NUCLEAR ENERGY AGENCY
COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

OECD/NEA WORKSHOP ON THE RELATIONS BETWEEN SEISMOLOGICAL DATA AND SEISMIC ENGINEERING

Istanbul, 16-18 October 2002
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed:

• to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy;

• to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and

• to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations.

The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996), Korea (12th December 1996) and the Slovak Republic (14 December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention).

NUCLEAR ENERGY AGENCY

The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full Member. NEA membership today consists of 28 OECD Member countries: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities also takes part in the work of the Agency.

The mission of the NEA is:

• to assist its Member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes, as well as

• to provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and sustainable development.

Specific areas of competence of the NEA include safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides nuclear data and computer program services for participating countries.

In these and related tasks, the NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has a Co-operation Agreement, as well as with other international organisations in the nuclear field.

© OECD 2003

Permission to reproduce a portion of this work for non-commercial purposes or classroom use should be obtained through the Centre français d’exploitation du droit de copie (CCF), 20, rue des Grands-Augustins, 75006 Paris, France, Tel. (33-1) 44 07 47 70, Fax (33-1) 46 34 67 19, for every country except the United States. In the United States permission should be obtained through the Copyright Clearance Center, Customer Service, (508)750-8400, 222 Rosewood Drive, Danvers, MA 01923, USA, or CCC Online: http://www.copyright.com/. All other applications for permission to reproduce or translate all or part of this book should be made to OECD Publications, 2, rue André-Pascal, 75775 Paris Cedex 16, France
COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

The Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA) is an international committee made up of senior scientists and engineers. It was set up in 1973 to develop, and co-ordinate the activities of the Nuclear Energy Agency concerning the technical aspects of the design, construction and operation of nuclear installations insofar as they affect the safety of such installations. The Committee's purpose is to foster international co-operation in nuclear safety among the OECD Member countries.

The CSNI constitutes a forum for the exchange of technical information and for collaboration between organisations, which can contribute, from their respective backgrounds in research, development, engineering or regulation, to these activities and to the definition of the programme of work. It also reviews the state of knowledge on selected topics on nuclear safety technology and safety assessment, including operating experience. It initiates and conducts programmes identified by these reviews and assessments in order to overcome discrepancies, develop improvements and reach international consensus on technical issues of common interest. It promotes the co-ordination of work in different Member countries including the establishment of co-operative research projects and assists in the feedback of the results to participating organisations. Full use is also made of traditional methods of co-operation, such as information exchanges, establishment of working groups, and organisation of conferences and specialist meetings.

The greater part of the CSNI's current programme is concerned with the technology of water reactors. The principal areas covered are operating experience and the human factor, reactor coolant system behaviour, various aspects of reactor component integrity, the phenomenology of radioactive releases in reactor accidents and their confinement, containment performance, risk assessment, and severe accidents. The Committee also studies the safety of the nuclear fuel cycle, conducts periodic surveys of the reactor safety research programmes and operates an international mechanism for exchanging reports on safety related nuclear power plant accidents.

In implementing its programme, the CSNI establishes co-operative mechanisms with NEA's Committee on Nuclear Regulatory Activities (CNRA), responsible for the activities of the Agency concerning the regulation, licensing and inspection of nuclear installations with regard to safety. It also co-operates with NEA's Committee on Radiation Protection and Public Health and NEA's Radioactive Waste Management Committee on matters of common interest.
A. Foreword

The Committee on the Safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities concerning the technical aspects of design, construction and operation of nuclear installations insofar as they affect the safety of such installations.

The Integrity and Ageing Working Group (IAGE WG) of the CSNI deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The sub-group dealing with the seismic behaviour of structures proposed this workshop.

The OECD-NEA workshop on the relations between seismological data and seismic engineering analyses was held on October 17-18, 2002. A field visits in the Izmit area where the fault scarp is still visible was organised on Wednesday October 16, 2002.

The Türkiye Atom Enerjisi Kurumu, TAEK (Turkish Atomic Energy Agency) in Istanbul, Turkey, hosted the workshop.

A recommendation of the OECD workshop on the engineering characterisation of seismic input (hosted by the United States Nuclear Regulatory Commission and organised by Brookhaven National Laboratory on November 15-17, 1999) was to foster the growth of interaction between "design engineers" and "ground motion specialists". The objective of the Istanbul workshop is to address this recommendation.

The workshop gave seismologists the opportunity to present observed damages and their related ground motions and design engineers the opportunity to present current techniques used in the evaluation of seismic hazards. Bridging the gap between these two fields was a key objective -- this workshop was a forum for bringing together the two communities.

In addition, the location of the workshop was particularly interesting and provided possibilities for several of the host country participants to discuss the 1999 Kocaeli earthquake.

On the basis of lessons learned from large earthquakes over the last decade, the sessions had been tailored so as to cover topics on which a strong co-operation among seismologists and designers was expected to be fruitful, such as on-going studies aiming to link damage to seismological parameters, description of seismic input motion, innovative design approaches (i.e. displacement based approaches & performance based design) and current changes in regulations in the area of seismic input motions. Special interest was paid to near-field earthquakes and soft soils issues.

The sessions were as follows:

- Topic 1: Damaging capacity of seismic motions
- Topic 2: Seismic input motion for design purpose
- Topic 3: Regulatory aspects
- Final session: Formulation of conclusions and recommendations

In the area of the seismic behaviour of structures, the CSNI is currently preparing among others a workshop on the New Relation between Geology, Seismology and Engineering for Seismic Input in Japan in 2004. This workshop would complement the Istanbul workshop by investigating further the link between the 3 areas mentioned above. A report on differences in approach between nuclear and conventional seismic standards with regard to hazard definition is under preparation. The IAGE WG also started a study on NPPs and other nuclear facilities that have experienced an earthquake.
Seismic reports issued by the group since 1996 are:

- NEA/CSNI/R(2002)22 Lessons learnt from high magnitude earthquakes with respect to nuclear codes and standards

The complete list of CSNI reports, and the text of reports from 1993 onwards, is available on http://www.nea.fr/html/nsd/docs/

Large displacement of a wall observed after the Kocaeli earthquake (Izmit area) - The wall was initially straight.
B. Acknowledgement

Gratitude is expressed to Türkiye Atom Enerjisi Kurumu, TAEK (Turkish Atomic Energy Agency) for hosting the workshop as well as to the Organization for Economic Co-operation and Development (OECD) / Nuclear Energy Agency (NEA) / Committee on the Safety of Nuclear Installations (CSNI) / Integrity and Aging Working Group (IAGE) (Integrity of Components and Structures) for sponsoring our work.

Special thanks are expressed to Dr. S. Alten (TAEK) for his excellent organization and help during the workshop and to Prof. P. Gulkan (Chairman of the Workshop, METU, TURKEY) for his chairmanship and the organization of the visit of the Izmit area.

Thanks are also expressed to session chairpersons for their effort and co-operation:

Dr. G. Koksal
Prof. H. Shibata
Dr. N. Simos
Mr. Donald
Dr. A. Gürpınar
Prof. J. Anderson
Prof. G-F Panza
Mr. P. Sollogoub

TAEK
NIED
BNL
HSE
IAEA
Univ. Nevada
Univ. Trieste
CEA
TR
JPN
USA
UK
AU
USA
ITY
FR

The organizing Committee members were:

Prof. P. Gulkan
Mr. P. Sollogoub
Dr. M. Aktar
Prof. P. Labbé
Dr. J-A. Murphy
Dr. Y. Kitada
Dr. C. Duval
Dr. T. Sano
Mr. V. Renda
Dr. D. Prochazkova
Mr. Eric Mathet

METU
CEA SACLAY
MAM
IAEA
NRC
NUPEC
EDF
ANPA
EC ISPRA
SONS
OECD/NEA
TR
FR
TR
international
USA
JPN
FR
ITY
international
CR
International Secretary
C. Table of contents

<table>
<thead>
<tr>
<th>Opening session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening</td>
</tr>
<tr>
<td>Dr. G. Köksal (Atomic Energy Authority, Turkey)</td>
</tr>
<tr>
<td>IAGE WG Secretary</td>
</tr>
<tr>
<td>Presentation by Mr. E. Mathet (NEA/OECD)</td>
</tr>
<tr>
<td>IAGE WG Presentation</td>
</tr>
<tr>
<td>Prof. P. Labbe (International Atomic Energy Agency, Austria)</td>
</tr>
<tr>
<td>Introductory Paper</td>
</tr>
<tr>
<td>Prof. P. Gulkan (Middle East Technical University, Ankara, Turkey), Chairman of the Workshop</td>
</tr>
<tr>
<td>Mr. Sinan Akkar (Middle East Technical University, Ankara, Turkey)</td>
</tr>
<tr>
<td>Quantification of the effect of low magnitude near field earthquakes</td>
</tr>
<tr>
<td>Mr. P. Sollogoub, (CEA Saclay, France), Chairman of the IAGE Seismic WG</td>
</tr>
<tr>
<td>Mr. C. Pedron (CEA Saclay, France)</td>
</tr>
<tr>
<td>Mr. S. Goubet (EDF SEPTEN, France)</td>
</tr>
<tr>
<td>Mr. E. Viallet (EDF SEPTEN, France)</td>
</tr>
<tr>
<td>Session 1 – Prof. H. Shibata</td>
</tr>
<tr>
<td>(National Research Inst. for Earth Science and Disaster Prevention, NIED, Tokyo)</td>
</tr>
<tr>
<td>Topic 1: Damaging capacity of seismic motions</td>
</tr>
<tr>
<td>Seismic response of structures to near fault ground motion</td>
</tr>
<tr>
<td>Mr. M. Elghohary (Atomic energy of Canada Limited AECL, Canada)</td>
</tr>
<tr>
<td>Mr. A. Ghobarah (Mc Master University, Ontario, Canada)</td>
</tr>
<tr>
<td>Damaging effects of near-field and far-field earthquake on reinforced concrete shear walls evaluated by a simplified model taking into account stiffness degradation</td>
</tr>
<tr>
<td>Mr. M. Brun (INSA Lyon, France)</td>
</tr>
<tr>
<td>Mr. J-M. Reynouard (Institut National des Sciences Appliquées de Lyon, France)</td>
</tr>
<tr>
<td>Mr. L. Jezequel (Ecole Centrale de Lyon, France)</td>
</tr>
<tr>
<td>Mr. C. Duval (EDF SEPTEN, France)</td>
</tr>
<tr>
<td>Mrs. S. Goubet (EDF SEPTEN, France)</td>
</tr>
</tbody>
</table>
Analysis of the response behaviour of structures subjected to damaging pulse-type ground motions
Mr. F. Mollaioli (University of Roma, Italy)
Mr. L. Decanini (University of Roma, Italy)
Mrs. S. Bruno (University of Roma, Italy)
Prof. G-F. Panza (University of Trieste, Italy)

Notes presented at the Workshop
The effect of near-field ground motions on degrading systems
Mr. H. Sucuoğlu (Middle East Technical University, Turkey)
Mr. A. Erberik (Middle East Technical University, Turkey)

Discussions

Session 2 – Dr. N. Simos
(Brookhaven National Laboratory, United States)

Topic 2: Seismic input motion for design purpose

Estimation of the near-source strong ground motion during the Kocaeli, Turkey earthquakes of August 17, 1999 at damaged areas with regards of site effects
Mr. K. Kudo (Earthquake Research Institute, University of Tokyo, Japan)
Mr. T. Kanno (National Research Institute for Earth Science and Disaster Prevention, Japan)

Absence of actual main-shock records, recorded aftershocks & estimated main-shock motions at south Izmit bay during the August 17, 1999 Izmit (Turkey) earthquake
Mr. M. Çelebi (Research Civil Engineer, USGS, United States)
Mr. H. Sekiguchi (Geological Survey, Japan)

The study for the evaluation methods for the design basis earthquake ground motions
Mr. R. Kikuchi (Seismic Engineering Center, Nuclear Power Engineering Corporation, Japan)

Strong ground motion simulations for South-eastern Fennoscandia
Mr. P. Varposuo (Fortum Nuclear Services Ltd Vantaa, Finland)
Mr. J. Saari (Fortum Nuclear Services Ltd Vantaa, Finland)
Mr. Y. Nikkari (Fortum Nuclear Services Ltd Vantaa, Finland)
Mr. C. Sinadinovski (Australian Geological Survey Organisation, Australia)
Session 3 – Mr. J. Donald
(Health and Safety Executive, Nuclear Safety directorate, United Kingdom)

Topic 3 Regulatory aspects

The new IAEA safety guide on seismic hazard analysis (with emphasis on considerations for zones of diffuse seismicity)
Dr. A. Gürpinar (International Atomic Energy Agency, Austria)

Seismic hazard determination of nuclear facilities in the Czech Republic
Dr. D. Procházková (Emergency Planning Department, Fire and Rescue Service, Czech Republic)

A developing risk-informed design basis earthquake ground motion methodology for nuclear power facilities in Japan
Mr. T. Konno (Secretariat of Nuclear Safety Commission, Japan)

Nuclear power plants seismic instrumentation: Spanish practice
Mr. J. Juan (Consejo de Seguridad Nuclear, Spain)
Mr. J. Sanchez-Cabanero (Consejo de Seguridad Nuclear, Spain)

Mr. K. Takashima (Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Japan)
Mr. S. Kawahara (Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Japan)

Discussion

Session 4 – Dr. A. Gürpinar
(International Atomic Energy Agency, Austria)

Topic 2 Seismic input motion for design purpose

Seismic ground motion modelling and damage earthquake scenarios – a bridge between seismologists and seismic engineers
Prof. G-F. Panza (University of Trieste, The Abdus Salam International Center for Theoretical Physics, Italy)
Mr. F. Romanelli (University of Trieste, Italy)
Mr. F. Vaccari (University of Trieste, Italy)
Mr. L. Decanini (University La Sapienza, Italy)
Mr. F. Mollaioi (University La Sapienza, Italy)
Generation of synthetic strong earthquake ground motions using a composite source model and synthetic green's functions

Prof. J. Anderson (Seismological Laboratory, University of Nevada, United States)
Mr. H. Sucuoğlu (Earthquake Engineering Research Center, Turkey)
Mr. Y. Zeng (Seismological Laboratory, University of Nevada, United States)
Mr. F. Su (Seismological Laboratory, University of Nevada, United States)

Inversion of Stochastic Earthquake Model Parameters in Korea using the Modified Levenberg-Marquardt's method

Mr. J-R Lee (Korea Electric Power Research Institute, Republic of Korea)
Mr. W. Silva (Pacific Engineering and Analysis, United States)
Mr. K-H Yun (Korea Electric Power Research Institute, Republic of Korea)

Characteristics of three-dimensional strong ground motions along principal axes

Mr. K. Ohtani (National Research Institute for Earth Science and Disaster Prevention, Japan)
Mr. B. Kojika (National Research Institute for Earth Science and Disaster Prevention, Japan)

On a test to resolve issues related to earthquake response of nuclear structures and the ground motions used for the test

Dr. Y. Kitada (Nuclear Power Engineering Corporation, Japan)

Discussion

Session 5 – Prof. J. Anderson (Seismological Laboratory, University of Nevada, United States)

Topic 1 Damaging capacity of seismic motions &

Topic 3 Regulatory aspects

Seismic behaviour of masonry in-filled frames - Local and global modelling for the seismic assessment of existing structures

Mr. P. Sologoub (CEA, Saclay, France)
Mr. D. Combesure (CEA, Saclay, France)
Mr. F. Vita (University La Sapienza, Italy)

The use of simplified multi-story models in characterising damage potential of earthquake ground motions

Mr. F. Mollaioli (University of Roma, Italy)
Mr. L. Decanini (University of Roma, Italy)
Mr. A. Mura (University La Sapienza, Italy)

Notes on ground motions defined by EUROCODES

Mr. T. Sanò (ANPA/DISP, Italy)
Proof of Seismic Design Code and its Probabilistic Evaluation - Role of Damage Reports
Including Shaking Table Tests
Mr. H. Shibata (National Research Institute for Earth Science and Disaster Prevention, Japan)

Discussion

Session 6 – Prof. G-F. Panza
(University of Trieste, Italy)

Topic 2 Seismic input motion for design purpose

Design Input based on Ground Motion Analysis for the Taiwan High Speed Rail Project
Dr. H. Wenzel (VCE Vienna Consulting Engineers, Austria)

Seismic Input Motions for Structure, Plant and Equipment Design
Mr. J. Mills (Babtie Group Ltd, United Kingdom)

Response Spectra for Design Purpose of Stiff Structures on Rock Sites
Mr. S. Noda (Tokyo Electric Power Company, Japan)
Mr. K. Yashiro (Tokyo Electric Power Company, Japan)
Mr. K. Takahashi (Kajima Corporation, Japan)
Mr. M. Takemura (Kajima Corporation, Japan)
Mr. S. Ohno (Kajima Corporation, Japan)
Mr. M. Tohdo (Toda Corporation, Japan)
Mr. T. Watanabe (Ohsaki Research Institute, Japan)

Long term seismological hazard assessment: Deterministic and probabilistic approach
Dr. G. Leydecker (Federal Institute for Geosciences and Natural Resources, Germany)
Mr. J. R. Kopera (Consultant for Engineering Seismology, Germany)

Methodology to produce hazard consistent free-field And in-structure design response spectra
Presented by Dr. N. Simos (Scientist, Brookhaven National Laboratory, United States)
Mr. C. J. Costantino (Professor Emeritus, City University of New York, United States)
Dr. W. J. Silva (Senior Scientist, Pacific Engineering and Analysis, United States)
Dr. R. K. McGuire, (Risk Engineering, Unnited States)
Mr. R. M. Kenneally (Senior Structural Engineer, USNRC, United States)
Mr. A. J. Murphy, Senior Technical Advisor, USNRC, United States)

Discussion
Final Session – Mr. P. Sologoub
(CEA, Saclay, France)

Formulation of conclusions and recommendations

F. Poster Sessions

Seismic Hazard Assessment of the LUCAS Heights Hi-Flux Australian Reactors, Sydney, Australia: Seismic Hazard assessment in a low-seismicity region
Mr. M. Stirling (Institute of Geological and Nuclear Sciences Ltd, New Zealand)
Mr. K. Berryman (Institute of Geological and Nuclear Sciences Ltd, New Zealand)
Mr. Graeme Mc Verry (Institute of Geological and Nuclear Sciences Ltd, New Zealand)
Mr. G. Gibson (Seismological Research Center, Australia)
Mr. N. Abrahamson (Pacific Gas and Electric Company, United States)

Probabilistic analysis of the non linear seismic response of an oscillator-effects of the variability of seismic movement on the damage sustained by a simple structure (1)
Mr. P-A. Nazé (EDF SEPTEN, France)
Mr. S. Guisard (EN TPE, Lyon; France)
Mr. J-M Reynouard (INSA, Lyon, France)
Mr. P. Labbé (International Atomic Energy Agency, Austria)

Site responses in the Taipei Basin during the 1999 CHI-CHI, Taiwan, Earthquake sequence
Mr. K-L. Wen (Institute of Applied Geology, National Central University/Office of the National S&T Program for Hazards Mitigation, National Taiwan University, Taiwan)
Mr. H-Y. Peng (LinkEarth Technology, Taiwan)
Mr. C-L. Chang (Office of the National S&T Program for Hazards Mitigation, National Taiwan University, Taiwan)

G. List of participants
D. Conclusions and Recommendations

The following conclusions and recommendations have been developed by the floor and reviewed by the IAGE/Seismic sub-group in April 2003.

