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Abstract 

The Computational Fluid Dynamics (CFD) code FLUBOX is developed at GRS for the 
multidimensional simulation of two-phase flows. The single-pressure two-fluid model is used as basis 
of the simulation. A basic mathematical property of the two-fluid model of FLUBOX is the hyperbolic 
character of the convection. The numerical solution methods of FLUBOX make explicit use of the 
hyperbolic structure of the coefficient matrices. The simulation of two-phase flow phenomena needs, 
apart from the conservation equations for each phase, an additional transport equation for the 
interfacial area concentration. The concentration of the interfacial area is one of the key parameters for 
the modelling of interfacial friction forces and interfacial transfer terms. A new transport equation for 
the interfacial area concentration is in development. It describes the dynamic change of the interfacial 
area concentration due to mass exchange and a force balance at the phase boundary. Results from 
FLUBOX calculations for different experiments of two-phase flows in vertical tubes are presented as 
part of the validation.  
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Introduction 

The EU project EUROFASTNET [1] identified industrial needs for the three-dimensional 
simulation of nuclear reactor thermal-hydraulics. As a consequence the OECD/NEA established 
Writing Groups concerning the extension of CFD codes to two-phase safety problems. The Writing 
Groups covered a wide range of two-phase NRS problems (e.g. DNB, dry-out, steam discharge, 
thermal stratification, etc) in nuclear reactors [2]. Such simulations of two-phase flow phenomena with 
a two-fluid model need, apart from the basic conservation equations for each phase, an additional 
transport equation for the interfacial area concentration. The concentration of the interfacial area is one 
of the key parameters that provide information on the flow pattern. It is also an important parameter 
for the modelling of interfacial friction forces and interfacial transfer terms. A transport equation for 
the interfacial area concentration based on the ideas of Papadimitriou [3] is in development. The 
transport equation describes the dynamic change of the interfacial area concentration due to mass 
exchange and a force balance at the phase boundary. The modelling of the force balance contains the 
solution of a momentum equation at the phase boundary. The computation of the dynamic change of 
the interfacial area concentration with only one transport equation is very attractive concerning the 
computational costs (in relation to the multi-group models). Validation calculations for vertical 
air/water flows with different pipe diameters were performed with this model. These include the 
experiments of Hibiki [4] in a 1 cm tube, the experiments of Kashyap [5] in a 5 cm tube and the 
experiments of Prasser [6] in a 20 cm tube.  

The paper describes the two-phase model approach with a two-fluid model and a transport 
equation for the interfacial area concentration. The transport equation is solved simultaneously with 
the conservation equations, with which it is coupled via the interfacial friction. The three test cases 
mentioned above are described and comparisons of validation calculations with measurements are 
presented. 

Two-Phase Model Equations 

Two-fluid model 

A general two-fluid model consists of six balance equations, but there remain seven dependent 
flow parameters: lglglgg pphhuu ,,,,,,α . There are two ways to obtain a complete set of equations. 

Either introduce further simplifications in order to reduce the number of dependent flow parameters or 
add a further differential equation on a heuristic basis. There have been various attempts in the 
literature to derive such an additional model equation [7]. However, none of them has reached a state 
of maturity for direct technical application. Therefore, in most of the present two-fluid models the 
assumption of equal local pressure p = pg = pl is introduced, since the differences in local pressure 
between the phases are expected to be small and can be neglected for most technical applications. 
Assuming a single local pressure value the following conservation equations for mass, momentum and 
energy are derived: 

Mass balance equations: 

 kkkkkkt
Γ=∇+ )( uραρα

∂
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 (1) 

Momentum balance equations: 
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Energy balance equations: 
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where k=g for gas or vapor and k=l for liquid or water. DtDk /  is the material derivative 
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∂
∂  and kT  is the turbulent viscosity tensor. Between the volume fractions of the gas or 

vapor phase and the water phase exists the relation 1=+ lg αα . The densities are calculated from the 

state equation ),( phkk ρρ =  using pressure p  and enthalpy h . The right hand sides of the two-fluid 
model equations (1), (2) and (3) describe the interfacial transfer terms of mass, momentum and energy 
between the phases. This mathematical formulation of the conservation equations means that both 
phases co-exist at any point in space. The volume fraction α  alone is not sufficient to describe the 
spatial topological structure between the phases and consequently the flow regime cannot be 
determined from the conservation equations. For the determination of the flow regime one needs more 
information on the interfacial area. The interfacial area concentration aint [1/m] is also important for 
the formulation of interfacial transfer terms. The interfacial transfer terms can be written as the product 
of the interfacial area concentration and a driving potential [8]. The interfacial friction, which is part of 
the momentum transfer term int

kF , is: 
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and the mass transfer term due to condensation or evaporation is 
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Numerical solution 

