ vol}%\text{Mo}$</td>
<td>130</td>
<td>1510</td>
</tr>
<tr>
<td>$\text{Pu}{0.5}\text{Am}{0.5}\text{O}_{2-x} + 80 \text{ vol}%\text{MgO}$</td>
<td>100</td>
<td>1420</td>
</tr>
<tr>
<td>$\text{Pu}{0.8}\text{Am}{0.2}\text{O}_{2-x} + 75 \text{ vol}%\text{MgO}$</td>
<td>80</td>
<td>1260</td>
</tr>
</tbody>
</table>

CERCER and CERMET fuels in pile since may 2007 for ~240 EFPD
- CERCER: 5th ring. Flux: 4.4×10^{15} n.cm$^{-2}$s$^{-1}$
- CERMET: 1st ring. Flux: 3.2×10^{15} n.cm$^{-2}$s$^{-1}$

Sept. 08: 153 EFPD achieved
HELIOS test in HFR

- Influence of microstructure and temperature on gas release and fuel swelling.

<table>
<thead>
<tr>
<th>Fuel composition</th>
<th>T° max. estimated (°C) (Ne+He in gap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Am}_2\text{Zr}_2\text{O}_7 + 80 \text{ vol} % \text{MgO}$</td>
<td>800</td>
</tr>
<tr>
<td>$\text{Zr}{0.80} \text{Y}{0.13} \text{Am}{0.07} \text{O}{2-x}$</td>
<td>720</td>
</tr>
<tr>
<td>$\text{Pu}{0.04} \text{Am}{0.07} \text{Zr}{0.76} \text{Y}{0.13} \text{O}_{2-x}$</td>
<td>1470</td>
</tr>
<tr>
<td>$\text{Am}{0.22} \text{Zr}{0.67} \text{Y}{0.11} \text{O}{2-x} + 71 \text{ vol} % \text{Mo}$</td>
<td>750</td>
</tr>
<tr>
<td>$\text{Pu}{0.80} \text{Am}{0.20} \text{O}_{2-x} + 84 \text{ vol} % \text{Mo}$</td>
<td>1240</td>
</tr>
</tbody>
</table>

Beginning of the irradiation expected by Nov. 08 for 200 EFPD

0.7g Am/cm³

F. Delage

10-IEMPT
CERCER and CERMET fabrication processes

ITU flowsheet / CERMET:

- Pu, Zr Nitrate Solution
- Droplet to Particle Conversion
- Pu$_x$Zr$_{1-x}$O$_{2.4}$ Microspheres
- Calcination 800°C, air, 2 h
- Actinide Solution
- Solution Infiltration
- Thermal Treatment 800°C
- Actinide Content Gravimetric control
- Metal Powder Mo
- Mixing
- Pressing
- Sintering

CEA flowsheet / CERCER:

- Pu nitrate
- Am nitrate
- H$_2$C$_2$O$_4$
- H$_2$O
- Calcination
- Pu$_x$Am$_y$O$_2$
- calcined MgO
- Molding/grinding
- sieving
- pressing
- Sintering
BODEX test in HFR

- Study of helium build-up and release mechanism study on inert matrices

- ^{10}B surrogate of ^{241}Am to simulate He production: $\frac{10}{5}\text{B} + \frac{1}{0}\text{n} \rightarrow \frac{7}{3}\text{Li} + \frac{4}{2}\alpha$

- Advantages: no Am handling & short irradiation time (~1-2 months)

✓ 3 matrices: Mo, MgO, ZrO$_2$	✓ 2 T$^\circ$: 800-1200$^\circ$C	✓ 1.5 mmole B/cm3
✓ 3 boron compounds: Mo$_2$B / Mo	ZrB$_2$ / ZrO$_2$	Mg$_3$B$_2$O$_6$ / MgO
60-70MPa, 1600$^\circ$C / 5h / Ar, D: 97%	600MPa, 1600$^\circ$C / 5h / Ar, D: 92%	800MPa, 1300$^\circ$C / 5h / Ar, D: 78%

✓ 2x3 capsules: 3 pellets doped with ^{10}B + 1 pellet doped with ^{11}B + 1 undoped pellet

Irradiation achieved – PIE on-going

F. Delage

10-IEMPT
TRU-oxides/Inert Matrices compatibility tests

- **Experimental grid:**
 - powder blend
 - 1800K or 1300K - 2x24 h
 - Air/Ar/Ar-H₂ 5%
 - XRD analysis:

<table>
<thead>
<tr>
<th>Atm</th>
<th>PuO₂+MgO</th>
<th>AmO₂+MgO</th>
<th>PuO₂+Mo</th>
<th>AmO₂+Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>MgO PuO₂</td>
<td>AmO₂ MgO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>MgO PuO₂</td>
<td>Am₂O₃ h & c AmO₂₋ₓ c MgO Other peaks</td>
<td>PuO₂ Mo</td>
<td>Mo Am-Mo-O m?</td>
</tr>
<tr>
<td>Ar/H₂ 5%</td>
<td>PuO₂ MgO</td>
<td>Am₂O₃ h & c MgO</td>
<td>PuO₂₋ₓ c Mo</td>
<td>Am₂O₃ h Mo</td>
</tr>
</tbody>
</table>

[Belin & al., ARWIF 2008]

- no reaction between PuO₂ and Inert Matrices
- minor interactions between AmO₂ and Inert Matrices
Conclusion

• Major results:
 – Reference designs of 92Mo-CERMET and MgO-CERCER Cores:
 • $\text{MA/(Pu+MA)} \sim 54\%$ - MgO and Mo content $\geq 50\%$
 • transmutation efficiency (1st cycle): 42 kg MA/TWhth - $\Delta \text{Pu} \sim 0$
 • safety under analysis
 – CERCER and CERMET fabrication (20%Am) demonstrated at lab. scale
 – Thermal properties of CERCER, CERMET fuels and (Pu,MA)O$_2$ phases: accurate and reliable data available
 – In-pile fuel behaviour investigation on-going
 – Fuel thermomechanical behaviour modeling under development

• Additional information:
 – Fernandez-Carretero et al. (Oct.8 – 9:00): fuel fabrication
 – Maschek et al. (Oct. 9 – 14:15): Core design and safety analysis
 – Chen et al. (Poster - section IV): Safety studies on the EFIT with CERMET fuel