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ABSTRACT

One possible strategy for eliminating the long-term potential hazards associated with the storage of
vitrified high level waste produced by the reprocessing of irradiated nuclear fuels, is the transmutation of the
long-lived radionuclides in these wastes into short-lived radionuclides by nuclear means, which requires the
prior chemical separation of these long-lived radionuclides from the nuclear waste mixture. To do this, the
French CEA launched the SPIN (SEPARATION-INCINERATION) research programme in 1991, under the
law passed by the parliament on 30 december 1991.

Research currently under way to develop separation processes for some long-lived radionuclides concerns
modifications of the PUREX process, and the development of new solvent extraction processes. The research
directions are briefly summarized here.

PUREX process.

Modifications of the operating parameters of the PUREX process can certainly help to separate some
long-lived radionuclides like 237Np and *°Tc.

New processes :

Minor actinide separation processe:. The st-ategy for these separations is based cither on the extraction of
the minor actinides from their stable oxidation states in aqueous nitric acid media (common in the reprocessing
industry), or, especially for americium, after oxidation to high oxidation states. This research includes :
° Minor actinide co-extraction using the DIAMEX process ; ° An(IIl)/Ln(Ill) separation ; °Am selective
separation after its oxidation to Am(IV) or Am(VI).

Cesium extraction process using calixarenes extractants.

This lecture will focus on the latest developments in these research areas.
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1. INTRODUCTION

Nuclear-generated electricity accounts for about 17 % of all the electricity produced worldwide. This
industry is faced today with a problem of managing the wastes, which is considered acute by public opinion in
the different nuclear countries and, in general, by world public opinion. Depending on national policy, these
wastes consist either of irradiated fuels, in which case the energy materials (uranium and plutonium) are
considered as wastes, or of the mixture of fission products, minor actinides and activation products resulting
from the reprocessing of the fuels to recover the uranium and plutonium for recycling. To simplify and to lower
the cost of the treatment and conditioning of spent fuel reprocessing wastes, and perhaps also to improve the
public acceptance of nuclear power, considerable efforts have been mounted, with the aim of decreasing the
unit volume of solid wastes (per ton of fuel reprocessed), particularly those intended for disposal in deep
geological repositories. In this field, COGEMA has emerged as the prime mover of this strategy. At the
reprocessing plants in La Hague, the unit volume of solid wastes generated in reprocessing operations, which
justify deep geological disposal, is around 1.5 m3/t today, or about half of the volume initially defined in the
process book. Following modifications to the PUREX process and the application of new processes, this unit
volume is due to decrease drastically by the end of the century, when it should be around 0.465 m3/t [1]. The
single distinguishing feature of nuclear waste management is their extreme danger, which, depending in
particular on the nuclear properties of the radionuclides that they contain, may be spread over considerable
periods of time. Faced with the growing opposition of public opinion to very long-term radwaste disposal
techniques and the difficulty of the scientists to predict the behavior of the geological barriers for periods
exceeding one hundred thousand or even one million years, it has become necessary to study and propose some
technical solutions to this problem. .

The separation and incineration of long-lived radionuclides by nuclear means, which lies at the source
of the problem, in order to convert them to short-lived radionuclides, exhibiting higher activity, but which can
feasibly be stored over a short period of time, is considered one possible solution to the problem. The situation
is regarded with extreme caution in France, where more than 75 % of the electricity consumed is nuclear-
generated. A law was accordingly passed by the French Parliament on 30 December 1991, ordering research to
be conducted over a fifteen-year period, aimed in particular to determine the experimental conditions for the
conversion of certain long-lived radionuclides present in the nuclear fuels to short-lived radionuclides by
nuclear means. In this connection, the CEA launched the SPIN (SéParation/INcinération) program for the
definition of long-lived radionuclide separation processes and for their destruction, chiefly by fast-neutron
reactors [2]. This “intensive reprocessing” strategy is also being investigated in Japan, which launched the
OMEGA program in 1988 [3], with objectives similar to those of the SPIN program.

This paper describes the main research guidelines selected at the CEA, aimed at the separation of long-
lived radionuclides, and the latest experimental results obtained are briefly described.