The balance equations of the two-fluid model (1) – (3) can be written in compact matrix form as  

 RUHUGU =∇+∇+
∂
∂ 2

t
  (6) 

with the vector U of appropriately chosen solution variables. The matrix G represents the convection 
and the matrix H the diffusion of the flow. The right hand side R is an algebraic source vector for 
interfacial transfer processes. 

For the numerical integration of (6) an operator splitting is applied, where the diffusive part is 
mathematically less challenging. The hyperbolic convection part, however, is characterized by the 
propagation of waves with characteristic velocities in regions of dependence and influence. 
Hyperbolicity is a precondition for the well-posedness of the mathematical equations as an initial-
boundary problem. Appropriate numerical schemes for hyperbolic systems are based on techniques 
which make explicit use of the eigenstructure of the flow equations. Representatives of hyperbolic 
methods are the Flux Vector Splitting, Approximate Riemann Solvers and others. In the FLUBOX 
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code we use the Split Coefficient Matrix (SCM) method of Chakravarthy [9], which was first applied 
by Romstedt [10] for transient two-phase flows. The numerical solution procedures are suitable to 
master typical two-phase flow phenomena. The calculations of the ASTAR Benchmark test cases [11], 
which address typical two-phase flow phenomena (e.g. void and pressure wave propagation, phase 
transitions, sharp interface movements, compressible and nearly incompressible conditions, thermal 
and mechanical non-equilibrium) showed the robustness, accuracy and efficiency of the numerical 
schemes of the code [12].  

A remark on the benefits of hyperbolicity (real eigenvalues) might be appropriate. Care must be 
taken on the formulation of interfacial terms. An incomplete formulation of the interfacial momentum 
coupling int

kF  results in complex eigenvalues and such system does not represent a well-posed initial-
boundary value problem. A consequence might be that certain physical phenomena, e.g. critical flow 
conditions, are not realistically described. Nevertheless numerical solvers that provide sufficient 
numerical diffusion in order to dampen short wave length instabilities (e.g. elliptic solvers) obtain 
stable results for many transient two-phase flow conditions.  

Transport Equation for Interfacial Area Concentration 

The interfacial area concentration plays a central role in the modelling of two-phase flows. 
Therefore, an additional model equation is added to the conservation equations: 

 Φ=⋅∇+
∂

∂
)( intint

int

ua
t

a
  (7) 

The right hand side Φ  of the interfacial area transport equation describes the change of the interfacial 
area concentration due to phase interactions. The modelling of Φ  is described in the following. The 
transportation velocity of the interfacial area concentration uint must be determined from the 
conservation equations. 

The modelling approach calculates the interfacial area concentration from the complete 
differential of the particle radius and from a momentum equation at the phase boundary (Rayleigh 
equation). Through this approach it is possible to avoid empirical constants completely. The model 
describes the dynamic change of the interfacial area concentration due to mass and energy transfer 
between the phases and due to forces, which act at the interface [3]. The procedure is independent of 
the description of observed phenomena. For example the phenomena such as bubble coalescence and 
bubble disintegration on the interfacial area concentration are not explicitly modeled, but their effect is 
included by the force interactions between the phases. The modelling approach is not restricted to 
bubbly flows, but here, the derivation is given exemplary for bubbly flows. The derivation of the 
interfacial area transport equation starts with the ratio of the volume fraction αg to the interfacial area 
density aint for spherical bubbles: 

 
3int

gg R

a
=

α
 (8) 

with bubble radius gR . The relation (8) has the advantage to be independent of the number of bubbles 

which is considered as an essential aspect. Differentiation of equation (8) yields 
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With the help of the simplified mass balances  
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concentration arises as a result of algebraic manipulations: 
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The change of the interfacial area due to evaporation or condensation is taken into consideration by 
the mass transfer term gΓ . The change of the particle radius inertialgR ,

�  is calculated by using the 

Rayleigh equation: 
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The Rayleigh equation is enlarged through the pressure equation at the interface which gives its 
dependence on surface tension, viscosity and turbulence: 
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with 2int