CONCLUSIONS

- Contact between seismologists and engineers have proved to be very valuable and should be pursued,

- Work on the definition of parameters needed for seismic design should be continued,

- Significant progress have been accomplished recently in computation of strong ground motion at a site using physical properties of seismogenic fault, travel path and site effects. Different methods were proposed: fully analytical, semi-empirical, empirical approaches, synthetic Green’s functions,

- There is a strong tendency for seismic codes to consider probabilistic seismic hazard assessment (PSHA),

- The computation of strong ground motions at a site using the physical properties of the seismogenic fault, a travel path and site effects has great promises for the future. The new revision of the IAEA safety guide on seismic hazard analysis for NPPs also suggests the use of synthetic Green’s function when appropriate,

- It appeared during presentations and discussions that the term “near field earthquake” could have two different contexts, which should be clarified,
 - Moderate magnitude NFE effects represent the fact that high acceleration may be present near the epicenter without significant damages at least for engineered structures,
 - High magnitude NFE represents particular characteristics (e.g. directivity) near the fault. Some recent earthquakes (e.g Kobe, Northridge, Chi-Chi, Izmit) showed that this effect can be very damaging.

- At present, NFE effects seem not mature enough for prescriptive regulation,
RECOMMENDATIONS

The following recommendations are offered to inform national activities and research programmes.

TOPIC 1: DAMAGING CAPACITY OF SEISMIC MOTIONS

- Main subject is related to the key parameters for SSC’s (Systems, Structures and Components) loss of safety functions:
 - The acceleration is usually not a key for the failure. Velocity may better represent damage potential and may be the more appropriate parameter to study and understand the effect of NFE,
 - Also the elastic response spectrum is not a key but rather the shape of the pulse (i.e. the highest intensity part of the signal) has more significant effect on the loss of safety functions for some SSCs,
 - Inelastic spectra may be useful for damage assessment.

- Data collection is the key for the progress in this field and efforts must be sustained (soil and structure movements measurements near faults, co-operative work between seismologists and engineers for appropriate instrumentation to answer data needs, to define systematically and constrain uncertainties ...). data is needed both for high magnitude and moderate magnitude earthquakes in the near field.

TOPIC 2: SEISMIC INPUT MOTION FOR DESIGN PURPOSE

- It is very important to have in mind that large earthquakes are a rare resource that we must not miss (i.e. The choice of potential sites and the related instrumentation process should be carefully made through wide exchanges and collaborations),

- It is recommended that the mathematical processes that are being used to replicate the mainshock strong motions (e.g. the main strong pulse associated with the near-field) be validated towards observations,

- It is recommended that tools to address the peculiarities of the site response and its associated damage be developed,

- Different methods used to model ground motion should be compared both for efficiency and for adequacy,

- Methodologies must be defined and calibrated to generate statistically significant amount of synthetic time series consistent with records. They can be improved, as new data become available,
• It is necessary to have practical applications of input motions predictive methods to important engineering structures which will facilitate their application to nuclear installations. Blind tests could be considered,

• More work is needed to validate PSHA techniques against historical data,

• More work is needed to define the relation between rock and soil ground motions. It is recommended that more attention including data collection should be given to soft soil sites,

• Caution should be exercised with deconvolution methods to define seismic input.

TOPIC 3: REGULATORY ASPECTS

• Performance based seismic engineering should be promoted,

• Special site-specific design spectra should be developed,

• NFE effects are an important research topic. More efforts are needed before implementing NFE effects in a prescriptive regulation.
SESSION SUMMARIES

The session chairs have kindly provided summaries of the sessions.

Session 2 – Dr. N. Simos
(Brookhaven National Laboratory, United States)

Topic 2: Seismic input motion for design purpose

Presenting Authors
Mr. K. Kudo
Mr. M. Celebi
Mr. R. Kikuchi
Dr. P. Varpasuo

SYNOPSIS

The session presentation included extensive discussion on the generation of strong motion data of the 1999 Izmit earthquake stemming from the fact that there were no actual strong motion records. Aftershock recordings were used, along with convolution/deconvolution analysis techniques to reconstruct the strong motion from the mainshock.

In addition, information was presented on the ambitious Sitting Reliability Studies of NUPEC, Japan on:

a. Evaluation Methods for Seismic Wave Propagation Characteristics
b. Evaluation Methods for Strong Motion in the near-field Region

Finally, simulations of potential strong motions for a “quite” zone of Fennoscandia was presented.

MAIN POINTS RAISED IN THE SESSION

During the presentation and discussion of the two papers dealing with 1999 IZMIT earthquake key points were raised. Specifically,

- How trust-worthy are the mathematical processes that are being used to recover the mainshock strong motions?
- Do we have the tools to even address the “peculiarities” in the site response and the damage associated with them?
- Can we recover the main “killer” pulse associated with the near-field?
- Special site-specific design spectra should be developed.
MEETING THE SUB-GROUP RECOMMENDATION OF THE LAST OECD WORKSHOP

The basic premise of the session is in line with the charge of the previous workshop because it deals directly with the subject of developing design response spectra from field investigation (NUPEC study) and understanding of special case earthquakes (Izmit).

Further, the issue of what we do in complete absence of historical data was addressed in the fennoscandia study.

Session 4 – Dr. A. Gürpınar
(International Atomic Energy Agency, Austria)

Topic 2 Seismic input motion for design purpose

There were five presentations in this session. The general emphasis was on the modelling of seismogenic structures in order to generate design basis seismic ground motions taking into consideration, the source, travel path and the site effects to varying degrees.

Prof. G-F Panza’s presented a paper titled “Seismic ground motion modeling and damage earthquake scenarios – a bridge between seismologists and seismic engineers” authored by himself and Mr. F. Romanelli, F. Vaccari, L. Decanini and F. Mollaiali. The paper provides a logical alternative to the ground motion representation using real strong motion records or artificial records generated from statistics of an ensemble of real records. The proposed method involves a scenario-based approach using a multiscale seismicity model. The method is applied for the microzonation of the Umbria-Marche area, which was the scene of an earthquake sequence in 1997.

Prof. J. Anderson presented a paper titled “Generation of synthetic strong earthquake ground motions using a composite source model and synthetic Green’s functions” co-authored by Sucuoglu, Zeng and Su. In this paper a model is described in which synthetic records of strong ground motion are generated specific to fault-station geometry and using a fault slip model based on the superposition of randomly located sub-events. The synthetic Green’s function is used to transfer the motion through the flat-layered earth. The method is applied to the earthquake in Dinar, Turkey (1995).

Mr. J-R Lee presented a paper titled “Inversion of stochastic earthquake model parameters in Korea using the modified Levenberg-Marquardt’s method” co-authored by Yun and Silva. The proposed method uses stress drop for the sources, the Q factor for attenuation and the kappa factor for site effects as key parameters to model he ground motion. The application of the method is made to the Korean peninsula.

Mr. K. Ohtani presented a paper titled “Study of three dimensional strong ground motions” co-authored by Kojika. The paper reports the study of three-dimensional strong ground motions on three dimensional frame structures. The three dimensional strong ground motions are obtained from K-NET by applying the “moving window” technique to examine time dependent characteristics. The objective of the study is the generate time histories which can be used as input to shaking table experiments. In particular, the new shaking table Miki is mentioned in this context.
Dr. Y. Kitada presented his paper titled "On a test to resolve issues related to earthquake response of nuclear structures and the ground motions used for the test". The paper investigates the suitability of records from big blasts as earthquake ground motions for the design of nuclear facilities. In particular, some tests from blasts at a coal mine are studied. Dr. Y Kitada left the seismologists with the challenge of providing an answer to the question of this suitability.

There was considerable discussion on the presented papers. In fact, the use of models based on the physical parameters of the source, path and site (such as the synthetic Green's function) may be gaining some application in the nuclear industry. However, some case studies in other fields (application to other types of critical facilities) would be needed to overcome the innate resistance by the nuclear industry to change well-established and tested methods.

Session 6 – Prof. G-F. Panza
(Universita di Trieste, Italy)

Topic 2 Seismic input motion for design purpose

Dr. H. Wenzel described the analysis of near fault effects relevant to decision-making about the design approach to be used for railway bridges crossing an active fault. The bridge is under construction in Taiwan.

Mr. J. Mills dealt with the alternatives that can be offered by seismologists to the use of piecewise linear spectra matched time histories scaled to PGA. Can seismologists supply reliable time histories? Some presentations implied promising answers.

Mr. S. Noda illustrates a method for empirically evaluating response spectra and time-dependent features of seismic ground motion on a free run surface. The method can deal with near-source observations.

Dr. G. Leydecker illustrates the application of a combination of probabilistic and deterministic methods in a low seismicity area to define the design intensity.

Dr. N. Simoz summarizes recommendations for development of seismic ground motions to be used in the design and analysis of NPP dependence as source, path and site is confirmed both by records and modeling. Deconvolution of surface motion no longer valid.
E. Papers

Opening session

Mr. E. Mathet (NEA/OECD)

OECD/NEA Workshop on the Relations Between
Seismological Data and Seismic Engineering
Istanbul, 16-18 October 2002

Overview

♦ What is the OECD, the NEA, the CSNI
 - CSNI chart
 - WG on integrity of Components and Structures (IAGE)
 - IAGE WG areas of expertise
♦ IAGE Seismic sub-group
 - Chairmanship
 - Current activities
OECD

- Organization for Economic Co-operation and Development
- EC, N. America, Asia-Pacific region
- 30 members + EC
- OECD is
 - a tool for intergovernmental co-operation mainly in the economic field
 - a place for policy makers to compare point of views and experiences

NEA (Nuclear Energy Agency)

- Division of OECD
- 28 Member Countries
- 80 staff
- Mission is to assist its Member countries
 - in maintaining and further developing, through international co-operation, a peaceful and economical use of nuclear energy
 - to provide authoritative assessments and to forge common understandings on key issues

www.nea.fr How to get information

- General information
 - OECD http://www.oecd.org
 - Nuclear Safety Division http://www.nea.fr/html/nsd/

- Reports
 - CSNI reports at http://www.nea.fr/html/msd/docs/indexcsni.html

- Others
 - meetings, workshop announcements, joint projects
NEA Strengths

- Homogeneity in membership
 - small club
 - like-minded approach
 - climate of mutual trust
 - relatively non-political
- Provides added value and is cost effective
- Strong scientific/technical/legal work
 - narrow focus
 - does not deal with proliferation, safeguards
- Work methods flexible and responsive to member needs

NEA (Nuclear Energy Agency)/CSNI

- Nuclear Safety Division provides secretariat for CSNI
 - CSNI works through four Working Groups and two Special Expert Groups (SEGs)
 - WG on Structural Integrity of Components and Structures (IAGE)
Four Working Groups and two Special Expert Groups

- Risk assessment (WGRISK)
- Analysis and management of Accidents (GAMA)
- Integrity of Components and Structures (IAGE)
- Operating experiences (WGOE)

- Human and organisational factors (SEGHOF)
- Fuel Safety Margins (SEFSM)

- Co-ordination with CEC, IAEA, WANO etc.

WG on Integrity of Components and Structures (IAGE)

Since 2002 has 3 sub-groups and a Task Group

- Integrity of metal components and structures
- Aging of concrete structures
- Ressurec behavior of structures
- Wire system Aging Task Group (Cable TG)
Typical IAGE WG activities

- Workshops, Specialists Meetings
- Benchmarks/round robins/International
- Standard Problems
- State of the Art Reports, Topical reports

IAGE WG areas of expertise

- Structural integrity
- HSE
- Environmental Effect
- Plant ageing and Service Life Management
- Containment Long-term behaviour of concrete structures
- Seismic liquefaction
- Codes and standards
- New methodologies (for seismic design)
- Seismic retrofit
- New Task Group
 Mandate: report on research efforts related to core system aging

• Chairmanship:
 - Mr. Sollogoub (CEA, France)
 - Mr. Renard, Vice-chairman (Tractebel, Belgium)

• Current activities
 - Short report on "lessons learned from high magnitudes earthquakes with respect to nuclear codes and standards"
 - Technical opinion papers on "apparent discrepancies between nuclear and non-nuclear codes"
 - Shaking tables
 - Workshop on "seismic input for NPP design" in 2004 in Japan (Next meeting)
 - Workshop on "relations between seismological data and seismic engineering analysis"
 - Survey on NPPs and other nuclear facilities damaged by an earthquake
 - Seismic PSA
 - Multiple loading
 - Non-linear behaviour of degraded piping system
The Workshop

- Chairman: Prof. Polat Gulka

- Distributed:
 - revised program
 - copies of the papers

- Last session is to draft Conclusions and recommendations:

 Your input is needed

- LAST BUT NOT LEAST:
 - Practical arrangements: coffee breaks, lunches, secretariat assistance, Thursday evening dinner, ...
Objectives of this workshop

A recommendation of the OECD Workshop on the engineering characterisation of seismic input hosted by the NRC and organised by BNL in Nov. 1999 was:

to foster the growth of interaction between "design engineers" and "ground motion specialists"

The objective of this workshop is to address this recommendation.

Why such a recommendation?

Why now?

What to do?

To dialog on what?
The classical corner stones of earthquake engineering:

A) The classical description of the input motion:
 Response spectrum

B) The classical earthquake engineer toolbox:
 Analysis tools: linear behaviour, spectral analysis, (reduction factors)
 Acceptance criteria: ultimate load, service load ...

The classical postulate (postulate A):

The response spectrum * the classical toolbox

leads to an acceptable prediction of the damaging capacity of the input motion

New challenging observation:

In Central and Western US, as well as in lower seismic regions of Europe, site- specific response spectra developed in recent research studies for rock sites have very different shapes than those we have traditionally used in design of NPPs. ("modern" spectra)

- Much more high frequency content
- Much less low frequency content

(From the Nov. 1999 BNL meeting)

Which consequences?
Conclusion of the BNL workshop by R Kennedy

Should we reconsider the anti-seismic design on the basis of this new observation, e.g.

• promote a flexible design?
• take advantage that those spectra result in low displacements?

The development of a risk consistent approach is a way to cope with this difficulty

Implicit assumption: The postulate A is still valid.

Recommendations of the BNL workshop:

“The new ideas challenge established concept of design response spectra”

Recommendations on:

• methods for ground motion estimation
• data collection of motions
• site characterization issues
• data from high seismic area vs data from low seismic area
• vertical motions

Implicit new postulate (postulate B):

A sophisticated description of the input motion * the classical toolbox

will lead to an acceptable prediction of the damaging capacity of the input motion
There is another challenging observation:

The classical toolbox is not reliable:

- It overestimates the damaging capacity of "modern" spectra related to low magnitude earthquakes.
- It underestimates it in the case of large magnitudes.

This is substantiated by

- the experience feedback.
- the experimental observation (Camus experiment).

This originates the development of alternative approaches such as the displacement-based approach.

This question is addressed in the IAEA Co-ordinated Research Program that was launched this week in Istanbul.