382



2. PROBLEM ANALYSIS AND RESEARCH OBJECTIVES

The high-level wastes generated by irradiated fuel reprocessing, and intended for disposal in deep
geologival repusitories, today incluce shoti- aud jong-lived radiciclides neiorging i fasuilies of fission
products, minor actinides and activation products. It is universally acknowledged iiiat the half-life identifying
the borderline between short- and long-lived radionuclides is thirty years (half-life of 137Cs). In fact, it is
considered possible to develop safe disposal methods for periods of up to three centuries, or ten times the
“borderline” period, the time necessary for the "total” decay of the short-lived radionuclides. After three
centuries, the radionuclides which subsist in the stored wastes, particularly in the most active among them
(nuclear glasses) will be the long-lived radionuclides. For the UOx reference fuel, irradiated to a burnup of
33 GWd/t and cooled for three years, Table 1 lists the long-lived radionuclides present, their abundance and
some of their nuclear and radiotoxicological properties [4].

A glance at the data in Table 1 shows that the potential hazard of long-lived radionuclides is chiefly due
to the minor actinides, and particularly the americium isotopes. This situation prevails for several tens of
thousands of years. Consequently, efforts to develop separation methods will mainly concern the minor
actinides, and especially americium. However, another way to tackle the problem is to consider the residual
toxicity at the outlet of the geological formations where the nuclear wastes may be stored. This is currently
being examined, particularly as part of the European exercice called PAGIS [5]. In this case, the doses
delivered to the population in the neighborhood of the disposal site, although considerably lower than the
standards currently in force, are mainly due to certain fission products, whose migration rates, with the water
vector in the subsoil, are much greater than those of actinides. In consequence, a part of the research efforts is
also focused on the separation of certain fission products, particularly technettum and cesium. Since long-lived
radionuclides were also certainly not completely destroyed during a nuclear incineration cycle, it is also
essential to guarantee the “reprocessability” of the targets or nuclear fuels which will contain these materials.
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Table 1. Main characteristics of the long-lived radionuclides present in an irradiated fuel (UOx type
fuel ; burn-up : 33 GWd/t ; cooling time : 3 years) '

Radio- 2 Abondance Specific Dose factor Isotopic Total
nuclide activity for ingestion % element
(years) (g/tg.m) (Ba/®) (Sv/Bq) (gtp.Mm.)
Fission products
l4C 5.7 103 0.13 1.05 101! 5.710°10 100 0.13
798e 6.5 104 4.7 2.58 109 2.310° 8.6 54.6
NBzr 1.5 106 714 9.3 107 4.2 1010 20.5 3617
99Tc 2.110° 814 6.3 108 3.4 1010 100 814
107pq 6.5 106 200 1.9 107 3.71011 16.1 1240
1265 1.0 105 20.3 1.0 10° 5.110° 39.8 51
1291 1.6 107 169 6.5 108 24108 81.2 208
135Cs 2.3 108 1312 4.2 107 1.9 1079 372 3521
Minor actinides
237Np 2.110° 434 2.6 107 1.0 10% 100 434
24lAm 43102 217 1.3 1011 1.2 10% 66.8 325
243Am 7.4 103 102 7.4 10° 1.2 10% 31.4 325
245Cm 8.5103 1.2 6.3 10° 1.2 10% 4.7 25.5
Activation products
S9Ni 7.5 104 36.1 3.0 109 5.4 10711 - 36.1
63Ni 1.0 102 6.6 2.11012 1.51010 - 6.6
94Nb 2.0 104 4 6.9 10° 1.4 10° - 4

The objectives of separative chemistry research connected with the SPIN program are listed in Table 2.

Table 2. Research objectives in separation processes [6]

Nature of the objectives Importance
° Am separation (99 %) Very important
© Ability for reprocessing
° MOx (LWR, FNR) Very important
° Am targets (FNR 7) Very important
° Cm, Pu, Np separation (99 %) Important
° Ability for reprocessing
° Fuels with Np (FNR ?) Important
° Cm targets (FNR ?) Important
° Long-lived F.P. separation Secondary
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3. SEPARATION OF LONG-LIVED RADIONUCLIDES

3.1. Strategy

Before presenting the strategic guidelines concerning the separative methods to be developed for some
of the long-lived radionuclides mentioned above, it is essential to review the behavior of these materials in
current nuclear fuel reprocessing operations. Table 3 presents this information for the specific case of
COGEMA's UP3 plant at La Hague.

