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Evidence for Differences in Source and
Ground Motion Characteristics between
Surface and Buried Earthquakes

Asperity characteristics
Recorded ground motions

Presence of precariously balanced rocks near
major surface faults
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~racture energy from dynamic rupture models of
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Velocity hardening in dynamic rupture models
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Figure 11. Our final slip map for the 1999 Kocaeli earthquake based on the inversion of teleseismic,

surface wave, strong motion and geodetic data. The model was obtained for a maximum overall slip
rupture velocity of 3.25 km/sec.
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Figure 10. Final slip map for the 1999 Chi-Chi earthquake based on a 6.0
simultaneous inversion of teleseismic, surface wave, strong-motion and
geodetic data. The epicenter is marked by a red square. 45
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Table 1. Source Parameters of Crustal Earthquakes

Location Mech. Mo x 10°° Mw Multiple Time
dyne-cm Windows
Denali, Alaska SS 800 7.9 Yes
San Francisco, California SS 500 7.8 No
Chi-chi, Taiwan RV 270 7.6 Yes
Kocaeli, Turkey SS 225 7.5 Yes
Landers, Ca. SS 75 7.22 Yes
Hector Mine SS 62 7.16 Yes
Tabas, Iran RV 58 7.14 Yes
Duzce, Turkey SS 56 7.1 Yes
Loma Prieta, Ca. OB 30 6.95 Yes
Kobe, Japan SS 24 6.9 Yes
Borah Peak, Idaho NM 23 6.87 No
Tottori, Japan SS 19 6.8 Yes
Nahanni, N.W.T., Canada RV 15 6.75 Yes
Northridge, Ca. RV 11 6.66 Yes
Nahanni, N.W.T., Canada RV 10 6.63 Yes
San Fernando, Ca. (S.M.) RV 7 6.53 No
Imperial Valley, Ca. SS 5 6.43 Yes
Superstition Hills, Ca. (#3) SS 3.5 6.33 Yes
Morgan Hill, Ca. SS 2.1 6.18 No
North Palm Springs, Ca. OB 1.8 6.14 No
Kagoshima, Japan SS 1.1 6.0 Yes
Whittier Narrows, Ca. RV 1.0 5.97 Yes
Iwate, Japan SS 0.58 5.8 Yes
Yamaguchi, Japan SS 0.58 5.8 Yes
Coyote Lake, Ca. SS 0.35 5.66 No




Scaling Relations of Fault Asperities
from Kinematic Rupture Models

Compile slip velocity models

Run asperity picker algorithm for:
— Slip on fault

— Slip velocity on fault

Measure asperity parameters:

— Rupture area of asperity

— Slip velocity of asperity

Run regression for scaling relations
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Effective Shp Velocity
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Scaling Properties of Asperities

* Scaling of slip velocity models of crustal
earthquakes is self similar

 The number of asperities does not Increase
with magnitude

* The size of asperities increases with
magnitude



Asperity Parameters

e The number of slip velocity asperities is 3
* The average slip velocity i1s 80 cm/sec

* The asperity slip velocity is 200 cm/sec



Differences in Source and Ground
Motion Characteristics between
Shallow and Buried Faulting

 Shallow faulting — top of shallowest
asperity (defined by slip or slip velocity) Is
shallower than 5 km; there may also be
asperities whose tops are deeper than 5 km

 Buried faulting — tops of all asperities are
deeper than 5 km



Averaged Slip Velocities

Comparison of Shallow and Deep Asperity Events

Average over | Average over
fault Asperities

All events 77 198

Events with 65 144

shallow

asperities

Events with 124 228

only deep

aperities
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Peak Acceleration (g)
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Event Term

Event Term
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Spectral Acceleration (g)
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Ground Motion Residual (Ln units)
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Event Term (LN units)

Event Terms- PGA

(Surface Slip Term Ignored)

Magnitude

15
] B Surface Slip
1 No Surface Slip
0.5
o]
i B
B
: ; i 8
05 B-o
5 BB B
] B BBB | B
. B
-1
i B
_1-5 ] T T T T T T T T T T T T T T T T T T T T T T T
4.5 55 6 6.5 7 7.5




Event Term

Event Terms- PGA

(Rake Term Ignored) 5 PoA
15
1- . B B
0.5 Z ] B—8
] B
B
5 B B E B 5B 8
B ’ By
0 T8 B B B B B D
, B B
53 - BB B $§ B 9
1B
B
-0.5 B BEI:S
B B
i B B B
B B B
90 60 30 0 30 60 90
Rake
RV

NML ss



Surface Slip Coeff

B Surface Slip

B8 B

Surface Slip Coeff (LN units)
IO
S
0

06 ﬁBﬁ% B

o wﬁ%@@

0.01 0.1 1
Period (sec)

10



Evidence from Recorded Strong
Ground Motions

e Ground motion Is weaker for earthquakes
that break the surface than for earthquakes
that do not

« Ground motion Is weaker for earthquakes
having asperities within 5 km of the surface
than for earthquakes that do not



Evidence from Precariously Balanced Rocks

The presence of precariously balanced rocks near
major faults (e.g. the San Andreas fault) appears to
be inconsistent with current ground motion models
(Brune, Anooshepoor, Purvance, Anderson, et al)

Possible problems with existing ground motion models:
« Limitations of the ergodic assumption
 Variability in ground motion level too high

« Median ground motion level to high



Analysis using Vector Valued Seismic Hazard

Toppling of rocks depends on both peak
acceleration PGA and peak velocity PGV

Hazard surface for PGA and PGV
Fragility surface for PGA and PGV

Combine to give probability of toppling as a
function of return period

Results are incompatible with the presence of
balanced rocks



Pedley- Alpha 0.4, R 51

——
o 1 4.
) .
2 N R TP s B §
= 1 GO e
:
= ] B
Ko
o4
o
1500 200
100 1000
) . 50 500
5000 10000 15000 PGV (cm/sec) PGA (cm/sec?)