Comments by the IAGE subgroup on seismic behaviour of structures:

"The subgroup recommend that the description of the seismic input shape appropriate for the design purpose be addressed ... along with how this input should be used in the design process"

Implicit new postulate (postulate C):

An improved description of the input motion * an improved toolbox will lead to an acceptable prediction of the damaging capacity of the input motion
Another possible way

On the basis of some recent studies, such as benchmarks, in particular the NUPEC benchmark

Postulate D

A sophisticated description of the input motion * A sophisticated toolbox will lead
to an acceptable prediction of the damaging capacity of the input motion

This is suitable for research purpose or for very specific cases but should not be recommended as a method for practical earthquake engineering

The present workshop:

The sessions are arranged so as to promote the dialog:

1) Damaging capacity of input motions
 • Correlation of damage with seismological parameters and with indicators
 • Damaging capacity of near field earthquakes ("modern" spectra) and features of the motion

2) Seismic input motion for design purpose
 • Parameters of the motion relevant for design purpose
 • New engineering approaches and related needs in terms of description of the motion
 • Site specific input motions, appropriate input motions

3) Regulatory aspects: changes about seismic input motions

Still addressing mainly input motions, but a step in the right direction
Introductory Paper

Prof. P. Gulkan
(Middle East Technical University, Ankara, Turkey)

Chairman of the Workshop

Mr. Sinan Akkar
(Middle East Technical University, Ankara, Turkey)

OECD/NEA Workshop on the Relations Between
Seismological Data and Seismic Engineering
Istanbul, 16-18 October 2002

A Critical Examination of Near-Field Accelerograms from the
Sea of Marmara Region Earthquakes

Abstract

In 1999, Turkey was struck by two major earthquakes that occurred 86 days apart on the North Anatolian fault system. Both of these earthquakes had right-lateral strike slip mechanisms with moment magnitudes greater than 7. The number of strong motion records obtained from the Kocaeli earthquake (08/17/1999, $M_w = 7.4$) was 34. The second event, designated as the Bolu-Düzce earthquake (11/12/1999, $M_w = 7.2$), triggered 20 instruments. Among the records that we have from these earthquakes, seven are near-source ground motion data. These records were obtained from the cities of Gebze (GBZ), Yarnıca (YPT), İzmit (capital city of the province of Kocaeli, IZT), Adapazarı (capital of the province of Sakarya, SKR), Düzce (DZC, shaken strongly in both events) and Bolu (BOL). In many of these urban centers extensive structural damage was observed. While these near field data have greatly expanded the strike-slip near-source ground motion data base worldwide for $M_w > 7$ they represent a blurred image of the actual severity of the ground motions in the epicentral area because of the sparseness of the national strong motion network, and the unrepresentative geologic conditions at the recording sites. We examine the records with the objective of ascertaining whether they include clues on the extensive damage on the housing stock of the epicentral region. The goal is tackled with earthquake structural engineering criteria in mind, using the drift spectrum as the primary yardstick. There appears to be conflicting evidence that the fault-normal direction should represent a greater damage-causing potential when this potential is based on ground story drift spectra. The component with the larger ground velocity does correlate better with the component with the larger drift demand, but this does not always coincide with the fault-normal direction. The period of the peak velocity pulse matches the structural period where the drift demand is largest. Further refinements of code requirements that consider this effect are in order.

Introduction

The two Sea of Marmara region earthquakes in Turkey during 1999 rank among the largest seismic events that have occurred in the eastern Mediterranean Basin during the last one hundred years. The first of these occurred on August 17 at 3:02 local time, and is a multiple rupture event with $M_w = 7.4$ and $M_s = 7.8$. The second earthquake ($M_w = 7.2$) occurred on November 12 at 6 pm. Their combined observable fault rupture length was 175 km. We will refer to these earthquakes as Events 1 and 2, respectively. In terms of their effects (ground deformation patterns, damage, and losses) these earthquakes established new thresholds. Unfortunately, only a patchwork of isolated strong ground motion records was recovered during the main shocks of both earthquakes. These records are useful, but the instruments lacked precise time coordination. Their haphazard locations (instruments are placed in institutional buildings, such as meteorological stations) limited their usefulness. Almost all were stand-alone devices, and were triggered on their own, making it difficult to study wave
propagation patterns. The mixture of analog and digital sensor outputs introduced another source of dissimilarity into the records recovered. The deployment of the instruments in the epicentral area whose records will be examined in this study is shown in Figure 1. Unluckily, the sensor in Yalova had been temporarily for servicing just prior to the earthquake. The names of the affected cities or where the records were taken have been mounted on the space image. The two different lines describing the approximate location for the observed fault ruptures are shaded differently so that any directivity effects discussed later can be estimated visually. We note that the near-field instruments (marked with a circle in the figure) were in many cases actually only several km removed from the actual fault trace.

Gölcük and Yalova, both situated along the southern coast of the Bay of İzmit, were two of the worst hit cities. They and many other smaller settlement centers along the shore between them were the scenes of horrible destruction, but no strong motion records from these exist. For this reason, they are marked with a rectangle in Figure 1. This unfortunate sparseness has created a void with respect to the question of whether we have an adequate description of how the ground actually moved in the immediate vicinity of the fault rupture. There exists indirect evidence that violent motions must have occurred: parked trucks and passenger busses were overturned at a filling station near İzmit during Event 1, and in Kaynaşlı, a small town 10 km east of Düzce during Event 2. There is other evidence of the extremely strong ground shaking that must have been experienced at close distances to the fault rupture. Widespread building damage such as seen in Figure 2 of the central part of Gölcük is reminiscent of scenes of bomb-ravaged urban areas in wars. Such damage must be attributed to many factors inclusive of deficient building practices, but sights such as this are not comparable with, for example, the damage in Erzincan, 700 km to the east of Ankara, during the M = 6.9, March 13, 1992 earthquake there when one component had a 0.5 g peak. Many parts of Gölcük also settled by as much as 1.5 m, a displacement that was accompanied by a 4 m horizontal slip. Such complex patterns of ground deformation are associated with severe demands from structures, but we have no records to confirm this generalization.

Event 1 caused widespread damage along the southern coast of the Bay of İzmit. The epicenter of this earthquake is determined to be directly in south of İzmit, near a village called Kullar. The rupture then advanced bilaterally, triggering a North Anatolian Fault segment in Arifiye, south of Adapazarı, and then, following a step-over, traced a north-east line to Gölyaka, a rural settlement about 15 km south west of Düzce. Its western propagation bisected Gölcük and smaller settlements in the region. It terminated in the west under water, probably near Hersek peninsula (Kocyiğit, et al., 1999). Event 2 originated at the eastern end of the rupture in Event 1, and propagated to the east, with Bolu in its line of sight. Its occurrence is in agreement with the postulated role of stress transfer, and fits the “falling domino” pattern of earthquake generation along the North Anatolian Fault since 1939 (Stein, 1999). In a strict sense, the BOL record in Event 2 is not near field because it was recorded at some 20 km to the nearest fault trace, but it exhibits a strong pulse fling that is a trademark for such motions. It also contains the largest PGA value (0.8 g) among the seven records studies. Other records reportedly made in Kaynaşlı during Event 2 were not available to us.

This paper will examine the available near source records obtained from these earthquakes in terms of damage-causing potential as understood in earthquake structural engineering. Our objective is to part the veil through an examination of records from the closest points to the affected region. For this purpose we will construct a simple expression for obtaining the drift spectrum—a diagram where the normalized interstory displacement caused in typical framed structures by a particular ground motion is plotted. We will compare the outcome of this exercise with a correlation of the maximum velocity component, and examine the effect of the pulse period on elastic interstory displacements in idealized framed structures. Evaluation of code provisions that handle the special requirements created by near-field earthquakes is a natural complementary exercise. The database we utilize is composed of seven records from the six cities identified in Figure 1. (Düzce had the misfortune of experiencing very strong shaking during both earthquakes.)
Table 1 summarizes information concerning the recording stations and sites. In Tables 2 and 3 we summarize the features of the main-shock records for Events 1 and 2, respectively. Only the very strong motion parts of some of these traces were used. The complete accelerograms from İzmit (IZT), Gebze (GBZ), Yarımca (YPT) and Adapazari (SKR) contain evidence of waves arriving from subsequent ruptures during Event 1. These effects are not considered in this paper, although it is expected that longer duration ground shaking must have exacerbated both structural damage and ground deformation and soil liquefaction observed, particularly in and around Adapazari.

Strong Motion Networks in Turkey: History and Performance

The national strong motion accelerograph network in Turkey was initiated in 1973. This network is operated by the General Directorate of Disaster Affairs, part of the Ministry of Public Works and Settlement. Initially, analog acceleration records were installed, as they were the then-available technology (İnan, et al., 1996). In later years the system has been enhanced by the addition of digital instruments. As of May 2001 this system was comprised of some 140 instruments, about evenly divided between analog and digital types. At the expense of introducing interaction effects into the recordings, the instruments are usually placed inside institutional buildings such as meteorology stations or local ministerial offices for safety, accessibility, phone hookup and ease of maintenance. None of the stations in the national network has data related to the site geology other than surface observations, so that shear wave velocity profiles and depths to bedrock are not known accurately. Sometimes, records of instrument characteristics can be difficult to obtain. Figure 3 shows their locations.

Additional instruments are deployed in Turkey by other agencies and universities. For example, a number of historic religious edifices in Istanbul such as the Saint Sophia Museum, Süleymaniye Mosque have been instrumented with strong motion sensors on account of their cultural importance. A recently ended program managed jointly by the General Directorate of Disaster Affairs and Japan International Cooperation Agency has established a network in nine provinces in northeastern Turkey between Ankara and Samsun on the Black Sea coast. The purpose of this network is to arrive at quick estimates of losses and casualties if a major earthquake should strike the subject area. The suspension bridges across the Bosphorus have been the subject of health monitoring, and have been outfitted by accelerographs operated by the General Directorate of State Highways. The Scientific and Technical Research Establishment of Turkey (TÜBİTAK) has funded research programs that have enabled the setting up of small local networks or distributed single instruments designed for specific purposes. Small, specific-purpose clusters of instruments deployed by Middle East Technical University (ODTÜ), Istanbul Technical University (İTÜ) or Boğaziçi University (BÜ) operate as stand-alone systems mostly in the Istanbul metropolitan area. The General Directorate of State Hydraulic Works (DSİ) operates single strong motion recording systems in or near major dams they have built. METU is in the process of setting up local arrays in the Yalova-Bursa and Aydın-Denizli areas comprising a total of 20 stations. BÜ has launched a dense array in the Istanbul area with the purpose of early response through shake maps generated from 120 sensors. Clearly, even with these additions the number of instruments will remain meager for a country with the size and seismicity of Turkey.

All of the accelerograms in Tables 2 and 3 are from the national network except for the YPT record that has been obtained by a sensor operated by BÜ. The GBZ, IZT and DZC records came from analog instruments.
General Observations on the Ground Motions

Development of indigenous attenuation relations for ground motion parameters in Turkey has been hampered by meager data. Traditionally, instrument sensors have been oriented horizontally in the NS and EW directions in Turkey. When values of peak ground acceleration (PGA) from Tables 2 and 3 are compared against predictions based on North American or European data, they would seem to be on the low side for these magnitudes and distances. The tables have entries for both of these horizontal components, as well as the fault-normal (FN) and fault-parallel (FP) directions as explained below.

Certainly, peaks of 0.3-0.4 g from Event 1 seem to be inconsistent with the structural performance for most of the cities cited in Table 1. But neither is the 0.8 g peak recorded during Event 2 in Bolu where the percentage of collapsed buildings was much less than in Izmit. This conclusion is not applicable to the derived velocity and displacement values. One objective of this study is to test the applicability of the hypothesis that ground motions normal to the direction of fault rupture tend to be more severe than the horizontal component orthogonal to it (Somerville et al., 1997a). For this purpose, the radial line extending from the closest point on the fault rupture to the recording station defines the fault-normal direction. The horizontal component perpendicular to this then becomes the fault-parallel component. Because of their azimuths from the observed fault rupture this definition is nearly coincident with the designation of FN as the geographical north except for GBZ and BOL. It deviates from true north for DZC for Event 1 when the rupture terminated about 17 km southwest of the city. These directions are illustrated in Figure 4, and are the basis of the directions cited in Tables 2 and 3.

The effective duration in the tables is based on the bracketed Arias intensity (Bommer, et al., 1999). The start of the strong ground shaking is taken as the time when the Arias intensity reaches 0.1 m/s, and the end is defined as the time when the remaining energy in the entire record equals 0.125 m/s. According to this definition, any acceleration record whose Arias intensity is less than 0.135 m/s is not considered as strong ground motion. The "dominant" ground motion period, Tg, is defined as the period(s) where the smoothed Fourier amplitude spectrum of the acceleration trace becomes maximum. The term Tp, or pulse period refers to the period of the velocity pulse with the largest amplitude that constitutes the fling. Where the pulse period can be identified, it is usually similar to Tg. Structural implications of this coincidence are discussed during evaluations of the response and drift spectra.

Derived Velocity and Displacement Records

In deriving the velocity and displacement signals we used two different procedures: the "standard" procedure (SCM) applied to 70 mm film analog records of early generation instruments (Trifunac and Lee, 1973), and the "alternative" procedure (ACM) developed to mimic better the physical environment of near-field earthquakes (Chen, 1995). Integration of two different sets of velocity signals yielded two different generations of displacement signals but Tables 2 and 3 list ACM values, and only these are exhibited in the subsequent figures. The reason for not utilizing the SCM results for derived quantities was the apparent inconsistency of the permanent offset values with field observations. The ACM is judged to be superior in recovering the long period components of ground displacements for near-field events. Figures 5-9 display the EW, NS, UD, FN, and FP components, respectively, of all seven ground motion records examined in this paper. In each figure, the sequence of acceleration, velocity and displacement traces is shown. The NS component of the sensor in SKR malfunctioned during Event 1, so this record could not be resolved into other directions.

Most of these traces exhibit typical features from near-field records: large permanent displacement offsets in the strike-parallel direction, and large pulse-like velocity waveforms, coinciding approximately with the time when the permanent displacements are attained. The inferred rupture propagation direction in Event 1 makes all horizontal components in the figures, with the possible exception of IZT, prime candidates for forward directivity effects, and this is supported by the
shapes of the corresponding velocity signals. During Event 2, the Bolu station appears to have been subjected to a strong velocity pulse, in spite of its relatively large distance to the fault trace. Examination of both these figures and the entries in Tables 2 and 3 shows that there appears to be no particular consistency for the larger velocity peak being associated with the fault-normal component. A good example of this is the YPT record where EW, NS and FP components all have larger peak velocity than the FN component. The IZT and DZC (Event 2) records are not affected by forward directivity, have larger velocities either in the EW or the FP directions. In contrast, the EW component of the DZC (Event 1) and BOL velocity records display pulse-like segments, as do both components of YPT. These observations are in conflict with the generalization that the FN is the preferential direction for the occurrence of the pulse (Somerville, et al., 1997a). The coherent long-period waves cause the PGV/PGA ratio to become larger, thus making the constant acceleration part of response spectra longer. The structural implications of this observation are discussed separately.

Acceleration and Displacement Spectra

The most widely understood tool for assessing a given motion record in structural engineering is the acceleration spectrum in spite of its shortcoming to serve as a device for judging its damage-causing potential. This plot shows the capacity requirement in elastic systems caused by a given ground shaking, and is comparable with the unmodified form of the design spectra in codes. The goodness of a given code spectrum may be based on how well it envelopes the demands on structural systems created by all conceivable ground motions. Meeting demands of near-field motions has become incorporated into UBC97 requirements (ICBO, 1997) through an upward adjustment of the design spectrum as schematically described in Figure 10. In contrast, the Turkish Earthquake Code, abbreviated as TEC98, (Turkish Ministry of Public Works and Settlement, 1998) provides no specific requirements for use as a means of guarding against effects from close events.

The utility of the acceleration spectrum in making assessments related to structural performance during strong ground motions is limited. Figure 11 shows the acceleration spectra for three records from YPT, DZC (Event 1) and BOL. In the interest of judging how well two specific structural design codes would have foreseen the envelope of response accelerations at these locations, all diagrams display the code-specified curves in accordance with UBC97 and TEC98. In terms of general properties, the soil classification pair SD-Z3 (soil sites) in these codes is similar. All records were made on soil sites. At a period range of about 1.0-1.5 s that corresponds to the pulse periods of BOL and DZC, the capacity demand is considerably in excess of the design spectrum curve. Adjustments required in UBC97 for extending the constant acceleration part follow the trend of the ground motion more closely, but for systems with period in the range of 1 s or longer TEC98 generally falls short. Given the general soft and deep sedimentary soil conditions in DZC that lies in a river plain, the engineering message conveyed by Figure 11 is that the observed excessive structural damage there might not have been unexpected.

An interesting display of what two successive very strong earthquakes recorded 86 days apart can cause in a city occurred in Düzce. Hundreds of buildings, already weakened during Event 1, collapsed, raising the total number to 600. We present the acceleration response spectrum in DZC in Event 2 in Figure 12. Upon comparison with the corresponding frame in Figure 11, it is noted that a good deal of similarity exists between the individual plots, except for the emergence of a peak at about 0.8 in Event 2. It may be argued that the stronger ground shaking of Event 2 played a role in shifting the acceleration peak to larger periods. The small building housing the instrument in Düzce may have modified the free-field motion but the records are believed to be accurate replications of the actual motions experienced by many structures in the city. This figure demonstrates that similar fault mechanisms and soil conditions cause reasonably similar ground motions at a given site.

A better understanding of the ground motions is possible when their spectral displacement curves are examined because the displacement is a more slowly varying response parameter, and is not greatly affected by inelastic structural action. As explained in the following section, spectral
displacement can also be utilized in deriving relative interstory drifts. We present the displacement spectra for IZT and BOL in Figure 13. For purposes of comparison the unreduced spectral displacement derived for the matching soil type according to UBC97 is mounted on each frame. The figure indicates that in the proximity of pulse periods the UBC97 significantly underestimates the displacement demand of the EW and FN components of BOL, although for IZT where the pulse effect is absent the actual spectrum falls below the code provisions. This does not agree with field observations in Izmit where localized pockets in the city and large areas adjacent to the coastal strip in the west suffered heavy structural damage. The rock-like site geology of the recording station masks these effects. A single record on an untypical site helps solely in interpreting the reduced damage at similar sites of the urban area, but as a device for postulating why damages were higher elsewhere its role is not straightforward.

It is necessary to bridge the gap between spectral concepts and structural engineering principles as we attempt to explain why a given ground motion might be more destructive. We will utilize displacement-based measures of damage potential in judging how well the specific records made at the locations in Table 1 reflect actual experience in their immediate vicinity. Damage occurs when excessive displacements occur. For idealized framed systems the drift spectrum is a useful device that quantifies the displacement causing power a given ground motion packs.