Table 3. Behavior of some long-lived radionuclides at COGEMA's UP3 plant at La Hague [4]

Long-lived radionuclide Behavior

Minor actinides

237Np ° 70 to 90 % extracted in the first U+Pu
co-extraction cycle
°  Np extracted separated in second U cycle
°  All the Np is finally mixed with FP

241, 2437 ° Not extracted, remains with FP
245¢cm ’
239 to 242p, ©0.12 % of losses with wastes

Fission products

99Tc °  ~30 % of Tc is insoluble in fuel dissolution
°  Soluble Tc is co-extracted with Zr(IV) and
then Pu(1V) (and U(V])) in the first U+Pu co-
extraction cycle, and then separated by special
washing and mixing with FP

135¢s ° Not extracted, remains with FP

In consequence, the separation strategies adopted are divided into two categories.

* Definition of operating conditions of the PUREX process (in the broad sense of the term) for the
separation of some long-lived radionuclides. This strategy concerns 2:"-"Np and 99Tc. It could also be
applied to 93Zr and 12%1.

* Definition of specific separation processes. This concerns 241,243 Am, 245Cm and 135¢s.
Due to its outstanding ability to solve separation problems in the nuclear industry, all the processes
investigated are based on liquid/liquid extraction. For the difficult separation of americium and curium, the

process being investigated has several cycles involving different extractants, whereas cesium can be separated
using a single extractant.
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3.2. Separation of long-lived radionuclides using the PUREX process

23'Np

As stated above, most of the neptunium is extracted in the first U+Pu co-extraction cycle (1CUPu)
applied at the UP3 plant in La Hague, and this fraction of extracted neptunium is mainly separated in the
second uranium purification cycle (2CU). Hence the current research objective is to determine the
physicochemical conditions of the PUREX process required to boost the neptunium extraction yield in 1CUPu.
Two types of study are undertaken in this program : consolidation of the PAREX code used to predict the
behavior of neptunium in the different steps of the PUREX process, and especially in the 1CUPu and 2CU
cycles, and experimental investigations, in the laboratory, aimed to consolidate the knowledge of the redox
reactions between the Np(V)/Np(VI) and HNO,/HNO3 pairs, and, in a test loop, to qualify the PAREX code
for the behavior of neptunium. One may well ask why new studies appear necessary for the new objective,
whereas the behavior of neptunium in the PUREX process has been investigated for many years. The answer is
that the objectives previously assigned were chiefly aimed to prevent the uranium and plutonium end products
from being polluted by neptunium, so that only an "overall" knowledge of neptunium behavior was then
necessary, whereas the new objective implies a much closer understanding of this behavior.

The equation of the basic reaction allowing a "rough" interpretation of neptunium behavior in 1CUPu is
the oxidation of Np(V) to Np(VI) by nitric acid, a reversible reaction catalysed by nitrous acid produced by
reaction.

NpO2* +3/2H* +1/2NO3~ <« NpO22* +1/2HNO2 +1/2H20 (1)

This reaction, which has been investigated for many years by Siddall and Dukes {7], Swanson [8] and
Moulin [9], does not yet appear to have revealed all its aspects. One unanswered question is its kinetics in the
presence of highly concentrated uranyl nitrate and of the solvent. ’

Valid methods nevertheless appear to be developing : increasing the temperature and the nitric acidity
during extraction in 1CUPu should help to achieve the objective of quantitative neptunium extraction in
1CUPu without requiring the addition of a special reagent to oxidize the Np(V). This also represents the
analysis of Yamana [10].

9Tec

The behavior of technetium present in the fuel dissolution liquor (which accounts for about two-thirds of
the Tc inventory of irradiated fuel) is unusual (in comparison with the other metallic species) during the
operations of the PUREX process. The technetium exists in solution in oxidation state VII, in the form of the
TcOy4 ion. In this form, Tc(VII) is co-extracted with Zr(IV) (Tc(VII) playing an identical role to that of the
nitrate anions), and then with Pu(IV) and U(VI) after washing of the Zr(IV) contained in the solvent. It is then
possible to transfer Tc(VII) to the aqueous phase by washing with concentrated nitric acid (NO3™/TcOy4”
competition effect) [11]. The behavior of the soluble fraction of Tc can therefore be considered to be under
control. In consequence, research must focus on the understanding of the behavior of Tc in the irradiated fuel
dissolution step, in order to identify simple methods that can be used to make the solubilization of the Tc
quantitative. Investigations currently under way are designed to determine the precise metabolism of the Tc in
the overall PUREX process which is a problem due to analytical difficulties, and to improve the Tc dissolution
yield from the dissolution residues.
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3.3. Separation of long-lived radionuclides with new processes