Time (y)

> 1

o T
- -
= o
5 S
G 10~ » 2.
q—_ - pis —_—
g > g <
5 -30- i Ty o 0.5 9,..
= =

3

3 -40- g S
O o, 2000 i)
5 1500 =2
5 1000 )
3]

a 12001000 gop™ 4 500 &)
o 400 »opp

= PGA (cm/sec?) 0 :J

PGV (cm/sec) 500 1000 1500 2000

PGA (cm/sec?)



Evidence from Precarious Rocks

* Presence of precarious rocks iIs
Incompatible with current ground motion
models

« Current ground motion models probably
overpredict the median ground motion level
of surface breaking earthquakes



Physical Insight into Differences in
Source and Ground Motion
Characteristics between Surface and
Buried Faulting
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Evidence from Kinematic Rupture Models
of Crustal Earthquakes

 Shallow faulting — fault slip displacement may be
large but slip velocity is low

 Buried faulting - fault slip displacement may be
small but slip velocity may be large



Evidence from Dynamic Rupture Parameters of
Shallow and Buried Faulting Earthquakes

Defined surface rupture

(1) Izmit Dalguer
(2) Kobe Song
(3) Landers Song
(4) Landers Pitarka
Defined subsurface rupture
(5) Northridge Guatteri
(6) Northridge Guatteri
(7) Loma Prieta Song
Undefined rupture
(8) Tottori Dalguer
(9) Kagoshima Dalguer
(10) Yamaguchi Dalguer

(11) Whittier N. Song
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Fracture Energy and Stress Intensity
Factor

Large for defined surface faulting events

Small for defined subsurface and undefined faults

Large fracture energy events may produce mainly
long period seismic radiation

This 1s consistent with surface faulting events
producing weak high frequency ground motions



Evidence from Dynamic Rupture Modeling

Day and Ely, BSSA 2003

* Velocity hardening in the shallow part of
the fault causes a stopping phase

» The stopping phase causes larger high
frequency ground motions near a buried
fault than near a surface breaking fault
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Features of Rupture in the Shallow
Part of Fault (0 — 5 km depth)

Controlled by velocity strengthening
Larger slip weakening distance Dc

Larger fracture energy I.e.much energy absorbed
from the crack tip

_ower rupture velocity
_ower slip velocity
_ower ground motions than buried faulting events




Evidence for Differences in Source and
Ground Motion Characteristics between
Surface and Buried Earthquakes

Weak ground motions recorded near major surface faulting
earthquakes

Presence of precariously balanced rocks near major surface
faults

Low slip velocities at shallow depths from kinematic
rupture models of past earthquakes

Large fracture energy from dynamic rupture models of past
earthquakes

Stopping phases from velocity hardening in dynamic
models of buried faulting



Implications for Characterizing
Fault Asperities

» Properties of shallow and deep asperities may be different

o Ata given site, the deterministic ground motions may be
controlled by deep asperities, not shallow asperities

« This may not be true of probabilistic ground motions

— Surface breaking fault may have high slip rate and short
earthquake recurrence

— Buried fault may have low slip rate and long earthquake
recurrence



Implications for Seismic Hazards

e Ground motion amplitudes from shallow faulting
earthquakes may have been overestimated In
current seismic hazard estimates

* Need separate ground motion models for shallow
and buried faulting

* Need criteria for predicting surface and/or
subsurface faulting on mapped surface faults



Near Fault Rupture Directivity Pulse

e Geometry and Orientation

 Magnitude Scaling of Period of Pulse
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Rupture Directivity Pulse

 Large pulse of ground motion at near-fault
sites

* Occurs on the fault normal component

o Causes large spectral acceleration at periods
(longer than 0.5 sec) that depend on M,,



Fling Step

 Large permanent displacement of ground

* Occurs on the fault parallel component for
strike-slip; fault normal for dip-slip

* May take several seconds to occur
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17 January 1995 Hyogoken Nanbu Earthquake, Mw 6.9, Kobe (JMA)
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17 January 1994 Northridge Earthquake, M=6.7
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Conditions for Forward Directivity

* Rupture propagates toward the site

e The slip on the fault is aligned with the
rupture propagation direction

o Away from epicenter for strike-slip faulting

 Updip from hypocenter for dip-slip faulting
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Magnitude Scaling Of Near Fault
Ground Motions

* The forward directivity pulse Is narrow
banc

e The period of the pulse increases with
magnitude

* The pulse causes a peak In the acceleration
response spectrum whose period increases
with magnitude




Implications of Magnitude Scaling
of Near Fault Directivity Pulse
e Ground motion amplitudes do not increase

uniformly with magnitude at all response
spectral periods

o At 1.5 seconds period, elastic response for
M 7 Is stronger than for M 7.5

* The difference between M 7 and M 7.5 may
be less for inelastic response