Drift Spectrum

Examination of the near source records in Figures 5-9 suggests that they contain a number of long-period pulses that, upon integration, translate into longer period and coherent velocity and displacement pulses with large peaks. In structures subjected to such ground motions, the customary build-up of oscillatory response with several vibration modes dominating the global response may not occur before one of the coherent velocity and displacement pulses propagating through the structure as waves causes a large displacements between successive floors and the associated damage (Iwan, 1997). Drift is the generic term used to define the interstory displacements, traditionally normalized with respect to the story height. Emergence of performance-based design criteria favors a renewed expression of structural requirements in terms of permissible displacements. Essentially, the process of structural design in this complementary approach is to determine the displacements in structural components first, and then to compare these with allowable limits (FEMA273, 1997). Displacement limits are defined in terms of the global serviceability criteria that govern post-earthquake structural function. Member forces follow after the associated displacements have been found. Consensus is shaping that Performance Based Seismic Engineering (PBSE) will serve as a rational basis for ensuring the seismic safety of the built environment. Its success will depend on the accuracy of determining displacements in structural assemblies under earthquake effects.

A suitable analytical vehicle utilized to model structural behavior of multistory frames is the shear beam: imagine a large number of rigid laminates each with mass m connected via laterally flexible links of length h characterized by their stiffness $12\Sigma EI/h^3$ across any level. Let one end of the assembly be connected to the ground as in Figure 14. If this assembly is subjected to a displacement history of $z(t)$ and its time derivative the velocity history of $v(t)$ at the ground level, then these signals will travel within the beam as damped waves with speed c where

$$c = \sqrt{\frac{12 \Sigma EI}{m h}}$$

(1)
The vibration period T is then given by:

$$ T = \frac{4H}{c} $$

(2)

The equation governing the lateral displacement $u(t)$ is expressed by:

$$ u(t) = \exp(-\alpha t) f(y \pm ct) $$

(3)

The constant α can be related to the viscous damping ratio ζ as

$$ \alpha = \frac{2\pi\zeta}{T} $$

(4)

The travelling waves will be continuously reflected from the top (free) end and the ground, and the shear deformation $\frac{\partial u}{\partial y}$ at the base, equivalent to the drift at that level, will be (see Appendix for derivation):

$$ \frac{\partial u(T, \zeta)}{\partial y} = \max_{\omega} \left| \frac{1}{c} v(t) + \frac{2\pi\zeta}{T} z(t) + 2 \sum_{n=1}^{N+1} (-1)^n \exp(-n\pi\zeta) \left[v(t - n\frac{T}{2}) + \frac{2\pi\zeta}{T} z(t - n\frac{T}{2}) \right] \right| $$

(5)

In a framed structure, shear deformation is equivalent to the lateral displacement of the first story above ground divided by the height of the ground story columns, or the rotation of the chord connecting the tops of ground-level columns to the base. This is called the ground story drift ratio. The plot of Equation (5) as a function of period and damping constitutes the drift spectrum. The period dependence of drift becomes clearer when the expression for c from Equation (2) is substituted into Equation (5).

The major contribution to drift comes from the ground velocity $v(t)$, and not $z(t)$ (Akkar and Gülkan, 1999). This confirms that a good measure of the destructive potential of near-field earthquakes derives from the large velocity peaks they contain. For most structural types c is typically 100-200 m/s, so it is conceivable that a single triangular ground displacement pulse with period 2T, causing a peak velocity in the range of 50 cm/s, can generate a drift ratio greater than 0.02 (Iwan, 1997). For the quality of materials and workmanship available for reinforced concrete buildings in Turkey, it is likely that columns will develop end yielding at drift ratios below 0.01. The rapid decay of capacity when this action is repeated over several significant cycles can easily cause the types of abject collapse in Figure 2.

Figure 15 demonstrates the different character of near-field ground motions. Two randomly chosen records from earthquakes with similar magnitudes and peak accelerations are considered in the comparison. The records are from the Erzincan ($M = 6.8$) and Northridge ($M = 6.7$) earthquakes. The influence of the coherent large acceleration pulse in the Erzincan record is exhibited through greatly enhanced ground story drift ratio demands it causes. This is the most severe demand a near-source ground motion imposes on structural frames.
Alternative Expressions for Drift

Evaluation of the drift expression in Equation (5) requires that the time series for the ground velocity and displacement should be at hand. This is not always the case because integration of the acceleration time series is not always a straightforward process. Often, it turns out that non-standard or unknown procedures have been used for digitization or data reduction from the sensor. Instrument characteristics may not be known accurately. It would be desirable to arrive at the drift spectrum in a way that avoids use of ground velocity and displacement. In this section we will develop a competing simpler replacement for Equation (5). In principle, this expression that is applicable to ground level drift is sufficiently accurate for engineering applications.

Consider the structural frame representation in Figure 14. If this N-story frame consists of identical in their dynamic properties, then the shear beam expressions for displacement shapes \(\varphi_n \) and periods \(T_n \) for mode \(n \) can be written

\[
\varphi_n(y) = \sin \frac{2n - 1}{2} \frac{\pi y}{H}
\]

\[
T_n = \frac{4N}{2n - 1} \left(\frac{m_s}{k_s} \right)^{1/2}
\]

where

\(N \) = number of stories
\(m_s \) = story mass
\(k_s \) = story stiffness
\(H \) = total height of the frame = \(N \) \(h \)

The assembly in Figure 14 serves as a convenient instrument of analysis also for the case when the base of the structure is subjected to a prescribed ground acceleration \(\ddot{u}_g(t) \). The mode shapes and frequencies derived above can be utilized for a modal analysis where for each mode an equation of the type

\[
u(y, t) = \sum \varphi_n(y)Z_n(t)
\]

is used. Then, in mode \(n \) with damping ratio \(\xi_n \) the equation of motion for the modal amplitude \(Z_n \) becomes

\[
\ddot{Z}_n + 2\omega_n \xi_n \dot{Z}_n + \omega_n^2 Z_n = \frac{L_n}{M_n} \ddot{u}_g
\]

In Equation (9)

\[L_n = \int_0^H \sin \left\{ \left(\frac{2n - 1}{2} \right) \frac{\pi y}{H} \right\} \frac{m}{h} \, dy = \frac{2H}{(2n - 1)\pi} \frac{m}{h} \]

\[M_n = \int_0^H \sin^2 \left\{ \left(\frac{2n - 1}{2} \right) \frac{\pi y}{H} \right\} \frac{m}{h} \, dy = \frac{H}{2} \frac{m}{h} \]

Note that \(L_n/M_n = 4/\pi = 1.27 \).
We confine our attention to only the first mode because the part of the total mass mobilized in the first mode is approximately 80 percent of the total mass of the idealized shear frame. In most frames girders rotate at the column ends, but if the same uniform properties hold along the height, and the periods match this generic frame and the shear frame in Figure 14 would still have the same spectral displacements. Equation (6) states that the largest normalized drift in the fundamental mode occurs at the ground story where \(y = h \)

\[
\varphi_1(y) = \sin \frac{\pi}{2N}
\]

(12)

and the ground story drift ratio (GSDR) becomes

\[
GSDR = 1.27 \frac{SD}{h} \sin \frac{\pi}{2N}
\]

(13)

For a given period and damping ratio the spectral displacement SD can be computed for a given accelerogram. It remains to establish a functional relationship between the remaining parameters of Equation (13) and the structural period (Gülcان and Sozen, 1999).

In principle, any equation of the type \(T = a H^b \) with \(a \) and \(b \) as regression constants may be used, although for an ideal uniform shear beam \(b = 1 \) in view of Equation (2). Deviations from the idealized conditions assumed in a shear beam cause this constant to become different from 1. For example, if we take \(T = 0.1 N = 0.1 (H/h) \), for a story height \(h \) equal to 3 m, this is equivalent to \(c = 120 \text{ m/s} \) from the second expression in Equation (2). Equating, as an example, the UBC expression

\[
T = 0.08 H^{3/4}
\]

(14)

to \(T = 4H/c \) we obtain \(c = 50 H^{1/4} \) which indicates that the apparent shear wave velocity is a slowly varying function of the building height. Indeed for \(H = 10 \text{ m} \ c = 89 \text{ m/s}, \) and for \(H = 100 \text{ m}, \ c = 158 \text{ m/s}. \) With this observation, we can now modify Equation (13) as follows:

\[
GSDR = 1.27 \frac{SD}{h} \sin \frac{2\pi h}{Tc}
\]

(15)

The form of Equation (15) suggests that variations in the value of \(c \), submerged in the argument of the trigonometric expression, do not play a major role in determining drift.

The analogy with a shear beam is useful for deriving the drift spectrum for a given ground motion, but other models can be utilized. One of these possible approaches is to design a series of simple idealized frames, and to vary their stiffness and mass properties systematically so that different periods are obtained. When these frames are subjected to different ground motions, the ground story displacement divided by its height becomes the drift ratio.

In Figure 16 the comparative ground story drift spectra for 5 percent damping are displayed for the FN components of YPT and DZC (Event 2), respectively. Qualitatively, and within the degree of accuracy expected from representing complex structural systems by means of simple conceptual models, the three alternative formulations are surprisingly similar. This suggests that the use of the spectral displacements in estimating drift ratios is quite acceptable for structural engineering use. In
the remainder of this paper, we will utilize the expression in Equation (15) for describing the drift spectra.

Discussion

Different ways might be resorted to for judging how representative the seven records listed in Table 1 were of the general conditions in the affected cities during the two 1999 events in Northwestern Turkey. We will do this on the basis of their elastic drift spectra. In the interest of uniformity, Figures 17(a)-(g) display their drift spectra for 5 percent damping for four different directions. Two of these directions correspond the original sensor orientations and two to the fault-normal or fault-parallel components as they have been defined in Figure 4. The exception to this exercise is of course the SKR record for which only the EW component is available.

We note that the drift spectrum diagrams for SKR, IZT and GBZ appear to be no different from the three far-field events in Figure 15. These stations are all above rock-like local geology, so the effect of this fact is strikingly evident from frames (a), (c) and (d) of Figure 17. The remaining records have peaks reaching orders of magnitude in the range of 1.5-2 percent, occurring in the proximity of T_p as listed in Tables 2 and 3. Epicentral intensity for Event 1 was rated as MSK X, although there existed grounds (changes in topography, severe structural damage even in reasonably well constructed facilities, widespread pipe ruptures, etc.) for rating it one-half degree higher in isolated pockets near Gölcük. None of the drift demand curves for either event in Figure 18 matches the strongly elongated bias of areas that felt the most damaging ground motions that the isoseismal map in Figure 19 (Özmen, 2000) portrays. For emphasis Figure 18 includes also curves from the Northridge and Kobe earthquakes (Somerville et al., 1997b) that display the demand range of other near-field records. The severely damaged area had a width of only several km on either side of the fault line. The synoptic picture one has of the distribution of strong ground motion within the epicentral area is shrouded, and must be interpreted with caution. In Table 4 we do this via the device of calculating the area under the drift curves from 0.3 to 3 s, a range where most structural periods would be represented. Conceptually similar to the Housner spectrum intensity, this measure designated as Drift Spectrum Intensity permits a numerical ranking to be made among the array of components. For completeness, data for the record made in Erzincan on March 13, 1992 and two near-field records from each of the Northridge and the Kobe earthquakes are included in Table 4.

The results based on records that were available to us shows that, observed trends derived from other near-field ground motion data are not fully supported by the tabulated results. We have already mentioned the mismatch of the direction where the maximum ground velocity occurs from the fault-normal orientation. If we accept the premise that drift spectrum intensity is measure of destructiveness, then our calculations indicate that the maximum ground velocity occurs in the direction where the drift spectrum intensity is also maximum, but this is not necessarily the fault-normal direction. This conclusion is difficult to generalize because when traces from the rock-like local geology at IZT and GBZ are omitted, and SKR is excluded because of the single horizontal component it recorded, we are faced with the perplexing reversal of maximum velocity direction between the earlier and subsequent DZC records. During Event 1, the FN component has the larger peak velocity of 67.7 cm/s and the drift spectrum intensity of 0.028 s. But in Event 2, it is the FP component with the corresponding values of 84.3 cm/s and 0.032 s, respectively. For YPT and BOL, the nearly equal peak velocities in the normal or parallel directions cause a slight increase in the corresponding drift spectrum intensity value but there exists no discernable difference between them. In a complementary sense, the two atypical near field records IZT and GBZ yield the largest drift spectrum intensity in the fault-parallel components with larger peak velocities, and these occur in the direction of slip. In contrast, all of the remaining motions included in Table 4 for comparison yield larger drift spectrum values in the FN-direction with the larger peak velocity value. It is puzzling that the near-field records from either of the Turkish events do not seem to fit the expected pattern. For structural design purposes, our observations based on Table 4 and Figure 17 may indicate that building orientation relative to a fault is not as important as the maximum velocity it will experience.
Conclusions

Peak accelerations of most near-source records are not high as expected, and seem to become saturated for increasing magnitudes. But their peak velocities and corresponding drift demands are usually considerable, and this has been confirmed by structural damage. Near-field records from the two major earthquakes in the Sea of Marmara region of Turkey have yielded even more modest PGA values than would have been expected, e.g., from an often-cited source such as Boore et al. (1997). The paucity of recording stations has thus made it very difficult to reconstruct a shake map.

It is observed that the pulse period of the records shows a good agreement with the period of the maximum drift demand. The pulse period is approximately the same as the dominant ground period, indicating that it can be a determining parameter for structural response. A closer examination through use of the drift spectrum of the seven records from very close distances to the surface rupture of the North Anatolian fault reveals that they possess puzzling characteristics other than those related to the unrepresentative geological conditions of their sites. The peak ground velocity did not always occur in the fault-normal direction, and the drift spectrum ordinates remained much below other comparable records made both in Turkey and elsewhere. This does not agree at all with the massive destruction in structures along the south coast of the bay of İzmit. The larger ground velocity direction is the critical direction when the drift spectrum intensity used in Table 4 is taken as the measure of destructiveness.

Events of the magnitude that the two earthquakes examined in this paper have probable recurrence periods of several hundreds of years. Because of the lack of densely packed networks of strong motion transducers, we believe that a rare opportunity was missed in understanding the physics of the faulting and distribution of the ground motion in the epicentral area. We do not have a good understanding of the spatial distribution of the ground shaking on the basis of the seven records analyzed in this paper. This underlines the appropriateness of the aphorism that there is no such thing as a redundant strong motion recorder in a seismic region.

References

Department of Civil Engineering and Disaster Management Research Center
Middle East Technical University
Ankara 06531, Turkey
E-mail: sakkar@metu.edu.tr
a03516@metu.edu.tr

(S.A. and P.G.)
APPENDIX: DERIVATION OF EQ. (5)

With the displacements given by Equation (3) the shear deformation of the beam at any elevation y is given by

\[
\frac{\partial u}{\partial y} = \exp(-\frac{2\pi \xi}{T} t) f'(y \pm ct)
\]

(A1)

The velocity at any elevation y is given by

\[
\frac{\partial u}{\partial t} = \dot{u} = -\frac{2\pi \xi}{T} \exp(-\frac{2\pi \xi}{T} t) f(y \pm ct) \pm c \exp(-\frac{2\pi \xi}{T} t) f'(y \pm ct)
\]

\[= -\frac{2\pi \xi}{T} u \pm c \frac{\partial u}{\partial y}
\]

(A2)

The expression in Equation (A2) for drift can now be revised:

\[
\frac{\partial u}{\partial y} = \pm \frac{1}{c} (\dot{u} \pm \frac{2\pi \xi}{T} u)
\]

(A3)

We are interested in the ground level drift because it is there that the demand is greatest. For y = 0, the velocity and displacement of the structure are the same as those of the ground, so we can write

\[
\left.\frac{\partial u}{\partial y}\right|_{y=0} = \pm \frac{1}{c} \{v(t) + \frac{2\pi \xi}{T} z(t)\}
\]

(A4)

Examining the upward propagation part of the non-dispersive wave in the finite length beam expressed in Equation (A4), and remembering that it is reflected with the same sign from the roof (y = H), and with the reversed sign from the ground level (y = 0), and taking into account that the duration for a wave to travel to the roof and back is T/2 = 2H/c, we can rewrite Eq. (A4) with the additive effect of all waves that have been reflected until t = nT/2 as

\[
\left.\frac{\partial u}{\partial y}\right|_{y}\ = \max_{\text{all}} \frac{1}{c} \left[v(t) + \frac{2\pi \xi}{T} z(t) + 2 \sum_{n=1}^{N \leq 2T/c} \frac{(-1)^n}{2} \exp\left(-2n\pi \xi\right) \left\{ v\left(\frac{t-nT}{2}\right) + \frac{2\pi \xi}{T} z\left(\frac{t-nT}{2}\right) \right\} \right]
\]

(A5)

This is Equation (5).
Figure Legends

Figure 1. Location of Near-Field Strong Motion Instruments That Triggered during the Two Major Earthquakes in Turkey in 1999. The distance from Istanbul to Bolu is 250 km.

Figure 2. Central Area of Gölcük from the Air. Construction practices limit the drift capacity of typical framed buildings that are usually weaker in the ground story. The result can be structural instability and excessive damage including collapse.

Figure 3. Locations of Strong Motion Instruments in the National Network of Turkey. Nearly all stations are in highest seismic hazard cities, but information on site geology is incomplete.

Figure 4. Component Directions for the Records. Generic definition for FN at each site is according to Somerville (1997a).

Figure 5. EW Ground Motion Signals. For abbreviations of station names see text.

Figure 6. NS Ground Motion Signals

Figure 7. UD Ground Motion Signals

Figure 8. FN Ground Motion Signals

Figure 9. FP Ground Motion Signals

Figure 10. Adjustment of the Acceleration Spectrum According to UBC97 for Near-Field Earthquakes. The curves correspond to soil profile SC in Seismic Zone 4. The constant acceleration part of the zone is shifted upwards with the use of factors \(N_a\) and \(C_a\), and the constant velocity part is similarly modified through \(N_v\) and \(C_v\). Both \(N_a\) and \(N_v\) are dependent on distance to the magnitude of the earthquake on the fault and its slip rate. A distance of \(< 2 \text{ km}\), and \(M > 7\) were assumed here.