3.3.1. Minor actinides

, Assuming the implementation of an "intensive reprocessing” strategy, the high-level raffinate leaving
the "modified" 1CUPu(Np) will only contain, as actinides, in addition to traces of uranium, neptunium and
plutonium, the entire fuel inventory of americium and curium. The CEA is investigating two types of process
to extract and separate these minor actinides from the FP : the first is based on the extraction of the actinides in
their stable oxidation state in nitric medium, i.e. An(III), and the second process is mainly concerned with the
separation of americium, and is based on its selective oxidation to Am(IV) or Am(VI) in the presence of a
heteropolytungstate ligand, followed by selective extraction (SESAME process).

A common feature of these two processes is that, if they are applied directly to the raffinate from the
PUREX process, after being subjected to a minimal modification of its composition. No decrease in the nitric
acidity of the effluent is in fact intended, for preventing any risks of undesirable FP precipitation. In the first
process, it is necessary to use several extraction cycles to achieve the objectives : first co-extraction cycle of
minor actinides by the DIAMEX process (DIAMide EXtraction), applied to the raffinate from the PUREX
process. In this step, the lanthanides (Ln(III)), which account for about one-third of all the FP, are co-extracted,
and the mixture of An(III) + Ln(III) is obtained, free of strongly hydrolysable ions, such as traces of Pu(IV) and
U(VI). The second An(III)/Ln(III) separation cycle uses an extractant with a nitrogen donor atom, such as the
alkyl derivatives of tripyridinetriazine or picolinamides, allowing their separation by selective extraction of
An(ITI) the least abundant metallic entities, so that only a minimal extraction capacity is required from the
solvent. The third Am/Cm separation cycle could be applied either by the DIAMEX process or by the
SESAME process. Note also that, for the first process, all the reagents to be employed (extractants, diluents,
chelatant reagents present in aqueous solution) will display the feature of being totally incinerable into gases
releasable into the environment, thus helping to eliminate any generation of secondary solid waste.
Consequently, these reagents will consist exclusively of C, H, N and O atpms.

DIAMEX

The extraction of the An(IIl) (Am and Cm) from the high-level raffinate produced by the PUREX
process is difficult because of the low extraction capacity of the An(III) nitrates and by the high concentration
of nitric acid, which induces strong competition in the extraction of the An(IIl) nitrates. The diamide
extractants, proposed by Musikas [12], and particularly those belonging to the sub-class of malonamides, which
have a single carbon that forms a bridge between the two amide groups, offer a solution to this problem of
extraction. With the general formula (RR'NCO),CHR", where R, R' and R" are alkyl or oxyalkyl radicals,
these compounds are bidentate oxygen donors, forming an extremely stable six-link ring with the metallic ion.
The extraction mechanism essentially concerns the extraction of neutral molecules, and corresponds to the
following equation :

M3* +3NO3~ +nE < M(NO;)3E, : ®)

where E is the diamide extractant (the species present in organic phase are overlined).

The value of n, the number of diamide molecules solvating the An(III) nitrate, is two at saturation of the
organic phase. However, using the conventional slope method, the value of n found exceeds two, reflecting the
non-ideality of the organic solutions of diamide, an occurrence often encountered in the extractive chemistry of
the amides.
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For a given extractant concentration in the organic phase, the direction and intensity of An(III) transfer
is governed by the nitrate ion concentration in the aqueous phase : at high concentration, the affinity of the
solvent is high and hence allows the extraction of the An(III) nitrates (and especially of the U(VI) and Pu(IV)
nitrates, which are generally better extracted), whereas, at low nitrate ion concentrations (in the form of
HNO3), the affinity of the solvent for An(IIl) nitrates is weak. This makes it possible to define an An(III)
extraction/stripping cycle. Diamides, which are oxygenated donors ligands, consequently have extractive
properties for Ln(III) which are similar to those displayed for An(IIl) nitrates. Since the Ln(III) concentration
in the raffinates to be processed is fairly high (~ 10-2 mol/l), and since the diamide can also extract a large
quantity of nitric acid, it was necessary to examine the third phase mechanism (i.e. demixing of the organic
phase after extraction of macro-concentrations of solutes). Note also that the organic diluent selected for the
DIAMEX process is TPH (hydrogenated tetrapropylene), an aliphatic diluent used at La Hague for the PUREX
process. fo minimize third-phase rechanisims duing the cxtraction of niiric acid and metatiic nitrates (chiefly
Ln(IIT)) by organic solutions of diamide in TPH, it was decided to adjust the structure of the diamide extractant
by varying the R, R' and R" radicals. Thus the diamide serving as the present basis for the development of the
DIAMEX process, dimethyldibutyltetradecylomalon-amide (DMDBTDMA), with the semi-developed formula :