4
1

rlg pp uρ=− ∞ . The turbulent shear stress is derived from the impulsive motion of a 

particle (Rayleigh impulsive flow) [3]: 
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In analogy to the derivation of equation (10) in the bubbly flow regime, one can derive a transport 
equation for the interfacial area equation in the droplet flow regime: 
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For flow regimes between bubbly flow and droplet flow an interpolation of the two equations (10) and 
(14) will be used, e.q. )14()10( gl αα + , which yields: 
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This set of equations is implemented in FLUBOX and has been applied for several configurations. 
It follows three validation calculations in the area of upward vertical pipe flows with mixtures of air 
and water. The pipes vary in length and diameter. 

Validation calculations with upward vertical pipe flows 

Cocurrent air-water up-flow in a 5.08 cm pipe 

For a first validation of the interfacial area transport equation (10), experimental data of a steady 
air-water cocurrent up-flow in a 5.08 cm diameter pipe are used [5]. In these experiments, interfacial 
area and void fraction were measured with a double-sensor conductivity probe at three different axial 
positions, L/D = 2, 32 and 62. The boundary conditions are summarized in Table 1 for three test cases. 

 

 jg [m/s] jl [m/s] αg [-] 

Case 1 0.023 0.77 0.025 

Case 2 0.117 0.77 0.100 

Case 3 0.117 1.58 0.065 

 

Table 1: Boundary conditions for the 5.08 cm diameter pipe 

In case 1 with 2.5% void fraction and very low liquid flow rate, bubble breakup can be neglected 
and the change of interfacial area is only due to coalescence. In case 2 with the same liquid superficial 
velocity but a higher void fraction, the decrease of interfacial area due to coalescence is reduced by 
bubble breakup. In case 3, the coalescence rate is balanced by the breakup rate, resulting in a relative 
flat axial distribution of the interfacial area concentration. 

In the paper of Q.Wu [13] these test cases were successfully post calculated with a modelling of 
coalescence and breakup. In our approach however, the model describes the forces acting on the 
interfacial area. The good agreement with the experimental data supports the chosen approach (Figure 
1). The model equations are based on first principles and good agreement is achieved without 
empirical constants. 
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Experiments of Kashyap et al. 

0 0.5 1 1.5 2 2.5 3 3.5 4
Length [m]

20

40

60

80

100

120

In
te

rf
ac

ia
l a

re
a 

de
ns

ity
 [1

/m
]

                                    void
calculation case1  2.5%
 experiment case 1
calculation case2  10%
 experiment case 2
calculation case3  6.5%
 experiment case 3

Two-Fluid Model 

D:\Fortran\Flubox2d\InterfacialArea_m\Jsplot\Ort_aI_Wu98.plt  

Figure 1: Vertical bubbly flow distribution of interfacial area concentration 

Cocurrent air-water up-flow in small diameter pipe 

The test section was a round tube with inner diameter of D = 9 mm and a length of L = 945 mm. 
The air and water were mixed in a mixing chamber and the mixture flowed upward through the test 
section. The water temperature was 20 °C at atmospheric pressure. Local measurements of flow 
parameters such as void fraction, interfacial area concentration and gas velocity were performed with 
the stereo image-processing method at six axial locations of z/D = 3, 6, 12, 24, 57 and 91 [4]. A 
comparison of the stereo-imaging method with the double sensor probe method showed a statistical 
accuracy in the order of 10 % [14]. From the measurements correlations were derived for the pressure, 
the void fraction and the gas velocity. In this experiment practically no disintegration of bubbles was 
observed, since the water flow was only weakly turbulent. The measured reductions of the interfacial 
area concentrations are thus due to bubble coalescence alone. The calculations show a reasonable 
agreement with the measured values, and/or the correlations derived from measured values, Figures 2-
4. The boundary conditions of three test runs are specified in Table 2. 