Figure 11. Acceleration Spectra for YPT, DZC (Event 1) and BOL. Unmodified UBC97 and TEC98 design spectra for soil sites are superposed for comparison. The near-field factors for the sites have been calculated for the distances in Tables 2 and 3.

Figure 12. Acceleration Spectrum for DZC (Event 2). The near-field factors for DZC have been revised according to the distance in Table 3.

Figure 13. Displacement Spectra for IZT and BOL. UBC97 site geology descriptions for SB and SD apply for IZT and BOL, respectively.

Figure 14. Shear Frame Idealization. The dashed line describes an arbitrary lateral displacement profile.

Figure 15. Comparison of Base Level Drift Spectra for Near- and Far-Field Earthquakes. The NS component of the M6.8 Erzincan earthquake had a peak of 0.402 g, and was recorded at 2 km. Its PGV was 107.5 cm/s. The McBride School at Centinela Street S25E component was recorded during the M6.7 Northridge earthquake at 25.3 km, and had a PGA of 0.442 g and a PGV of 19.9 cm/s. Site intensities were MSK VIII and MMI VII, respectively.

Figure 16. Comparative Ground Story Drift Ratio Spectra. The structures are 5 percent damped. The designation MDOF refers to idealized shear frames that serve as checks for the ground story drifts.
Figure 17. Comparative Drift Spectra: Events 1 and 2. The curves are computed by using Equation (15) for 5 percent damping.

Figure 18. Comparative Drift Spectra. The drift demands of DZC, IZT and SKR represent the cities that suffered substantial damage during Event 1. BOL contains the highest drift demand peak among the near-field records of Events 1 and 2. The other curves display the near-field drift demand range of the Kobe and Northridge earthquakes for comparison.

Figure 19. Isoseismal Map for Event 1 (Özmen, 2000). The darker colors indicate increased MSK scale rating.
Table 1. Station information of the near-source records

| Station (Ref.) | Elevation (m) | Station Coords. and Building Description | Recording Site Description
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakarya (Adapazarı) (SKR)</td>
<td>31</td>
<td>40.737N-30.384E Three-story R/C power utility Bldg. Sensor in basement</td>
<td>The recording station is relatively isolated storage-type building on a gentle hillside. The geological process would be erosion and soil formation of underlying bedrock. Grading has excavated into a hillside 40m west of station. Exposed bedrock in hillside is limestone. Structure is too small, and would not have foundation excavated to bedrock — records might show effects of a shallow thin soil layer</td>
</tr>
<tr>
<td>Yarımca (YPT)</td>
<td>10</td>
<td>40.763N-29.761E Three-story heavy R/C petrochemical plant Admin. Bldg.</td>
<td>Local topography is flat, due to being on a river delta with the geological process being dominated by sediment accumulation. Soil appeared to be clay/silt at the surface. Fine-grained materials are expected as the site is relatively far from nearest topography. The recording station occupies inside a switchback in the paved street climbing a steep hillside. The geological process would be erosion and soil formation of underlying bedrock. An old stone fence next to the garden is presumed to be constructed from local rock. It appeared to be made of gray, tightly cemented sandstone/limestone mix.</td>
</tr>
<tr>
<td>İzmit (IZT)</td>
<td>30</td>
<td>40.790N-29.960E Single-story meteorological office Bldg.</td>
<td></td>
</tr>
<tr>
<td>Gebze (GBZ)</td>
<td>30</td>
<td>40.820N-29.440E Two-story TÜBİTAK research campus Bldg. Ground story sensor</td>
<td>Local topography has rolling hills, with geological process being soil formation and slow erosion. The foundation of the recording station is almost certainly excavated to rock. Rocky soil near the recording station. Float collected from soil is reddish sandstone.</td>
</tr>
<tr>
<td>Düzce (DZC)</td>
<td>110</td>
<td>40.850N-31.170E Two-story meteorological office Bldg. Ground story sensor</td>
<td>Topography of the area is flat, and soil appeared to be silty-clay at the surface. The active geological process is sediment accumulation, probably in a river flood plain. Clearly in a basin</td>
</tr>
<tr>
<td>Bolu (BOL)</td>
<td>725</td>
<td>40.740N-31.210E Sensor in single-story ministry compound Bldg. Adjacent to 4-story main block</td>
<td>The recording station is relatively isolated adjacent to flat agricultural land. It is near the lowest point in cross section across the valley from north to south. The geological process is one of sediment accumulation, and fine-grain materials are expected as it is relatively far from the nearest significant topography. Soil at the surface is a silty clay. The recording station is situated in a localized pocket of the worst damage in Bolu. It is likely that this station is on the softest, deepest sediments in the Bolu valley</td>
</tr>
</tbody>
</table>

1 Anderson et al., 2001.
<table>
<thead>
<tr>
<th>Station (Ref.)</th>
<th>R_{close} (km)</th>
<th>Comp</th>
<th>PGA (cm/s²)</th>
<th>EPA (cm/s³)</th>
<th>PGV (cm/s)</th>
<th>PGD (cm)</th>
<th>t_{eff} (s)</th>
<th>t_{dur} (s)</th>
<th>T_e (s)</th>
<th>T_p (s)</th>
<th>PGA PGV (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakarya (Adapazarı) (SKR)</td>
<td>3.2</td>
<td>UP</td>
<td>254.1</td>
<td>171.9</td>
<td>42.6</td>
<td>26.8</td>
<td>7.4</td>
<td>65.0</td>
<td>3.8</td>
<td>≈ 4.0</td>
<td>0.17</td>
</tr>
<tr>
<td>NS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EW</td>
<td>226.1</td>
<td>196.2</td>
<td>84.7</td>
<td>167.6</td>
<td>12.3</td>
<td>3.5</td>
<td>≈ 4.4</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>315.6</td>
<td>195.2</td>
<td>79.6</td>
<td>65.3</td>
<td>12.4</td>
<td>1.4, 3.5 – 4</td>
<td>≈ 5.0</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td>311.5</td>
<td>196.2</td>
<td>78.0</td>
<td>71.1</td>
<td>12.5</td>
<td>1.4, 3.5 – 4</td>
<td>≈ 5.0</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>222.8</td>
<td>195.2</td>
<td>84.0</td>
<td>165.5</td>
<td>12.2</td>
<td>3.5</td>
<td>≈ 4.4</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW</td>
<td>227.7</td>
<td>224.7</td>
<td>54.3</td>
<td>129.3</td>
<td>9.9</td>
<td>0.3, 0.6</td>
<td>No pulse</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>163.9</td>
<td>153.0</td>
<td>32.0</td>
<td>47.6</td>
<td>9.2</td>
<td>0.27, 0.5</td>
<td>No pulse</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izmit (IZT)</td>
<td>4.26</td>
<td>UP</td>
<td>146.4</td>
<td>95.2</td>
<td>14.0</td>
<td>11.1</td>
<td>7.7</td>
<td>30.0</td>
<td>2.5, 8</td>
<td>No pulse</td>
<td>0.10</td>
</tr>
<tr>
<td>FN</td>
<td>164.3</td>
<td>155.0</td>
<td>30.9</td>
<td>43.5</td>
<td>9.3</td>
<td>0.27, 0.5</td>
<td>No pulse</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>218.8</td>
<td>223.7</td>
<td>54.8</td>
<td>129.3</td>
<td>9.8</td>
<td>0.3, 0.6</td>
<td>No pulse</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW</td>
<td>140.6</td>
<td>146.2</td>
<td>34.7</td>
<td>103.7</td>
<td>4.8</td>
<td>0.46, 6</td>
<td>No pulse</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>264.2</td>
<td>179.5</td>
<td>45.6</td>
<td>82.6</td>
<td>6.0</td>
<td>0.55, 6</td>
<td>No pulse</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gebze (GBZ)</td>
<td>7.74</td>
<td>UP</td>
<td>191.7</td>
<td>119.6</td>
<td>12.7</td>
<td>16.9</td>
<td>2.9</td>
<td>30.0</td>
<td>0.5, 2.5, 6.2</td>
<td>No pulse</td>
<td>0.07</td>
</tr>
<tr>
<td>FN</td>
<td>240.2</td>
<td>201.1</td>
<td>37.0</td>
<td>112.5</td>
<td>5.6</td>
<td>0.5</td>
<td>No pulse</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>136.8</td>
<td>121.6</td>
<td>46.3</td>
<td>97.7</td>
<td>5.3</td>
<td>6</td>
<td>No pulse</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW</td>
<td>375.6</td>
<td>318.8</td>
<td>49.6</td>
<td>108.6</td>
<td>11.0</td>
<td>1.7</td>
<td>≈ 1.6</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>330.5</td>
<td>243.3</td>
<td>60.6</td>
<td>63.8</td>
<td>10.3</td>
<td>0.68, 2.7</td>
<td>No pulse</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düzce (DZC)</td>
<td>17.06</td>
<td>UP</td>
<td>470.9</td>
<td>141.6</td>
<td>21.8</td>
<td>17.0</td>
<td>4.2</td>
<td>27.18</td>
<td>2.8</td>
<td>≈ 1.6</td>
<td>0.05</td>
</tr>
<tr>
<td>FN</td>
<td>390.1</td>
<td>342.4</td>
<td>67.7</td>
<td>99.0</td>
<td>10.2</td>
<td>1.8</td>
<td>≈ 1.8</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>267.8</td>
<td>203.1</td>
<td>48.5</td>
<td>51.5</td>
<td>10.8</td>
<td>1.1</td>
<td>No pulse</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Shortest distance between the observed fault rupture and the recording station.
3 Dominant ground period(s) where the smoothed Fourier amplitude spectrum is maximum.
4 Pulse period defined as the period of largest amplitude pulse-like signal (if it exists) in a velocity trace.
5 Between the period ranges shown, frequency components of the records demonstrate almost an equal amplification.
Table 3. November 12, 1999 near-source records

<table>
<thead>
<tr>
<th>Station</th>
<th>R_{closest} (km)</th>
<th>COM P.</th>
<th>PGA (cm/s²)</th>
<th>EPA (cm/s²)</th>
<th>PGV (cm/s)</th>
<th>PGD (cm)</th>
<th>t_{eff} (s)</th>
<th>t_{dur} (s)</th>
<th>T_g (s)</th>
<th>T_p (s)</th>
<th>PGA PGV (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW</td>
<td>503.3</td>
<td>371.8</td>
<td>86.1</td>
<td>170.1</td>
<td>12.0</td>
<td>0.85</td>
<td>No pulse</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>401.8</td>
<td>364.0</td>
<td>65.8</td>
<td>88.0</td>
<td>12.7</td>
<td>0.43, 0.74</td>
<td>No pulse</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düzcê (DZC)</td>
<td>8.23</td>
<td>UP</td>
<td>333.3</td>
<td>188.1</td>
<td>28.0</td>
<td>69.0</td>
<td>9.7</td>
<td>25.90</td>
<td>7.8</td>
<td>≈ 7.4</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN</td>
<td>404.2</td>
<td>364.0</td>
<td>62.6</td>
<td>93.2</td>
<td>12.9</td>
<td>0.43, 0.74</td>
<td></td>
<td>No pulse</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FP</td>
<td>493.2</td>
<td>372.8</td>
<td>84.3</td>
<td>165.3</td>
<td>11.6</td>
<td>0.85</td>
<td></td>
<td>No pulse</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EW</td>
<td>805.9</td>
<td>463.0</td>
<td>66.9</td>
<td>21.3</td>
<td>12.5</td>
<td>0.74-1.12</td>
<td>≈ 0.95</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td>739.5</td>
<td>581.7</td>
<td>58.3</td>
<td>40.3</td>
<td>12.8</td>
<td>0.33, 0.56</td>
<td></td>
<td>No pulse</td>
<td>0.08</td>
</tr>
<tr>
<td>Bolu (BOL)</td>
<td>20.41</td>
<td>UP</td>
<td>196.2</td>
<td>147.2</td>
<td>24.5</td>
<td>22.1</td>
<td>6.2</td>
<td>50.87</td>
<td>1.3,6</td>
<td>≈ 3.6</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN</td>
<td>755.9</td>
<td>423.8</td>
<td>66.9</td>
<td>21.0</td>
<td>12.9</td>
<td>0.74-1.01</td>
<td>≈ 1.05</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FP</td>
<td>801.6</td>
<td>604.3</td>
<td>56.8</td>
<td>40.8</td>
<td>12.7</td>
<td>0.33, 0.566</td>
<td></td>
<td>No pulse</td>
<td>0.07</td>
</tr>
</tbody>
</table>

1 Shortest distance between the observed fault rupture and the recording station.
3 Dominant ground period(s) where the smoothed Fourier amplitude spectrum is maximum.
4 Pulse period where it is defined as the period of largest amplitude pulse-like signal (if it exists) in the velocity trace.
5 Between the period ranges shown, frequency components of the records demonstrate almost an equal amplification.
Table 4. Comparison of Drift Spectrum Intensities for Near-Field Earthquakes for Structural Damping of 5 percent

<table>
<thead>
<tr>
<th>Record</th>
<th>EW (PGV, cm/s)</th>
<th>NS (PGV, cm/s)</th>
<th>FN (PGV, cm/s)</th>
<th>FP (PGV, cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKR</td>
<td>0.015 (79.8)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YPT</td>
<td>0.022 (84.7)</td>
<td>0.023 (79.6)</td>
<td>0.023 (78.0)</td>
<td>0.022 (84.0)</td>
</tr>
<tr>
<td>IZT</td>
<td>0.013 (54.3)</td>
<td>0.01 (32.0)</td>
<td>0.010 (30.9)</td>
<td>0.014 (54.8)</td>
</tr>
<tr>
<td>GBZ</td>
<td>0.007 (37.7)</td>
<td>0.01 (45.6)</td>
<td>0.007 (37.0)</td>
<td>0.010 (46.3)</td>
</tr>
<tr>
<td>DZC (Event 1)</td>
<td>0.026 (49.6)</td>
<td>0.019 (60.6)</td>
<td>0.028 (67.7)</td>
<td>0.017 (48.5)</td>
</tr>
<tr>
<td>DZC (Event 2)</td>
<td>0.032 (86.1)</td>
<td>0.022 (65.8)</td>
<td>0.023 (62.6)</td>
<td>0.032 (84.3)</td>
</tr>
<tr>
<td>BOL</td>
<td>0.026 (66.9)</td>
<td>0.025 (58.3)</td>
<td>0.026 (66.9)</td>
<td>0.024 (56.8)</td>
</tr>
<tr>
<td>Erzincan</td>
<td>0.030 (92.05)</td>
<td>0.041 (107.4)</td>
<td>0.042 (119.2)</td>
<td>0.023 (58.14)</td>
</tr>
<tr>
<td>Olive View</td>
<td>-</td>
<td>-</td>
<td>0.048 (122.19)</td>
<td>0.026 (53.19)</td>
</tr>
<tr>
<td>Rinaldi Rec. Stn.</td>
<td>-</td>
<td>-</td>
<td>0.052 (170.32)</td>
<td>0.037 (80.33)</td>
</tr>
<tr>
<td>Kobe, JMA</td>
<td>-</td>
<td>-</td>
<td>0.073 (72.35)</td>
<td>0.031 (160.17)</td>
</tr>
<tr>
<td>Kobe, Takatori</td>
<td>-</td>
<td>-</td>
<td>0.082 (173.79)</td>
<td>0.040 (63.69)</td>
</tr>
</tbody>
</table>
Figure 5
Figure 6
Figure 7

Vertical (UD) Components

- Sakarya, 17/08/19, PGA = 254.08
- Yozgat, 17/08/99, PGA = 236.21
- İzmit, 17/08/99, PGA = 148.36
- Gebze, 17/08/99, PGA = 191.72
- Düzce, 17/08/99, PGA = 470.94
- Düzce, 12/11/99, PGA = 333.33
- Bolu, 12/11/99, PGA = 196.18

Acceleration (cm/s²)

- Sakarya, 17/08/19, PGV = 42.60
- Yozgat, 17/08/99, PGV = 33.12
- İzmit, 17/08/99, PGV = 14.01
- Gebze, 17/08/99, PGV = 12.74
- Düzce, 17/08/99, PGV = 21.83
- Düzce, 12/11/99, PGV = 27.98
- Bolu, 12/11/99, PGV = 24.52

Velocity (cm/s)

- Sakarya, 17/08/99, PGD = 26.82
- Yozgat, 17/08/99, PGD = 41.20
- İzmit, 17/08/99, PGD = 11.13
- Gebze, 17/08/99, PGD = 16.85
- Düzce, 17/07/99, PGD = 16.97
- Düzce, 12/11/99, PGD = 68.95
- Bolu, 12/11/99, PGD = 22.06

Displacement (cm)

Figure 8
Figure 9
Figure 10
Figure 11
Figure 14
Figure 15
Figure 16
Figure 17
Figure 17 (continued)
Figure 17 (continued)
Quantification of the effect of low magnitude near field earthquakes
Mr. P. Sollogoub, (CEA Saclay, France), Chairman of the IAGE Seismic WG
Mr. C. Pedron (CEA Saclay, France)
Mr. S. Goubet (EDF SEPTEN, France)
Mr. E. Viallet (EDF SEPTEN, France)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

ABSTRACT

The objective of this study is, on one hand, to determine the characteristics (PGA, PGV, duration, ...) of near field low magnitude earthquakes (in comparison with further field higher magnitude earthquakes) and, on the other hand, to analyze the effects of such earthquakes on RC-structures.

An important statistical study is performed using a large ground motion database of nearly one thousand records characterized by their local magnitude M and focal distance R. In a first step, (M, R) attenuation laws are established for several classical ground motion parameters, that shows the differences between near field low magnitude earthquakes and further field higher magnitude earthquakes. In a second step, after calculation of different nonlinear RC-structures to the same ground motion database, (M, R) attenuation laws are established for achieved ductility in RC-structures characterized by different design level.

