NON LINEAR SOIL STRUCTURE INTERACTION : IMPACT ON THE SEISMIC RESPONSE OF STRUCTURES

Alain PECKER

OECD/NEA IAGE/ IAEA ISCC Workshop, on SSI Ottawa, 6-8 October, 2010
OUTLINE OF PRESENTATION

• Review of existing foundation design practice
 ➢ Required changes in design philosophy

• Examined foundation behavior during cyclic loading
 ➢ Modeling aspects through dynamic macroelement

• Assess the impact of foundation non-linearities and variability of seismic motion on structural behavior

• Draw some preliminary conclusions
FOUNDATION DESIGN PHILOSOPHY

• Foundations are designed to remain elastic during earthquakes
 - foundation cannot be easily inspected and repaired after an earthquake

• Ductility demand restricted to superstructure

• Alternative approach
 - Accept permanent (limited and controlled) displacements at foundation
 - Performance based design \Leftrightarrow displacement based design
MOTIVATION FOR DISPLACEMENTS EVALUATION

• Soil structure interaction plays a dominant role in seismic response of the structure
 - Beneficial or detrimental?? Controversial but all linear elastic studies

• Permanent foundation displacements affect the performance of the structure
WHY CONSIDERING FOUNDATION NONLINEARITY / INELASTICITY?

• Recent records revealed very strong seismic shaking

 ➢ 1994 Northridge : 0.98 g, 1.40 m/s
 ➢ 1995 Kobe : 0.85 g, 1.50 m/s

 and SA values reaching 2 g

• Retrofitting of existing/damaged structures impossible to accomplish elastically
MOSS LANDING
(Loma Prieta, 1989)
MEXICO (Michoacan, 1985)
IMPLICATIONS OF NON LINEARITIES GEOTECHNICAL EARTHQUAKE ENGINEERING

• Sliding of foundation

• Foundation uplift

• Partial loss of bearing capacity
CENTRIFUGE TESTS

(Gajan et al., 2005)
DIFFICULTIES OF NON LINEAR DYNAMIC ANALYSES

• Analyses are time consuming & expensive to run
 ➢ Especially if soil is modeled (3D continuum)

• Results are very sensitive to small changes in input data
 ➢ Input motion
 ➢ Structural characteristics
 ➢ Soil characteristics
Nonlinearities:
- Geometrical (interface behavior) → Uplift model
- Material (elasto-plastic soil behavior) → Plasticity model

Wave propagation:
- Dissipation of radiation energy
- Dynamic elastic impedances
GENERALIZED FORCES AND DISPLACEMENTS

Rigid circular footing under planar loading

\[
\mathbf{Q} = \begin{bmatrix}
Q_N \\
Q_V \\
Q_M
\end{bmatrix} = \frac{1}{DN_{\text{max}}} \begin{bmatrix}
DN \\
DV \\
M
\end{bmatrix}
\]

\[
\mathbf{q} = \begin{bmatrix}
q_N \\
q_V \\
q_M
\end{bmatrix} = \frac{1}{D} \begin{bmatrix}
u_z \\
u_x \\
D\theta_y
\end{bmatrix}
\]

\[
\dot{\mathbf{q}} = \dot{\mathbf{q}}^\text{el} + \dot{\mathbf{q}}^\text{up} + \dot{\mathbf{q}}^\text{pl}
\]
<table>
<thead>
<tr>
<th>MECHANISM</th>
<th>DISSIPATION</th>
<th>REVERSIBILITY</th>
<th>NON-LINEARITY</th>
<th>MACROELEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity</td>
<td>No</td>
<td>Reversible</td>
<td>No</td>
<td>Elasticity</td>
</tr>
<tr>
<td>Uplift</td>
<td>Non - dissipative</td>
<td>Reversible</td>
<td>Geometric</td>
<td>Non-linear elastic model</td>
</tr>
<tr>
<td>Soil Yielding</td>
<td>Dissipative</td>
<td>Irreversible</td>
<td>Material</td>
<td>Associated Plasticity model</td>
</tr>
</tbody>
</table>