C14H29
C.H, ‘ C.H,
AN ya |
N— C— CH—C —N 3)
/ I I AN
CH, 0 CH,

displays acceptable properties for this requirement. For example, the load limits at 21°C of a solution of
0.65 mol/1 of DMDBTDMA in TPH are equal to 5.7 mol/l1 for aqueous nitric acidity, and 0.041 mol/l for
organic Nd(III) nitrate in the presence of an aqueous 4 mol/l nitric solution.

The diamide was therefore selected for the development of a first version of the DIAMEX process. The
first active tests of the DIAMEX process took place in June 1993 and concerned the treatment of a high-level
raffinate produced by the reprocessing of an MOx fuel. The objectives set for the three active tests were
essentially achieved, demonstrating the feasibility of the process [13].

Research currently under way in this area concerns :

* optimization of the diamide extractant formula to improve its properties with respect to third-phase
mechanisms and solvent degradation/regeneration,

* consolidation of the first version of the DIAMEX process, based on the use of DMDBTDMA : studies
are currently under way on the development of washing methods of Mo(VI) and Zr(IV) from loaded
solvents, on the selective chelation of Ru to prevent its extraction, and on the hydrolytic and radiolytic
stability of the solvents.

An(III)/Ln(III) separations
After the DIAMEX process is applied, the An(III) is present in the aqueous dilute nitric acid solution

mixed with the Ln(IIT), which are much more abundant because the molar ratio R = number of moles of
Ln/number of moles of An is close to 50. An elegant process for An(IIT)/Ln(IIl) separation must therefore
permit the selective extraction of An(III). To simplify the industrial implementation of such a process, it seems
important for this separation to be feasible using aqueous solutions with fairly high nitric acidity (0.2 to 0.5
mol/l), to overcome problems such as the hydrolysis of traces of metallic species contaminating the
An(III)/Ln(IIl) mixture. This separation problem is made even more acute because of the choice to use
exclusively reagents that are totally degradable into gas. To achieve. this difficult separation, it seems
indispensable to pick extractants that have one or more nitrogen donor atoms, which display greater affinity for
An(III) than for Ln(III), and which are capable of forming chelates, in order to guarantee a sufficient affinity of
the solvents for the An(III) salts.
Two types of system are being investigated.
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The first is based on the use of derivatives of tripyridinetriazine R3TPTZ [14], answering to the
following semi-developed formula :

LY L
= A @

To be effective, the extractant R3TPTZ must be employed in synergistic combination with an HA acid
extractant, a source of more lipophilic anions than nitrate ions. The extraction equation is then written :

M3* +nB+3HA < MB,Aj; +3H' . (5)

The current research direction, pursued jointly with the team of Dr. M.J. Hudson of the University of
Reading (UK), concern the synthesis of alkyl derivatives of TPTZ that are sufficiently hydrophobic and the
synthesis of HA acids with low pKj.

The second system concerns the use of picolinamide extractants, answering to the following general
semi-developed formula :

Rll
R
|
— N
N ICI/ \R,
O (6)

As demonstrated by Cordier [15], pyridine 2 carboxamide, for which R, R'and R" =H, a
soluble reagent in the aqueous phase, is a selective chelatant of Am(III) with respect to Nd(III).
The grafting of alkyl groups, R, R' and R", helps to reinforce the lipophilic properties of the molecules and
accordingly to enhance their ability as selective extractant for An(III).