By the way, correlations of damage caused to structures with ground motion parameters, and effects of near field low magnitude earthquakes (compared with further field high magnitude earthquakes), are shown.

INTRODUCTION

This study began in 1998 when the Safety Nuclear French Authority decided to revise in the French Fundamental Safety Rule (called RFS 2001-01) intended for the determination of ground motion for nuclear facility design. According to RFS 2001-01, the design spectrum is calculated by a correlation law in the form:

\[\log_{10} \text{PSA}(f) = a(f)M + b(f)R - \log_{10}R + c(f) \] \hspace{1cm} (1)

where M and R are respectively local magnitude and focal distance and PSA is pseudo-acceleration for frequency f. For a given nuclear site, M and R are determined from historical seismicity. a(f), b(f) and c(f) are correlation coefficients using a Strong Motion DataBase (SMDB) [1].

In the same time of discussions concerning the new French RFS, Electricité de France (EDF, France) and Commissariat à l'Energie Atomique (CEA, France) decided a research program in two steps, using the same SMDB:

1st step: to establish (M, R) attenuation laws for several classical ground motion parameters;
2nd step: after calculation of the response of different RC-structures to SMDB, to establish (M, R) attenuation laws for damage factors, in particular ductility
in order to characterize SMDB and their effects on RC-structures, with a particular attention to low magnitude near field earthquakes in comparison with higher magnitude further field earthquakes.

CONSTITUTION OF STRONG MOTION DATABASE

RFS 2001-01 SMDB, established by several European scientific organisms [1], is made of 965 horizontal accelerograms recorded in Europe and USA. Each accelerogram is characterized by local magnitude M, focal distance R and soil characteristics. In this study, we decided not to take into account this last characteristic. This database is rather poor in low magnitude near field earthquakes (only 2% of records are such M<5 and R<10 km). That's why we decided in this study to complete it with 26 near field accelerograms such as R < 12 km collected on a Web site [2]. Figure 1 shows the extended SMDB (991 records) in a (R, M) diagram. Isointensity curves are plotted using Levret's law (1994) [3]:

\[M = 0.44 I_{MM} + 1.48 \log_{10} R + 0.48 \quad (2) \]

where \(I_{MM} \) is Modified Mercalli Intensity. Nevertheless, the number of near field low magnitude earthquakes is still low in the extended SMDB.

![Figure 1: Composition of extended SMDB](image)

1ST STEP: CHARACTERIZATION OF STRONG MOTION DATABASE

1) Introduction

In order to characterize SMDB, and in order to be consistent with RFS 2001-01 formulation, we decided to determine correlation laws for classical Strong Motion Parameters (SMP), using extended SMDB, in the following form:

\[\log_{10} \text{SMP} = aM + bR + c \log_{10} R + d \quad (3) \]

where \(\sigma \) is the standard deviation. The Strong Motion Parameters concerned are classical:
- A (maximal acceleration or peak ground acceleration),
- V (maximal velocity or peak ground velocity),

76
- A/V ratio,
- F (mid-frequency), using definition of random process,
- dF/F, dispersion around mid-frequency, using definition of random process,
- T (Trifunac's definition for duration [4]),
- CAV (Cumulative Absolute Velocity) equal to $\int |y(t)| dt$ where \(\square(t) \) is an accelerogram,
- Ia (Arias Intensity) equal to $\frac{\pi}{2g} \int |y^2(t)| dt$.

2) Regression method for calculating correlation coefficients

The methodology to obtain $\alpha, \beta, \gamma, \delta$ and σ in equation (3) consists in a classical one step minimization of the following function:

$$F = \sum_i \left(\log_{10} SMP_i - (\alpha M_i^\alpha + \beta R_i^\beta + \gamma \log_{10} R_i + \delta) \right)^2$$

which means:

$$\frac{\partial F}{\partial \alpha} = \frac{\partial F}{\partial \beta} = \frac{\partial F}{\partial \gamma} = \frac{\partial F}{\partial \delta} = 0.$$ \hspace{1cm} (5)

(Equation 5) gives a linear system of 4 equations with $\alpha, \beta, \gamma, \delta$ variables, easy to solve.

3) Main results

In table 1 are given calculated α, γ, δ and σ coefficients. Because we found βR is negligible, β is taken to 0. Figures 2 to 3 give examples of application of regression laws in two cases, $M = 5.5$ and $M = 6.5$ respectively for V and A/V.

<table>
<thead>
<tr>
<th>SMP</th>
<th>α</th>
<th>γ</th>
<th>δ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (cm/s^2)</td>
<td>0.295</td>
<td>-0.985</td>
<td>1.575</td>
<td>0.309</td>
</tr>
<tr>
<td>V (m/s)</td>
<td>0.432</td>
<td>-0.945</td>
<td>-2.468</td>
<td>0.340</td>
</tr>
<tr>
<td>A/V (s-1)</td>
<td>-0.137</td>
<td>-0.041</td>
<td>2.043</td>
<td>0.197</td>
</tr>
<tr>
<td>F (Hz)</td>
<td>-0.048</td>
<td>-0.125</td>
<td>1.134</td>
<td>0.159</td>
</tr>
<tr>
<td>dF/F</td>
<td>0.007</td>
<td>-0.106</td>
<td>-0.523</td>
<td>0.076</td>
</tr>
<tr>
<td>T (s)</td>
<td>0.164</td>
<td>0.324</td>
<td>-0.483</td>
<td>0.204</td>
</tr>
<tr>
<td>CAV (m/s)</td>
<td>0.324</td>
<td>-0.308</td>
<td>-1.058</td>
<td>0.230</td>
</tr>
<tr>
<td>Ia (m/s)</td>
<td>0.495</td>
<td>-0.912</td>
<td>-2.517</td>
<td>0.424</td>
</tr>
</tbody>
</table>

Table 1 : correlation coefficients of equation (3)
The conclusions of this 1st step are the following: low magnitude near field earthquakes seem to be characterized by:

- high acceleration: $A = 0.23$ g for $M = 5.5$ and $R = 7$ km,
- significant velocity: $V = 0.12$ m/s for $M = 5.5$ and $R = 7$ km,
- rather high mid-frequency: $F = 6$ Hz for $M = 5.5$ and $R = 7$ km,
- short duration: $T < 5$ s for $M > 5.5$ and $R < 7$ km,
- significant Arias Intensity: $I_a = 0.3$ m/s for $M = 5.5$ and $R = 7$ km.

Nevertheless, there is a large dispersion around mid-curves (σ is important for all SMP, see table 1) and correlation laws may not be valid for $M < 5$ and $R < 7$ km because of the very few records in extended SMDB in this domain.

2nd STEP: EFFECTS OF SMDB ON RC-STRUCTURES

1) Introduction

To analyze the effects of all the accelerograms in extended SMDB on RC-structures, the following methodology was adopted:

- calculation of the nonlinear response of concrete structures to extended SMDB,
- determination of correlation laws for calculated ductility in structures in the form of equation (3), in order to be consistent again with RFS 2001-01 formulation,
- identification of possible correlation of ductility with Strong Motion Parameters.

2) RC constitutive law and design level

In our case, concrete structures are supposed to be a one degree of freedom (DoF) oscillator governed by bilinear Takeda's constitutive law that takes into account stiffness degradation, and characterized by a tangential stiffness equal to 1% of elastic stiffness and 5% damping ratio. 3 frequencies are arbitrary chosen for RC-building: $f_o = 2, 5$ and 8 Hz.
Concerning the elastic yield X_Y of the constitutive law, it is defined with 5% NRC design spectrum respectively and arbitrarily scaled to 0.025 g, 0.05 g, 0.1 g and 0.2 g. So, for each f_b frequency, 4 design levels (or 4 elastic yield $X_Y = PSA/(2\pi f_b)^2$) are selected (Figure 4).

![Figure 4: determination of elastic yield](image)

3) Principle of calculation

As shown in Figure 5, for each signal in extended SMDB, the maximal displacement X_{max} of the nonlinear oscillator is calculated by a time-history scheme. Ductility μ is defined by X_{max}/X_Y ratio. For each signal, 12 nonlinear responses are calculated (3 building frequencies f_b X 4 elastic yield X_Y). These operations are repeated for all the signals in extended SMDB. At the end, we determine correlation law for ductility (isoductility mid-curves) in the form:

$$\log_{10} \mu (f_b, X_Y) = \alpha (f_b, X_Y) M + \beta (f_b, X_Y) R + \gamma (f_b, X_Y) \log_{10} R + \mu (f_b, X_Y) + / - \sigma (f_b, X_Y)$$

(6)

4) First application: comparison of isoductility with isointensity

It can be interesting for design to compare isoductility curves with isointensity curves. In other terms, is isoductility nearly equivalent to isointensity?

We can find an answer to this question by considering two RC-buildings designed to 0.1 g NRC spectrum: the first one is 2 Hz frequency, the second one is 5 Hz (it can be an application to French nuclear power plants whose most main buildings are below 5 Hz). For these two cases, the obtained correlation laws for ductility, in application to equation (6), are:
\[
\log_{10} \mu = 0.4585 \, M - 0.0006 \, R - 0.9703 \log_{10} R - 1.6500 \quad (+/-\sigma=0.4033) \text{ when } f_b = 2 \text{ Hz}, \\
\log_{10} \mu = 0.4252 \, M + 0.0002 \, R - 1.2620 \log_{10} R - 0.7588 \quad (+/-\sigma=0.4361) \text{ when } f_b = 5 \text{ Hz}.
\]

(7)

As for the first step, an important dispersion around mid-curve is observed: taking into account the standard deviation \(\sigma = 0.4 \) in equation (7) is equivalent to amplify \(\mu \) by \(10^{\sigma} = 2.5 \).

To compare isoductility mid-curves with iso-intensity mid-curves, we consider Levret’s law (equation 2) and Mohammadioun’s one (1985, [5]):

\[
M = 0.55 \, l_{MM} + 2.20 \, \log_{10} R - 1.14
\]

(8)

The results are given in Figure 6 (\(f_b = 2 \text{ Hz} \)) and Figure 7 (\(f_b = 5 \text{ Hz} \)) where are plotted iso-intensity mid-curves \(I=\text{VII} \) and \(I=\text{VIII} \) according to equations (2) and (8), and isoductility mid-curves \(\mu=1.5 \) and \(\mu=3.0 \) according to equation (7).

Figures 6 and 7 show it seem to exist an equivalence between iso-intensity and isoductility, at least for 2Hz and 5 Hz buildings designed to 0.1 g NRC spectrum. Nevertheless, this conclusion must be moderated: iso-intensity correlation laws in equations (2) and (8) were established with different ground motion databases, and different than extended SMDB used in this study. Using the same database would be of course more rigorous.

5) Second application: comparison of the effects of near field earthquake with further field one

In this application, the objective is to understand why near field earthquake can be less damaging than further field higher magnitude earthquake despite higher peak ground acceleration.

We consider a 5 Hz building designed to 0.1 g NRC spectrum. In application to equation (7), an earthquake characterized by \(M=5.5 \) and \(R=7 \) km gives the same mid-ductility \(\mu=3.2 \) than a further and higher magnitude earthquake characterized by \(M=6.5 \) and \(R=15.3 \) km.

According to RFDS 2001-01, we plotted in Figure 8 the two spectra respectively corresponding to \((M=5.5; \, R=7 \text{ km}) \) and \((M=6.5; \, R=15.3 \text{ km}) \) for 5\% damping ratio. They have a point of intersection
corresponding to $f=3.9$ Hz. Above this frequency, near field spectrum ($M=5.5$; $R=7$ km) presents higher pseudo-accelerations than further field one ($M=6.5$; $R=15.3$ km). It is the opposite on this side of $f=3.9$ Hz, although the two spectra give the same mid-ductility $\mu=3.2$.

![Isoductility spectra for 5 Hz building designed to 0.1 g NRC spectrum](image)

Figure 8: example of isoductility spectra for a 5 Hz building designed to 0.1 g NRC spectrum

In fact, because of plasticity, the linear frequency $f_b = 5$ Hz shifts in an "equivalent frequency" f_{eq} we can evaluate using Sozen and Shibata's approximation [6]:

$$f_{eq} = \frac{f_b}{\sqrt{\mu}} = \frac{5}{\sqrt{3.2}} = 2.8 \text{ Hz.}$$

For this equivalent frequency, the far field earthquake ($M=6.5$; $R=15.3$ km) gives higher pseudo-accelerations than the near field one ($M=5.5$; $R=7$ km).

So, near field earthquake can cause the same damage (or same ductility) than a further and higher magnitude one despite higher peak ground acceleration and higher pseudo-acceleration around linear frequency.

One can observe that the result should be slightly different in the case of the 2 Hz building design to 0.1g NRC spectrum (a $M=6.4$; $R=7$km) earthquake should lead to the same ductility $\mu=3.2$ than a ($M=7$; $R=15$km) earthquake).

However, one can observe finally that, according to these results, buildings designed to 0.1g NRC spectrum (which is a rather moderate design level) should withstand high magnitude – low distance earthquake due to ductility of the structure ($\mu=3$ remains below the ultimate behavior).

6) Third application: correlation of damage and with Strong Motion Parameters

In the first step, several Strong Motion Parameters mid-curves were calculated. In the second step, we calculated ductility in different buildings submitted to extended SMDB.

In this application, we look for possible correlations of ductility with Strong Motion Parameters. The adopted methodology is simple: for all SMP, for the 3 buildings (2, 5 and 8 Hz) and for the 4 design levels (NRC spectrum scaled to 0.025, 0.05, 0.1 and 0.2 g), we plot SMP on X-axis and ductility on Y-axis in
order to identify correlations. In the case of 5 Hz building designed to 0.1 g NRC spectrum, correlations of ductility $\mu = X_{\text{max}}/X_V$ with maximal acceleration A seems to appear (Figure 9). We've got the same tendency if SMP is maximal velocity (Figure 10).

On the other hand, in the case of 5 Hz building designed to 0.025 g NRC spectrum, there is neither correlation of ductility μ with duration T (Figure 11), nor A/V (Figure 12).

Figure 9 : μ versus A

Figure 10 : μ versus V
In conclusion of this last application, we finally found correlations of ductility μ with:
- maximal acceleration A,
- maximal velocity V,
- Cumulative Absolute Velocity CAV,
- Arias intensity I_a,

whatever the building frequency and the design spectrum.

On the other hand, no correlation is observed with:
- duration T,
- mid-frequency F,
- dispersion around mid-frequency dF/F,
- A/V ratio.

whatever the building frequency and the design spectrum.

It can be surprising that no correlation is observed between ductility μ and duration T. The reason is simple: in the database, T depends on (M, R) but also on peak ground acceleration A. So, for a given building frequency and a given design level, nonlinear response of RC-building depends strongly on peak
ground acceleration. Figure 11 should be very different if we decided to scale all the accelerograms to the same level, independently of M and R.

In conclusion of the 2nd step, we found some equivalence between isointensity mid-curves and isodamage (isoductility) mid-curves, at least for frequency building below to 5 Hz. Moreover, some correlations of damage Strong Motion Parameters were observed. Lastly, we gave some explications why near field earthquake can be less damaging than further and higher magnitude one, despite higher pseudo-acceleration.

As for the 1st step, there is a large dispersion around mid-curves (standard deviation in (M,R) correlation laws is important) and correlation laws may not be valid for M < 5 and R < 7 km because of the very few records in extended SMDB in this domain.
GENERAL CONCLUSION

A statistical study was done using a large strong motion database to characterize seismic motions (and in particular near field low magnitude one) and their effects on RC-structures in the context of the new French Safety Rule RFS 2001-01 intended for the determination of ground motion for nuclear facility design. All the recorded accelerograms of the database are characterized by local magnitude M and hypocentral distance R.

On one hand, (M, R) correlation laws are established for several and classical Strong Motion Parameters (like peak ground acceleration, or duration for example). The calculated mid-curves show near field low magnitude earthquakes are characterized by high peak ground acceleration, significant peak ground velocity, rather high mid-frequency, short duration and significant Arias intensity.

On the other hand, (M, R) correlation laws are established for ductility calculated in RC-structures (different frequencies and design levels) submitted to the same large strong motion database. First, some equivalence between isointensity mid-curves and isodamage (isoductility) mid-curves, at least for frequency building below to 5 Hz, were found. Moreover, some strong motion parameters like peak ground acceleration, peak ground velocity, cumulative absolute velocity and Arias intensity seem to be reliable indicators to predict damage, whatever the building frequency and the design level. Lastly, explications are given why near field earthquake can be less damaging than further and higher magnitude one, despite higher pseudo-acceleration at frequency building: because of plasticity, the building frequency shifts to a lower frequency such as pseudo-acceleration is lower for near field one. It can also be observed that, according to these results, buildings designed to 0.1g NRC spectrum (which is a rather moderate design level), should withstand high magnitude – low distance earthquake due to ductility of the structure.

Nevertheless, there is a large dispersion around mid-curves (standard deviation in (M,R) correlation laws is important) and correlation laws may not be valid for M < 5 and R < 7 km because of the very few records in database used for this study.

REFERENCES

Session 1 – Prof. H. Shibata
(National Research Inst. for Earth Science and Disaster Prevention, NIED, Tokyo)

Topic 1: Damaging capacity of seismic motions
Seismic response of structures to near fault ground motion

Mr. M. Elgohary (Atomic energy of Canada Limited AECL, Canada)
Mr. A. Ghabarah (McMaster University, Ontario, Canada)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

Near fault ground motion in the forward directivity zone is characterized by large-amplitude velocity pulses of long duration with superimposed high frequency component. The response of structures to near field records is expected to be different from the response to far field records, which were the basis for current design codes. The objective of this study is to evaluate the response of structures to near fault earthquakes (NFE) and compare the response to the standard spectra used in nuclear design. The response spectra of a set of NFE records from recent events were compared to the standard spectra used in the design of nuclear structures. It is concluded that near fault earthquake records affect the response of long period structures. Although the response spectra used in nuclear design codes can be modified to account for the special characteristics of near fault motion. This approach may not be adequate to represent the different states of damage and failure modes of the structure subjected to NFE.

