Differences in Source and Ground Motion Characteristics between Shallow and Buried Faulting

Paul Somerville URS Pasadena, CA

Evidence for Differences in Source and Ground Motion Characteristics between Surface and Buried Earthquakes

- Asperity characteristics
- Recorded ground motions
- Presence of precariously balanced rocks near major surface faults
- Slip velocities from kinematic rupture models of past earthquakes
- Fracture energy from dynamic rupture models of past earthquakes
- Velocity hardening in dynamic rupture models

Figure 11. Our final slip map for the 1999 Kocaeli earthquake based on the inversion of teleseismic, surface wave, strong motion and geodetic data. The model was obtained for a maximum overall slip rupture velocity of 3.25 km/sec.

Location	Mech.	Mo x 10^{25}	Mw	Multiple Time
		dyne-cm		Windows
Denali, Alaska	SS	800	7.9	Yes
San Francisco, California	SS	500	7.8	No
Chi-chi, Taiwan	RV	270	7.6	Yes
Kocaeli, Turkey	SS	225	7.5	Yes
Landers, Ca.	SS	75	7.22	Yes
Hector Mine	SS	62	7.16	Yes
Tabas, Iran	RV	58	7.14	Yes
Duzce, Turkey	SS	56	7.1	Yes
Loma Prieta, Ca.	OB	30	6.95	Yes
Kobe, Japan	SS	24	6.9	Yes
Borah Peak, Idaho	NM	23	6.87	No
Tottori, Japan	SS	19	6.8	Yes
Nahanni, N.W.T., Canada	RV	15	6.75	Yes
Northridge, Ca.	RV	11	6.66	Yes
Nahanni, N.W.T., Canada	RV	10	6.63	Yes
San Fernando, Ca. (S.M.)	RV	7	6.53	No
Imperial Valley, Ca.	SS	5	6.43	Yes
Superstition Hills, Ca. (#3)	SS	3.5	6.33	Yes
Morgan Hill, Ca.	SS	2.1	6.18	No
North Palm Springs, Ca.	OB	1.8	6.14	No
Kagoshima, Japan	SS	1.1	6.0	Yes
Whittier Narrows, Ca.	RV	1.0	5.97	Yes
Iwate, Japan	SS	0.58	5.8	Yes
Yamaguchi, Japan	SS	0.58	5.8	Yes
Coyote Lake, Ca.	SS	0.35	5.66	No

Table 1. Source Parameters of Crustal Earthquakes

Scaling Relations of Fault Asperities from Kinematic Rupture Models

- Compile slip velocity models
- Run asperity picker algorithm for:
 - Slip on fault
 - Slip velocity on fault
- Measure asperity parameters:
 - Rupture area of asperity
 - Slip velocity of asperity
- Run regression for scaling relations

Number of Velocity Aspendies

Scaling Properties of Asperities

- Scaling of slip velocity models of crustal earthquakes is self similar
- The number of asperities does not increase with magnitude
- The size of asperities increases with magnitude

Asperity Parameters

- The number of slip velocity asperities is 3
- The average slip velocity is 80 cm/sec
- The asperity slip velocity is 200 cm/sec

Differences in Source and Ground Motion Characteristics between Shallow and Buried Faulting

• Shallow faulting – top of shallowest asperity (defined by slip or slip velocity) is shallower than 5 km; there may also be asperities whose tops are deeper than 5 km

• Buried faulting – tops of all asperities are deeper than 5 km

Averaged Slip Velocities

Comparison of Shallow and Deep Asperity Events

	Average over fault	Average over Asperities
All events	77	198
Events with shallow asperities	65	144
Events with only deep aperities	124	228

Magnitude

Event Terms- PGA

Evidence from Recorded Strong Ground Motions

- Ground motion is weaker for earthquakes that break the surface than for earthquakes that do not
- Ground motion is weaker for earthquakes having asperities within 5 km of the surface than for earthquakes that do not

Evidence from Precariously Balanced Rocks

The presence of precariously balanced rocks near major faults (e.g. the San Andreas fault) appears to be inconsistent with current ground motion models *(Brune, Anooshepoor, Purvance, Anderson, et al)*

Possible problems with existing ground motion models:

- Limitations of the ergodic assumption
- Variability in ground motion level too high
- Median ground motion level to high

Analysis using Vector Valued Seismic Hazard

Toppling of rocks depends on both peak acceleration PGA and peak velocity PGV

- Hazard surface for PGA and PGV
- Fragility surface for PGA and PGV
- Combine to give probability of toppling as a function of return period
- Results are incompatible with the presence of balanced rocks

Evidence from Precarious Rocks

• Presence of precarious rocks is incompatible with current ground motion models

• Current ground motion models probably overpredict the median ground motion level of surface breaking earthquakes

Physical Insight into Differences in Source and Ground Motion Characteristics between Surface and Buried Faulting

Evidence from Kinematic Rupture Models of Crustal Earthquakes

- Shallow faulting fault slip displacement may be large but slip velocity is low
- Buried faulting fault slip displacement may be small but slip velocity may be large