The extraction equation is written :

M3* +3NO3~ +nE < M(NO;);E, (N

Current research directions in this area are aimed to strengthen the affinity of picolinamides for An(III)
nitrates, particularly in order to counteract the strong competition due to the extraction of nitric acid.
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SESAME (Selective Extracting Separation of Americium by Means of Electrolysis)

Another alternative to separate americium, either directly form the raffinate produced by the PUREX
process, or from the An(IlI)/Ln(lll) mixture produced by the DIAMEX process, or even from the
Am(III)+Cm(III) mixture, consists of its selective oxidation to Am(IV) or Am(VI) followed by its extraction.
The chief difficulty to be overcome in this connection is the oxidation of Am(III) in nitric medium with acidity
greater than 1 mol/l. In the case of the Am(II[)/Am(IV) pair, in fact, this impossibility is thermodynamic (E
Am(IIIYAm(IV) = 2.6 V/NHE), whereas it is rather kinetic in the case of the Am(II[)/Am(VI) pair. By
contrast, it is possible to oxidize Am(III) by chemical or by electrochemical means, subject to the presence in
aqueous solution of a powerful ligand belonging to the heteropolytungstate family. For example, the ligand
P2W17O6110‘ is extremely effective for this purpose. Present in a concentration higher than of Am(IID), it
allows the oxidation of the americium to Am(IV), whereas for molar ratios lower than I, the americium is
oxidized to Am(VI). Other heteropolytungstate ligands are also satisfactory, such as silicotungstates. After
oxidation, the americium can be extracted, either by amine salts in the case of Am(IV), or by bis-2,6 dimethyl-
4 heptyl phosphoric acid for Am(VI). In these conditions, neither the lanthanides (except for cerium) nor the
Lo is ox'dized, and is therefors easilv swiated o e anecdc'un. Thic is the basis of the SESAME
process [16].

Active tests of the SESAME process are currently under way at Fontenay-aux-Roses, on raffinates from
the PUREX process, and on an An(III)/Ln(III) mixture generated in 1993 during active tests of the DIAMEX
process.

3.3.2. Fission products

Among the long-lived fission products that need to be separated, only 135Cs is now the subject of
intensive study at the Cadarache Nuclear Center, for the definition of a separation process. The extractant
molecule expected to permit the separation of Cs(I), either from a 1 mol/l nitric acid solution, concentrated
with sodium nitrate (4 mol/l), like the solution generated by evaporation, proces<es for radioactive effluents, or
a high-level raffinate produced by the application of the PUREX process, has been selected in the family of
calixarenes. These molecules, in the form of a calix (hence their name) are pre-organized structures which, by
the grafting of adequate functional groups, either on the upper rim or on the lower rim of the structure, help to
define specific chelatants for ionic species considered as targets. The use of these substituents also makes it
possible to impart hydrophilic or lipophilic properties to the molecules, thus enabling them to act as chelatants
or extractants. The research project, conducted jointly with several European universities under a contract with
the CEC, consisted of a screening of the different synthesized calixarenes for their aptitude for Cs(I)/Na(l)
separation followed by the extraction of Cs(I) from nitric solutions. Spectacular performance was observed in
these two areas with the following calixarenes : mono-ring calix[4]arenes and bis-ring-n calix{4]arenes. Very
high separation factors SFog/N, close to 4.10% were obtained with certain molecules[17]. These molecules
lend themselves well to extraction in the form of supported liquid membranes (SLM), which therefore help to
perform separations with a very small quantity of extractant.

Research under way at Cadarache in this area is concerned with :

* the demonstration of the feasibility of the extraction of 135Cs (in a mixture with the other cesium

nuclides) from a high-level effluent produced by the PUREX process,

* the search for specific calixarenes for the minor actinides, allowing sclective separation of

An(TIT)/Ln(III).
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4. CONCLUSIONS

Studies under way at the CEA in connection with the SPIN program aimed at the separation of long-
lived radionuclides for their subsequent nuclear "incineration” (P & T strategy) have yielded promising results,
both in the areas of the DIAMEX and SESAME processes, and in the selective separation of cesium. Yet the
road is a long one before the definition of the flow diagrams of a facility that would implement these intensive
reprocessing technologies. While it is possible to reasonably predict the feasibility of a process such as
DIAMELX, this cannot be said of An(III)/Ln(III) separations, which are certainly more difficult to achieve, or of
the SESAME and "calixarene" processes, which are still in the basic research or early development stage. It
also appears clear that economic considerations will have to be taken into account when the process decisions
are made. For the time being, criteria of simplicity and reliability will certainly prevail in these decisions.
While it is possible to predict that the chemists will find solutions to these complex problems of long-lived
radionuclide separation, it is also clear that considerable efforts will have to be made to develop industrially-

viable solutions.
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