Introduction

Although the special characteristics of near-fault ground motion were known for some time, their importance in earthquake design of civil engineering structures was not fully realized until several failures occurred during the 1994 Northridge and 1995 Kobe earthquake events. Near-fault earthquake (NFE) records in the forward directivity zone are characterized by large amplitude velocity pulses of long duration.

Available research on the response of structures to near-fault records is fairly limited. Anderson and Beretoro (1987) studied the nonlinear dynamic response of ten-storey, three-bay steel frame to near-fault records from the October 1979 Imperial Valley earthquake. They remarked that the peak ground acceleration (PGA) might not be the appropriate parameter for classifying the severity of strong ground motion with regard to structural damage potential. Iwan et al. (2000) studied the response of inelastic structures to near-fault ground motion using simplified SDOF and MDOF structural models. A shear building model was used to analyze building response to NFE ground motions. It was concluded that the single-mode analysis provides misleading results for long period structures subjected to pulse-type ground motions.

Alavi and Krawinkler (2001) studied the elastic and inelastic response of SDOF systems and MDOF frame structures subjected to NFE. They showed that for structures with long period T in comparison to the pulse period T_p ($T > T_p$), the distribution of elastic storey shear forces over the height is sensitive to the ratio of natural period of the structure to the pulse duration. It was observed that the shear forces in upper storeys might exceed the base shear. It was shown that the traveling wave effect causes highly non-uniform distribution of ductility demands over the height.

Liao et al. (2001) studied the nonlinear response characteristics of reinforced concrete frames subjected to NFE. Five and twelve-storey moment resisting frames were designed according to the Taiwan
building code. Four near-fault records during the 1999 Chi-Chi (Taiwan) earthquake were used as well as another set of earthquake records at the same sites recorded from past events representing far-field ground motions. All records were scaled to the same PGA of 3 m/s². It was concluded that storey drift induced by the near-fault ground motion for both 5 and 12-storey frames was much higher than that due to far-field ground motion.

The limited number of the structures and near-fault records used in the published research emphasize the need for a comprehensive study of near-fault ground motions and their effect on a wide range of actual structures designed according to current codes. As a first step, it is important to compare the response spectra of identified near fault records with the design spectra recommended by codes. This analysis will give an indication as to whether the code design spectra are representative of the near fault earthquake effect. The objective of this study is to evaluate the response of structures to near fault ground motion and compare the response to the standard spectra used in nuclear design.

Characteristics of NFE records

Strong ground motion recorded near fault during major earthquakes showed significant variation between records even between those stations located in the same general area. Some of these records contain high PGA with short-duration pulses that are known as acceleration spikes. In other cases, the pulses are of longer duration but lower PGA (Anderson and Bertero, 1987). Most of the variability of the ground motion in the far field region is attributed to distance to fault, the path and the local site effects. While in the near-fault zone the variability in time histories is mainly due to rupture directivity effect, type of faulting and hanging wall effects for thrust faults.

In the near fault zone, the propagation of rupture towards a site at a velocity very close to the shear wave velocity causes most of the seismic energy from the rupturing process to arrive in a single large pulse of motion. These pulses occur at the beginning of the record and represent the cumulative effect of almost all of the seismic radiation from the fault. The radiation pattern of the shear dislocation on the fault causes this large pulse of motion to be oriented in the direction perpendicular to the fault (Somerville et al., 1997). The ground motion in the forward rupture sites are characterized by the large pulses in the direction perpendicular to the fault while the backward sites have low amplitude long duration motion.

The fault type affects the tectonic deformation and produces the fling effects. For blind thrust fault type, permanent deformation effects occur over a large region above or near the rupture and does not change significantly between two close points. However, for strike-slip and dip-slip faults permanent displacement differs drastically across the fault, which affects structures located directly on the surface of the fault. This permanent displacement is combined with a velocity pulse in the direction of the fault for strike-slip faults and in the direction normal to the fault of the dip-slip faults.

Records from the 1994 Northridge earthquake show that ground accelerations on the hanging wall of thrust faults in the range of 10 to 20 km from the fault are as much as 50% higher than the average value for all site locations (Bardet et al., 1997). The hanging wall effect is most dominant for short periods while at long periods ground motions are more strongly influenced by rupture directivity effects.

Selected NFE records

A set of 30 near-fault records from ten major earthquake events was selected for use in this study (PEER, 2002). Table 1 summarizes the properties of the selected ground motion records. All the records were selected from free field or in building basement in order to minimize the effect of the structure
response on the recorded ground motion. The selection of the earthquakes was based on major events with moment magnitude larger than 6. The records were from stations at horizontal distance to the surface projection of the rupture not more than 15 km. The peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD) of the records are listed in Table 1.

Effect of NFE ground motion on the response of structures

In the far field, damage to structures is caused by several cycles of inelastic deformation where hysteretic mechanisms contribute to the dissipation of input energy. On the other hand, damage to structures in the near field is due to one or two cycles of large deformation that correspond to large amplitude velocity pulse. In this case, the energy dissipation mechanisms in the structure may not have time to be mobilized and the structure may fail abruptly.

The current seismic codes and design procedures are based on the far field earthquake ground motion records that were available at the time of code development. Recently, near fault hazards have been recognized and NFE records are becoming available. An attempt was made to account for near fault hazards by introducing scale up coefficients to design spectra to represent increased demands. However, this approach may not be appropriate given that the response of structures to near fault and far field ground motions may be significantly different.
Table 1 Properties of selected NEES records.

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Date</th>
<th>M<sub>s</sub></th>
<th>Station</th>
<th>Fault Dist. km</th>
<th>Component Deg</th>
<th>PGA g</th>
<th>PGV cm/s</th>
<th>PGD cm</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superstition Hills</td>
<td>11/24/87</td>
<td>6.7</td>
<td>286 Superstition Mountain</td>
<td>4.3</td>
<td>45</td>
<td>0.68</td>
<td>32.50</td>
<td>4.70</td>
<td>SH1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5051 Parachute Test Site</td>
<td>0.7</td>
<td>135</td>
<td>0.89</td>
<td>42.20</td>
<td>7.30</td>
<td>SH2</td>
</tr>
<tr>
<td></td>
<td>4/25/92</td>
<td>7.1</td>
<td>89005 Cape Mendocino</td>
<td>8.5</td>
<td>225</td>
<td>0.46</td>
<td>112.00</td>
<td>52.80</td>
<td>SH3</td>
</tr>
<tr>
<td></td>
<td>3/13/92</td>
<td>6.9</td>
<td>95 Erzincan</td>
<td>2.0</td>
<td>315</td>
<td>0.38</td>
<td>43.90</td>
<td>15.20</td>
<td>SH4</td>
</tr>
<tr>
<td>Imperial Valley</td>
<td>10/15/79</td>
<td>6.5</td>
<td>5054 Bonds Corner</td>
<td>2.5</td>
<td>140</td>
<td>0.59</td>
<td>45.20</td>
<td>16.78</td>
<td>IV1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5155 EC Meloland</td>
<td>0.5</td>
<td>230</td>
<td>0.78</td>
<td>45.90</td>
<td>14.89</td>
<td>IV2</td>
</tr>
<tr>
<td>Kobe</td>
<td>1/16/95</td>
<td>6.9</td>
<td>KJMA</td>
<td>0.6</td>
<td>0</td>
<td>0.82</td>
<td>81.30</td>
<td>17.68</td>
<td>KB1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6097 Site 1</td>
<td>6.0</td>
<td>90</td>
<td>0.60</td>
<td>74.30</td>
<td>19.95</td>
<td>KB2</td>
</tr>
<tr>
<td>Nahanni, Canada</td>
<td>12/23/85</td>
<td>6.8</td>
<td>77 Rinaldi</td>
<td>7.1</td>
<td>228</td>
<td>0.84</td>
<td>166.10</td>
<td>28.78</td>
<td>NR1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75 Sylmar Converter</td>
<td>6.1</td>
<td>318</td>
<td>0.47</td>
<td>73.00</td>
<td>19.76</td>
<td>NR2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24514 Sylmar Olive</td>
<td>3.6</td>
<td>18</td>
<td>0.83</td>
<td>117.50</td>
<td>34.22</td>
<td>NR3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9101 Tabas</td>
<td>3.0</td>
<td>288</td>
<td>0.49</td>
<td>74.60</td>
<td>29.69</td>
<td>NR4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Joshua Tree</td>
<td>11.6</td>
<td>90</td>
<td>0.78</td>
<td>32.40</td>
<td>69.78</td>
<td>LA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 Lucerne</td>
<td>1.1</td>
<td>0</td>
<td>0.27</td>
<td>27.50</td>
<td>9.82</td>
<td>LA2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pacoina Dam</td>
<td>2.8</td>
<td>275</td>
<td>0.73</td>
<td>146.50</td>
<td>262.7</td>
<td>LA4</td>
</tr>
</tbody>
</table>

In order to investigate the effect of near fault ground motion on the response of various structures, a frequency digital filtering procedure was applied. The procedure separates low frequency pulses by filtering out the superimposed high frequencies in the record. The cut off filter frequency is determined as the end frequency of the constant amplitude segment of the Fourier amplitude velocity spectrum. Figures 1 and 2 show the velocity power spectrum, ground acceleration, velocity and displacement time histories of
earthquake records SH3 and TB2, respectively. The two figures also show a comparison between recorded and filtered time histories for the two earthquakes.

The Fourier amplitude is a measure of the input energy of the ground motion at various frequencies. The broad velocity spectrum shown in Figure 1 indicates motion with large range of frequencies, which represent a random record in the time domain. The narrow spectrum shown in Figure 2 implies that the motion has a dominant frequency, which can be interpreted as a smooth pulse in the time domain. Figures 1 and 2 show that as a result of filtering the velocity record, the acceleration time history is changed especially if it contains high frequency spikes.

Record SH3 shown in Figure 1, contains several peaks in the velocity power spectrum but they all correspond to low frequency pulses. In general, this record has low frequency pulses in both the acceleration and velocity time histories. As the filter is applied to the record, no significant change in the PGV and minor changes to the PGA result. These changes correspond to high frequency spikes. Earthquake record TB2 shown in Figure 2, has completely different characteristics than SH3 record. High frequencies are superimposed on the near-fault velocity pulse but with low input energy as shown in the power spectrum plot. The comparison between recorded and filtered time histories from TB2 record shows small variations in the PGV before and after applying the filter but the PGA offiltered time history is significantly smaller than the recorded one. It is believed that the near-fault low frequency pulse is responsible for most of the damage in flexible structures even when it may have relatively low PGA.

The peak acceleration, the peak velocity or the peak displacement of the pulse can be used to describe ground records in the near-fault. Usually the PGA is the parameter most associated with severity of ground motion. Unfortunately, this parameter cannot be related to the damage potential of the earthquake. Near-fault records may contain acceleration spikes or long duration pulses of low frequency. In case of record SH3, the recorded high peak acceleration is of short duration, which may be out of the range of the natural frequencies of most structures. Therefore, large values of PGA alone can seldom initiate either resonance or be responsible for damage in the inelastic range. However, in case of record TB2, significant deformation of the structure even with lower PGA can occur. For this reason, modifying the code design procedure by increasing the acceleration for design is not a good indicator of damage and is not representative of NFE effects. Anderson and Bertero (1987) suggested the use of maximum incremental velocity and maximum incremental displacement for characterizing the damage potential of earthquake motion instead of PGA. Incremental velocity represents the area under an acceleration pulse and the area under the velocity pulse equals the incremental displacement.

Since the PGA is inadequate for quantifying the near-fault effects, the focus is on the velocity and displacement pulses. The velocity pulses correspond to the integration of relatively large pulses in the acceleration time history. The displacement time history may also contains large pulse, which can be used to quantify near-fault records. However, most recording systems do not adequately record the complete permanent displacements, which are filtered out of the records during processing. This leaves the velocity pulses as the most representative parameter for quantifying the characteristic of near-fault records based on the damage potential of these records.
Figure 1 Velocity power spectrum, ground acceleration, velocity and displacement time histories for SH3 earthquake record

Figure 2 Velocity power spectrum, ground acceleration, velocity and displacement time histories for TB2 earthquake record
Response and design spectra

The response spectrum is used extensively in earthquake engineering practice in the design and evaluation processes. The response spectrum describes the maximum elastic response of SDOF to a particular input ground motion as a function of the natural period and damping ratio of the system. The acceleration response spectra for 5% damping are plotted in Figure 3 for the unfiltered NFE time histories listed in Table 1.

The PGA, PGV, PGD, the Canadian (CSA N289-3, 1992) and the US (REG 1-69, 1978) nuclear design spectra calculated for 5% damping ratio are plotted in Figure 4. The Canadian nuclear design spectrum is based on ground motion of 0.1 g peak acceleration, 71 mm/s peak velocity and 30.5 mm peak displacement. The US nuclear design spectrum plotted in Figure 4 is scaled to 0.1 g. To compare the response spectra of NFE records with the nuclear design spectra, scaling of the NFE to PGA of 0.1 g or PGV of 71 mm/s is necessary. The mean and the mean plus one standard deviation of all the NFE records listed in Table 1 scaled to PGA of 0.1 g are plotted in Figure 5. The 5% damping spectra of the nuclear design guides scaled to 0.1 g are also plotted in Figure 5. The design spectra envelope the mean and mean plus one standard deviation curves in the high frequency range. However, the spectra are below the other curves in the long period range. The fundamental frequencies of major nuclear structures are normally in the range of 2 to 10 Hz.

The mean and the mean plus one standard deviation of all the NFE records listed in Table 1 scaled to PGV of 71 mm/s are plotted in Figure 6. The 5% damping nuclear design spectra are plotted on the same graph for comparison. It is found that on the basis of PGV scaling, the design spectra are higher than the mean and the mean plus one standard deviation curves in the high frequency range. However, the seismic demands for long period structures are higher than the nuclear design spectra. The spectra of all the NFE records are presented on tripartite plots in Figures 7 and 8. In Figure 7 the NFE were scaled to PGA of 0.1 g.

When the uniform hazard spectrum was introduced in seismic design, concern was expressed by practicing designers that it appears to underestimate the seismic demand in the long period range. The high demands of NFE records in the long period range may finally offer a logical resolution of the controversy.

![Figure 3: Absolute spectral accelerations of NFE records](image)

95
Figure 4 Canada and US (scaled to 0.1 g) design spectra calculated for 5% damping ratio

Figure 5 Comparison between the mean and mean plus one standard deviation of NFE records scaled to PGA of 0.1 g and Canada and US nuclear spectra

Figure 6 Comparison between the mean and mean plus one standard deviation of NFE records scaled to PGV of 71 mm/s and Canada and US design spectra
Conclusions

From the study of the characteristics of the NFE records and the comparison between NFE, the Canadian (CSA N289.3, 1992) and the US (REG 1.60, 1978) nuclear design spectra, the following conclusions are arrived at:

1. The separation of the low frequency component of near-fault record from the high frequency content by applying digital signal filters seems to be a realistic method for identifying the near-fault pulse parameters. This procedure provides some basis to justify and clarify when idealized pulses can substitute the complete near-fault record in structural analysis.

2. NFE affect the response of long period structures. However, major nuclear structures are normally in the high frequency range. The most important parameters of the near fault ground motion are the velocity pulse magnitude and pulse duration. The site-specific seismological prediction of these parameters is required for designing structures that may be subjected to near fault ground motion.

3. Long period structures designed to meet the minimum Canadian and US nuclear design requirements (CSA N289.3, 1999) and US (REG 1.60, 1978) may be subjected to severe seismic demands and damage in the near fault zone. The design requirement should address the near-fault motion explicitly in a time history form. It is recommended to define pulse parameter by the velocity pulse magnitude and duration and not by an implicit form of increasing the ordinates of the design response spectra.
Acknowledgement

This research was conducted under a research grant from Atomic Energy of Canada Limited. The support of AECL is gratefully acknowledged.

References

Damaging effects of near-field and far-field earthquake on reinforced concrete shear walls evaluated by a simplified model taking into account stiffness degradation

Mr. M. Brun* (INSA Lyon, France)
Mr. J-M. Reynouard (Institut National des Sciences Appliquées de Lyon, France)
Mr. L. Jezequel (École Centrale de Lyon, France)
Mr. C. Duval (EDF SEPTEN, France)
Mrs. S. Goubet (EDF SEPTEN, France)

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract:

The study intends to compare the damaging effects of a great variety of seismic ground motions included in a large data base. In particular, the purpose is to question the grade of conservatism of engineering rules in case of low-magnitude near-field earthquake, coming partly from the fact that the design of a civil engineering structure at its initial fundamental frequency does not take into account the degradation of the fundamental frequency for an increasing damage. For this purpose, an important step is to set up a simplified model of a reinforced structure, capable of reproducing at a global level the damage incurred. First of all, a low-rise shear wall, which has been previously pseudodynamically, is modelled by means of local models of concrete and steel materials. After verifying their relevance for predicting global response values such as top displacements and stiffness degradation, a simplified model, based on the fundamental frequency decrease as a function of a simple non-cumulative damage variable, is derived. The simplified model is validated by comparing the time-history damage prediction with the experimental one.