Evidence from Dynamic Rupture Parameters of Shallow and Buried Faulting Earthquakes

Defined surface rupture

(1)	Izmit	Dalguer
(2)	Kobe	Song
(3)	Landers	Song
(4)	Landers	Pitarka

Defined subsurface rupture

(5)	Northridge	Guatteri
(6)	Northridge	Guatteri
(7)	Loma Prieta	Song

Undefined rupture

(8)	Tottori	Dalguer
(9)	Kagoshima	Dalguer
(10)	Yamaguchi	Dalguer
(11)	Whittier N.	Song

FRACTURE-ENERGY Scaling static stress drop, Gc > 0.01 AND slip > 0.33*max.slip

DYNAMIC SOURCE PARAMETERS

Fracture-Energy Scaling

4000

B

8000

Fracture Energy Scaling Based on STATIC STRESS DROP

Fracture Energy and Stress Intensity Factor

- Large for defined surface faulting events
- Small for defined subsurface and undefined faults
- Large fracture energy events may produce mainly long period seismic radiation
- This is consistent with surface faulting events producing weak high frequency ground motions

Evidence from Dynamic Rupture Modeling

Day and Ely, BSSA 2003

- Velocity hardening in the shallow part of the fault causes a stopping phase
- The stopping phase causes larger high frequency ground motions near a buried fault than near a surface breaking fault

Features of Rupture in the Shallow Part of Fault (0 – 5 km depth)

- Controlled by velocity strengthening
- Larger slip weakening distance Dc
- Larger fracture energy i.e.much energy absorbed from the crack tip
- Lower rupture velocity
- Lower slip velocity
- Lower ground motions than buried faulting events

Evidence for Differences in Source and Ground Motion Characteristics between Surface and Buried Earthquakes

- Weak ground motions recorded near major surface faulting earthquakes
- Presence of precariously balanced rocks near major surface faults
- Low slip velocities at shallow depths from kinematic rupture models of past earthquakes
- Large fracture energy from dynamic rupture models of past earthquakes
- Stopping phases from velocity hardening in dynamic models of buried faulting

Implications for Characterizing Fault Asperities

- Properties of shallow and deep asperities may be different
- At a given site, the deterministic ground motions may be controlled by deep asperities, not shallow asperities
- This may not be true of probabilistic ground motions
 - Surface breaking fault may have high slip rate and short earthquake recurrence
 - Buried fault may have low slip rate and long earthquake recurrence

Implications for Seismic Hazards

- Ground motion amplitudes from shallow faulting earthquakes may have been overestimated in current seismic hazard estimates
- Need separate ground motion models for shallow and buried faulting
- Need criteria for predicting surface and/or subsurface faulting on mapped surface faults

Near Fault Rupture Directivity Pulse

- Geometry and Orientation
- Magnitude Scaling of Period of Pulse

Rupture Directivity Pulse

• Large pulse of ground motion at near-fault sites

• Occurs on the fault normal component

• Causes large spectral acceleration at periods (longer than 0.5 sec) that depend on M_w

Fling Step

• Large permanent displacement of ground

• Occurs on the fault parallel component for strike-slip; fault normal for dip-slip

• May take several seconds to occur

17 January 1995 Hyogoken Nanbu Earthquake, M = 6.9

17 January 1995 Hyogoken Nanbu Earthquake, Mw 6.9, Kobe (JMA)

Los Angeles 34.4 \bigcirc Pucific Oceun 5 km the second second San Gabriel Mountains North Latitude 0 *0 34.2 ernando Valley Dawntown: .os. Angeles 10 Suntu Monicu Km 0 34 -118.6 -118.4 -118.2 West Longitude Surface exposure of recent alluvium Peak Horizontal Velocity ● 50 cm/sec Epicenter (Wald et.al, 1994) 100 cm/sec Rupture Zone (Wald et.al, 1994) 150 cm/sec Dense urban regions

17 January 1994 Northridge Earthquake, M=6.7

17 January 1994 Northridge Earthquake, Mw 6.7, Rinaldi

Conditions for Forward Directivity

- Rupture propagates toward the site
- The slip on the fault is aligned with the rupture propagation direction
 - Away from epicenter for strike-slip faulting
 - Updip from hypocenter for dip-slip faulting

Figure 6. Mw scaling of the period of the forward rupture directivity velocity pulse on rock (top) and soil (bottom).

Magnitude Scaling Of Near Fault Ground Motions

- The forward directivity pulse is narrow band
- The period of the pulse increases with magnitude
- The pulse causes a peak in the acceleration response spectrum whose period increases with magnitude

Implications of Magnitude Scaling of Near Fault Directivity Pulse

- Ground motion amplitudes do not increase uniformly with magnitude at all response spectral periods
- At 1.5 seconds period, elastic response for M 7 is stronger than for M 7.5
- The difference between M 7 and M 7.5 may be less for inelastic response