 

 jg [m/s] jl [m/s] αg [-] 

Run 1 0.013 0.58 0.021 

Run 2 0.052 0.58 0.073 

Run 3 0.052 1.00 0.044 

 
Table 2: Boundary conditions for the small diameter pipe 
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Experiments of Hibiki, Goto, Takamasa, Ishii 
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Figure 2: Axial distribution of interfacial area concentration 

 

 

Hibiki, Takamasa, Ishii, empirical correlations 
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Figure 3: Axial distribution of gas volume fraction 
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Hibiki, Takamasa, Ishii, empirical correlations 
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Figure 4: Axial distribution of gas velocity 

Gas-liquid flow in a large vertical pipe 

The test facility TOPFLOW of the Institute for Safety Research of the Research Center 
Rossendorf was established for the investigation of stationary and transient two-phase flows [6]. The 
test facility has, among others, a vertical test section with nominal diameter 200 mm. The vertical test 
section serves for the investigation of flow structure with stationary and transient two-phase air/water 
and/or steam/water flows. The test section is equipped with a variable injecting system that allows to 
inject gas or steam at 18 different positions upstream of the measuring position. Wire-mesh sensors are 
used to measure sequences of two-dimensional distributions of local instantaneous gas fraction within 
the complete pipe cross-section. The sensors reach a resolution of 3 mm at a measuring frequency of 
2500 Hz. 

In the test series (TS) air was fed from ring chambers through orifices in the pipe wall of 1 mm 
diameter. In all test series the superficial water velocity was jl = 1.016 m/s at atmospheric pressure and 
27 °C temperature. The superficial velocity of the gaseous phase jg varied as indicated in Table 3. 

TS jg [m/s] αg [-] 

041 0.0094 0.010 

074 0.0353 0.032 

096 0.0862 0.057 

118 0.2156 0.102 

140 0.5331 0.176 

 
Table 3: Boundary conditions of test series of the 200 mm pipe 
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TOPFLOW DN 200   Jl=1.016
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Figure 5: Axial distribution of interfacial area concentration 

The axial distribution of the interfacial area concentration was post-calculated. The Figures 5 and 
6 show the measured and computed axial distributions of the interfacial area concentration and the gas 
content. The rise of the interfacial area concentration along the pipe length at the superficial gas 
velocities of 0.086, 0.22 and 0.53 m/s points to bubble disintegration in the flow. The slight reduction 
of the interfacial area concentration at a superficial gas velocity of 0.0094 m/s points to bubble 
coalescence, however. These observed phenomena are represented correctly in tendency also in the 
calculation. Altogether, the post-calculations show a reasonable agreement with the measurement 
results. 
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Figure 6: Axial distribution of gas volume fraction 
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Conclusions and Perspectives 

The further development of multidimensional two-phase model equations is related to an 
extension of the basic two-fluid model with interfacial area transport processes and the inclusion of 
generic two-phase turbulence models. In a two-fluid model the interfacial area concentration is one of 
the key parameters in the constitutive relations in order to describe suitable the phase interactions. The 
proposed new model for the interfacial area transport equation is based on first principles (Rayleigh 
equation for momentum transport) and avoids empirical parameters. It differs from model suggestions 
in the literature which explicitly model bubble disintegration or bubble coalescence. The new 
modelling is based on a description of forces acting at the interface and observed phenomena are the 
result of the dynamic behavior at the interface. The computation of the dynamic change of the 
interfacial area concentration with only one transport equation is very attractive concerning the 
computational costs, in relation to the multi-group models. The presented validation calculations 
within the range of bubbly flows show a reasonable agreement with experimental data and confirm the 
new modelling concept. Further validation calculations in the range of drop flows are under way. 
Afterwards, the complex flow range between bubbly flow and drop flow will be addressed. The main 
idea behind the transport equation for the interfacial area concentration is to replace the flow pattern 
maps of the thermo-hydraulic codes. Flow regime maps have their uncertainty range and it is difficult 
to apply them suitably. There is also a lack on generally accepted criteria for intermediate flow 
transitions. The linear interpolation in equation (15) to cover intermediate flow regimes is a first 
attempt. Also nonlinear interpolations are thinkable, provided the weighting amounts to one. 

Nomenclature 

α  volume fraction [-] 
 h enthalpy [J/kg] 
 p pressure [Pa] 
 ρ density [kg/m³] 
 Γ  mass transfer term [kg/m³/s] 
 u velocity [m/s] 
 ru  lg uu −= , relative velocity 

 uint interfacial velocity 
 kj  superficial velocity 

 inta  interfacial area concentration [1/m] 
 τ  shear stress [Pa] 
 x space coordinates, x=(x,y,z) [m] 
 t time [s] 
Indizes 
 k index for gas (g) or liquid (l) 
 m index for mixture 
 t index for turbulent 
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