Possible load states are limited by ultimate bearing capacity of foundation.
Phenomenological non-linear elastic model

\[\ddot{Q} = K(q) \dot{q} \]

1. Matrix \(K \) depends explicitly on \(q \)
2. No influence of \(Q_V \) on uplift

[Crémer et al (2001)]
[Wolf (1985)]
FOOTING BONDED ON A COHESIVE SOIL
No uplift allowed

Ellipsoidal bounding surface

Q_N, Q_M, Q_V

Hypoplastic bounding surface plasticity
1. Cyclic loading
2. Continuous variation of plastic modulus
3. Numerical implementation

Associative flow rule
DEFINITION OF ULTIMATE LOADS

Soil: Undrained Conditions

Interface: Uplift

Uplift

Associated Plasticity

Zero dissipation

\[\sigma \]

\[\tau \]
SURFACE OF ULTIMATE LOADS

(Chatzigogos et al, 2007)
UPLIFT – PLASTICITY COUPLING

Ellipsoidal Bounding Surface

Total footing detachment

Ultimate surface

Elastoplastic response with uplift

Toppling limit

Elastoplastic response

Uplift Initiation

[Chatzigogos et al, 2010]
SWIPE TESTS
Imposed Horizontal Displacement

Test GG03
\(N = 1600[N] \)

Test GG07
\(N = 200[N] \) \(N = 1600[N] \)

Mohr-Coulomb branch \(\phi_{int} = 21^\circ \)
DIFFICULTIES OF NON LINEAR DYNAMIC ANALYSES

• Analyses are time consuming & expensive to run
 ➢ Especially if soil is modeled (3D continuum)

• Results are very sensitive to small changes in input data
 ➢ Input motion
 ➢ Structural characteristics
 ➢ Soil characteristics
INCREMENTAL DYNAMIC ANALYSIS (Cornell, 2002)

• Series of nonlinear time histories analyses
 ➢ Same time history scaled to increasing amplitudes
 ➢ Track of characteristic quantities of the response

• IDA curve is a plot of selected IM vs selected DM

• IDA curve set: collection of IDA curves
 ➢ Several time histories representing one EQ scenario for one selected IM and DM
EXAMPLES OF IDA CURVES

IDA curve

IDA curves set
INCREMENTAL DYNAMIC ANALYSES

• Series of non linear time history analyses
 ➢ 30 records representing an earthquake scenario
 M=6.5-6.9 d=20-30km
 ➢ Time histories scaled up according to Intensity Measures (IM)
 • pga , SA(T_s) , SA(T_{SSI}) , CAV

• Damage measures (DM) calculated
 ➢ Foundation settlements (residual or maximum)
 ➢ Foundation rotations (residual or maximum)
 ➢ Deck drift (residual or maximum)
 ➢ Structural ductility demand
EXAMPLE : BRIDGE PIER

(a) Bridge deck
Bridge pier (circular section)
Circular surface footing
Seismic excitation
Homogeneous purely cohesive soil

(b) Bridge pier: Non-linear beam elements
Macroelement 2-node link element

md
h
m
mf
EXAMPLE OF SYSTEM RESPONSE

Single analysis

IDA curves $\mu = f(CAV)$
STRUCTURAL DUCTILITY DEMAND $\mu = f(CAV)$
Price to pay for change in ductility demand
No sign of distress even for increasing motion
RESULTS OF NUMERICAL ANALYSES

• Consideration of non linear soil structure interaction beneficial
 ➢ drastically reduces the ductility demand in the structure
• Counterbalanced by
 ➢ larger displacements and rotations at the foundation
 ✓ May become unacceptable
• Variability in the response becomes large as more demand is placed on the foundation
REMAINING ISSUES

• Increased variability
 - care must be exercised before accepting to transfer the ductility demand from the structure to the foundation
 - thorough investigation of the variability of the response

• Requires careful definition of acceptable criteria for the foundation performance

• IDA may represent a convenient tool for analysis
CONCLUSION

• It is time to move from the concept of
 ➢ ductility demand restricted to the
 superstructure
 ➢ elastic behavior of foundations

• To
 ➢ controlled share of ductility demand between
 the superstructure and the foundation