Owing to drastic reduction of computation times, the simplified model allows to assess the damage undergone by the reinforced concrete shear wall submitted to a large data base, composed of 2125 horizontal accelerograms. The simplified model constructed for a particular shear wall with a given initial fundamental frequency, is adapted to others shear walls, with initial fundamental frequencies covering an appropriate range for the civil engineering structures. Then, the interdependency between the seismic acceleration parameters proposed in the literature (PGA, PGV, Arias Intensity, CAV, ...) and the damage is explored. A spectral intensity, taking into account the degradation of the fundamental frequency, is proposed. Its correlation with the damage is significantly improved. Finally, the damage is connected to seismological parameters, i.e. the magnitude and the focal distance. For a deterministic structure, the grade of conservatism from engineering rules related to low-magnitude near-field earthquakes in comparison to the one related to further distance and greater magnitude earthquakes, is underlined. The spectral intensity proposed in this study, provides a homogeneous and relevant tool for estimating the damage potential of low-magnitude near-field earthquakes as well as greater and further ones.

* Ph. D Student, corresponding author.
Tel : 04-72-43-89-72 / From abroad (+33) 4-72
Fax : 04-72-43-85-23
E-mail : michael.brun@insa-lyon.fr
1. Professor, URGC-Structures, Institut National des Sciences Appliquées de Lyon, 69621, Villeurbanne, France.
2. Professor, LTDS, Ecole Centrale de Lyon, 69000, Ecully, France.
1. Introduction

The aim of this study is to investigate the grade of conservatism issued from the engineering practice by taking into account the seismic input as a spectral value at the initial frequency of the structure in particular case of low-magnitude near-field earthquake. Indeed, owing to the decrease of the dynamic characteristics of the damaged structure, the pseudo-acceleration value corresponding to the initial frequency can be a misleading parameter for the characterisation of the seismic damage potential. It is well recognised that, as the damage increases within the reinforced concrete structure, the alteration of the mechanical characteristics yields modal characteristics changes. In this way, Chen and al. ([1]) investigated the structural damage by means of the identification method of modal changes. At a critical damage level, they indicated that a decrease of the fundamental frequency up to 10% can be expected for steel beams. For reinforced concrete structures, the fundamental frequency reduction, related to the structural damage can be significantly greater. Actually, pseudodynamic tests on a low-rise shear wall, carried out at the European Laboratory for Structural Assessment (JRC-Ispira), showed fundamental frequency reductions of more than 60% (Pegon and al. [2]). In this study, this simple structure, which will be briefly presented in the following, is adopted. Such a fundamental frequency decrease strongly influences the dynamic response of the structure subjected to a seismic excitation. A reliable global model should reproduce in the best way this feature.

The first step concerns with the construction of a simplified based on the decrease of the fundamental frequency as a function of a damage variable. The used concept lies in coupling during time the dynamic characteristics of the structure with a non-cumulative damage variable relevant for the structure under consideration. The decrease of the fundamental frequency as a function of damage, identified by the help of predictive local behaviour models of concrete and steel materials, represents the only parameter curve of the non linear simplified model. The first validation of the simplified model is undertaken by comparing numerical results with experimental results. Then, for a set of 501 strong motions belonging to a large strong motions data base, the damages issued from the simplified analysis and from a more refined analysis using local models, are compared.

As the computation times are drastically reduced, the second step of this paper aims to determine the characteristics of the accelerograms that exhibit the strongest influence on damage. The purpose is to explore the interdependency between several seismic acceleration parameters and the damage variable predicted by the previously set up simplified model. The grade of interdependency is deemed by means of a linear correlation coefficient. By changing the effective mass of the uniaxial simplified model, the ability of the explored parameters to reproduce the seismic damage potential is investigated for a set of shear wall structures, each one being defined by a given initial fundamental frequency. A spectral parameter, which is based on spectral displacements and takes into account the degradation of the fundamental frequency, is put forward. The new parameter exhibits a good correlation with the damage variable for the whole range of initial fundamental frequencies. Then, the grade of conservatism issued form the use of the pseudo-acceleration value at the initial frequency of the considered structure as input seismic characterisation, is highlighted in particular case of low-magnitude near-field earthquake. The proposed spectral parameter turns out to be very efficient for reducing the grade of the previously exhibited conservatism concerning the low-magnitude near-field earthquakes.
2. Experimental programme

2.1 Presentation of the structure

In this work, the chosen structure is a heavily reinforced concrete shear wall which has been tested during the SAFE research programme at the European Laboratory for Structural Assessment (JRC-Ispra) in Italy. The SAFE programme included 13 pseudodynamic tests on low-rise reinforced concrete shear walls with different reinforcement ratios. The geometry of the selected wall T5 is depicted in Fig. 1. The wall is surrounded by a top and a base slab. The two heavily reinforced flanges are 20 cm thick. The web wall is 20 cm thick. The aspect ratio of the shear wall is equal to 0.4 indicating that the response is essentially controlled by shearing action. The horizontal and vertical reinforcement ratios of specimen T5 are equal to 0.8%.

The design frequency of the shear wall T5 is equal to 8 Hz. No vertical loading is applied to the specimen. In order to submit the structure to a pure shear loading, the rotation of the top slab is prevented by means of hydraulic pistons.

![Geometry of the wall T5 in m](image)

Fig. 1. Geometry of the wall T5 in m

2.2 Pseudodynamic tests

The input excitation used during the SAFE tests is a synthetic accelerogram having as target elastic spectrum a standard spectrum employed in the nuclear construction field. The spectral peak value of this standard spectrum is at about 4 Hz. The specimen is subjected to a series of pseudodynamic tests with increasing level up to the failure.

The measured initial fundamental frequency is equal to 6.7 Hz. In the first RUN, a relatively important cracking is observed, which is confirmed by a large drop of the fundamental frequency. The damage increases progressively during the two following RUNs to become very important in the fourth RUN. The failure of the specimen occurred at the beginning of the fifth RUN, by concrete crushing in the compressive zones of the wall, without fracture of reinforcement steels.
3. Simplified model

3.1 Coupling damage variable and degradation of the fundamental frequency

The purpose of the simplified model is to provide a reliable and efficient tool for the evaluation of the damage on the wall generated by strong motions contained in a large database. First of all, the attention is focused on the appropriate way to quantify the structural damage sustained by the low-rise shear wall. The maximum displacement at the top of the wall seems to be a good parameter to evaluate the damage. Park and Ang [3] proposed to complete this damage variable with a second term taking into account the dissipation under loading cycles. Among several authors, Fardis [4] concluded the relevance of this variable to reproduce the failure of the structure subjected to flexural forces. However, one can notice that the weighting coefficient associated with the energetic term appeared very low. Therefore, the contribution of the energetic term in the Park & Ang’s indicator becomes negligible in comparison to the displacement term. This consideration leads to the idea of adopting the simple maximum top displacement (denoted X) as the damage variable.

The kinematics of the low-rise shear wall is essentially the one of a one degree of freedom system. It is crucial to reproduce in the best way the strong decrease of the structural frequency observed in the experimental programme. The concept of the simplified model is to couple the fundamental frequency decrease with the damage variable X, by updating during time the frequency according to the damage variable X. The changes of the fundamental frequency during time is controlled explicitly by the damage variable X, which keep in memory the maximum of the prior response.

It is interesting to compare this simplified model with global hysteretic models commonly used in earthquake engineering. In accordance with the design philosophy of plastic hinges, hysteretic models are concerned with predicting in the most realistic way the energy dissipation corresponding to hysteretic loops area. The fundamental frequency decrease is implicitly taken into account through the stiffness loss. The model proposed in this work takes into account explicitly the changes in the fundamental frequency due to damage. Due to the relative stability of the viscous damping ratio computed from experimental results, the damping is modelled in a rough manner through an equivalent constant viscous damping ratio. Owing to the fact that the shear wall can be considered to a one degree of freedom system, the top-displacement response x(t) during time follows the equation of motion given as:

\[\ddot{x}(t) + 2\xi \omega(t) x(t) + \omega(t)^2 x(t) = -a(t) \] \hspace{1cm} (1)

with \(\omega(X) = 2\pi f(X) \) and \(\dot{X}(t) = \max_{0 \leq t' \leq t} |x(t')| \)

where \(x(t) \), \(\dot{x}(t) \), \(\ddot{x}(t) \) are the relative displacement, relative velocity and relative acceleration, respectively;

\(a(t) \) is the imposed acceleration at the base of the wall;

\(f(X) \) is the fundamental frequency depending on the damage variable X.

Since the damping ratio computed from experimental data was in the vicinity of 5%, this mean value is adopted.

The decrease of the fundamental frequency f(X) is identified by using a local approach.
3.2 Identification of the coupling relation

The identification of the fundamental frequency is carried out by means of local behaviour models of concrete and steel materials. The concrete model, which makes use of the smeared fixed crack concept, has been already validated during previous research programmes ([1-3], [6]). The ability of the model to reproduce the main phenomena which take place within the wall, is evaluated by comparing numerical results issued from a refined finite element modelling with local models and experimental results for the pseudodynamic tests on the wall T5. Then, the finite element modelling is kept and submitted to a variety of ideal sinusoidal excitations with different frequency and amplitude in order to derive the relationship between damage variable and fundamental frequency degradation. After applying one given ideal excitation, the final damage variable X is computed as the maximum of the top displacement of the wall during excitation. The final fundamental frequency is directly derived from the secant stiffness by the relation:

\[f = \frac{1}{2\pi} \sqrt{\frac{K}{M}} \]

where \(K \) is the final secant stiffness and \(M \) is the effective mass.

Fig. 2 shows the numerical values of the fundamental frequency related to the damage variable \(X \).

![Fundamental frequency against global damage X: numerical results and modelling.](image)

As a general trend, it can be seen that, from a certain threshold of the maximum top displacement \(X \), the decrease of the fundamental frequency is very abrupt, to become softer in a second stage. The first stage of the fundamental frequency decrease from a threshold value \(X_e \) is essentially due to the sudden concrete cracking. By inspiring to local formulations in traction proposed in the literature, which expressed the degradation of the Young modulus \(E \) as a negative exponential law depending on the plastic strain (Nechnech [7], Laborde [8]), the strong decrease of the fundamental frequency is modelled by an
exponential law with a negative coefficient c_1, charged to reflect the high kinetic of the cracking phenomenon. The second stage of the fundamental frequency decrease is essentially controlled by compressive non linear concrete behaviour, steel yielding and softening concrete. Due to the scarcity of the numerical results, this stage is modelled in an approximate way by an hyperbolic law with a lower kinetic constant c_2 than the one associated with the first stage decrease. Finally, the function $f(X)$ identified from numerical results is given as:

\[
\begin{align*}
 f &= f_0 & \text{for } X \leq X_e \\
 \frac{f-f_p}{f_0-f_p} &= \exp[-c_1(X-X_e)] & \text{for } X_e \leq X \leq X_p \\
 \frac{2f - (f_u + f_p)}{f_p-f_u} &= th[-c_2(X-0.6)] & \text{for } X_p \leq X \leq X_u
\end{align*}
\]

(3)

The parameters f_0, f_p, f_u, X_e, X_p, and X_u involved are identified from numerical results, so that the fundamental frequency curve fits them in the best possible way. In Fig. 2, the modelling of the fundamental frequency is compared with the numerical results.

3.3 Discussion

The formulation of the simplified model of a shear wall is based on the explicit decrease of the fundamental frequency as a function of the non cumulative damage variable X. We assume that the degradation of the fundamental frequency is dependent on the only damage variable X, without considering cumulative effects. The good results obtained under this assumption lead to the idea that the damage cumulative effect is not significant for the selected low-rise shear wall. Obviously, this assumption is more questionable for a slender wall.

A limitation of the simplified model lies in the fact that it is valid for one degree of freedom system. Furthermore, the dissipation under cyclic seismic loading has been taken into account through a constant viscous damping ratio, which is a rough manner to describe the complex phenomena under cyclic loading.

4. Validations

4.1 Experimental results

The first validation of the simplified model concerns with the pseudodynamic tests. The simplified model of the shear wall is employed to predict the top-displacement response. The top displacement history is computed by resolving the previous equations (1) and (3). The damage variable time-history, corresponding to the maximum top-displacement, is deduced. The numerical prediction is compared, on the one hand, with experimental results, and on the other hand, with numerical results obtained with local models. The prediction shown in Fig. 3 seems quite good in comparison to the experimental results and the numerical results issued from a refined approach. We can notice a slight underestimation of the simplified model during the RUN2. This can be attributed to a slight error of the modelled decrease of the fundamental frequency in comparison to the real one. It can also result from a higher value of the modelled viscous damping ratio than the experimental one, which has been experimentally estimated at about 4% during the RUN2.
Fig. 3. Time-history maximum top displacement X for the first four RUNs

4.2 Data base

A large data base containing 2125 horizontal strong motions is employed to verify the relevance of the damage prediction from the simplified analysis, by comparing those from a finite element approach. This database is the input data of our study concerning the characterisation of the seismic damage potential. Therefore, it is of great importance, because all results remain closely associated with it. It comes from the work of European Council, Environment and Climate Research Programme, which has been collected European strong motions, and gathered together in an available CD-ROM (Ambraceys, [9]). The magnitude, the epicentral distance and the focal depth are provided for each accelerogram. In this study, the focal distance is employed, directly deduced from the epicentral distance and the focal depth. The strong motions are shown in terms of focal distance-magnitude in the Fig. 4.
Fig. 4. Strong motion database (2125 accelerograms)

Given the computation time required by the finite element approach, only 501 strong motions are applied to the finite element modelling of the shear wall in order to verify the ability of the simplified model to reproduce the damage. The two numerical predictions are compared in the Fig. 5. As we can see, the results issued from the simplified analysis are close to the finite element modelling predictions. For a few strong motions, the simplified model underestimate the damage in comparison to local models. This can be attributed to the sensitivity of the threshold value X_s involved in the definition of the parameter curve $f(X)$ of the simplified model. For these strong motions, the damage X remain lower than this threshold value and the structure does not suffer any degradations under cyclic loading, while local models predict a progressive damage.

Fig. 5. Damage predicted by simplified model and local models for 501 strong motions
5. Conclusion

The coupling concept of the fundamental frequency decrease with the non cumulative damage variable X, appears to be capable of reproducing the global damage sustained by the studied low-rise shear wall under seismic excitations. Thanks to the drastic reduction of the required computation times in comparison to a refined finite element approach, a statistical study based on the large data base is carried out in the following. The ability for reflecting the seismic damage potential of the investigated acceleration parameters will be scrutinised by the help of the simplified model, reproducing the decrease of the dynamic properties of the structure during seismic excitation.

Acknowledgements

The support of Electricity of France and grant from the Region Rhône-Alpes are gratefully acknowledged.

References

Analysis of the response behaviour of structures subjected to damaging pulse-type ground motions

Mr. F. Mollaioli* (University of Roma, Italy)
Mr. L. Decanini* (University of Roma, Italy)
Mrs. S. Bruno* (University of Roma, Italy)
Prof. G-F. Panza* (University of Trieste, Italy)

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

The presence of long period pulses in near-fault records can be considered as an important factor in causing damage due to the transmission of large energy amounts to the structures in a very short time. Under such circumstances high energy dissipation demands usually occur, which are likely to concentrate in the weakest parts of the structure. From the study of the response of nonlinear oscillators, the effects of these distinctive long period pulses, derived from records obtained during recent earthquakes, have been assessed by means of: i) synthetic parameters directly derived from the strong ground motion records, such as peak ground acceleration, peak ground velocity, incremental velocity, and ii) elastic and inelastic spectra of input energy, hysteretic energy, displacement, strength. The results indicate that long duration pulses strongly affects the inelastic response, with very high energy and drift demands which may be several times larger than the limit values specified by the majority of codes.

Introduction

The recently increased availability of recorded near-fault ground motions suggests that the dynamic characteristics of ground shaking can vary significantly as a function of the location of the recording station with respect to the fault and the evolution of the rupture process. It has been known for a long time that under certain condition earthquake ground motions can consist of a limited number of distinct velocity and displacement long duration pulses. Typically, these pulses are the result of a particular phenomenon, known as forward directivity effect, attributable to the earthquake rupture moving toward the site. In the case of

* Mr. Luis D. Decanini, Dipartimento di Ingegneria Strutturale e Geotecnica - Università di Roma “La Sapienza”, Italy-e-mail address: luis.decanini@uniroma1.it;
Mrs. Silvia Bruno, Dipartimento di Ingegneria Strutturale e Geotecnica - Università di Roma “La Sapienza”-e-mail address: Mrs.silvia.bruno2002@virgilio.it;
Mr. F. Mollaioli, Dipartimento di Ingegneria Strutturale e Geotecnica - Università di Roma “La Sapienza”, e-mail address fabrizio.mollaioli@uniroma1.it.
Giuliano F. Panza, Dipartimento di Scienze della Terra - Università di Trieste, The Abdus Salam International Center for Theoretical Physics - Miramar, Trieste, e-mail address: panza@dst.univ.trieste.it
backward directivity, occurring when the rupture propagates away from the site, the corresponding motion is generally characterized by lower amplitudes and longer duration. The directivity itself is a well-known phenomenon in seismology [1-5], however only recently the impact of the directivity pulse has been considered in a limited number of seismic codes. In a document included in the 1983 Argentinian seismic code [6] it was suggested to utilize in the near-field area accelerograms including long duration pulses. However, the first seismic code including factors to account for near-field directivity effects on spectral ordinates is the 1997 version of the Uniform Building Code [7].

The presence of long duration pulses in near-field ground motions implies the transmission of large amounts of energy into the structure which should be dissipated in a short time. This behavior is characterized by one or two large inelastic excursions with few reversals, usually concentrated in the weakest parts of the structure, such as soft stories and any other zone where sharp changes in strength or stiffness occur. On the other hand high frequency, harmonic motions, typical of far-field records, generally require a continual dissipation of energy over a relatively long time, with numerous yield reversals. Therefore, while the total input energy corresponding to long duration ground motion pulses (i.e., of low to medium frequency) can reach considerable values, even though the seismic intensity is not particularly significant, high frequency motions do not produce severe damage, since their high spectral acceleration are not consistent with the corresponding moderate energy effectively imparted to structures.

Recent concern about the damage potential of near-field ground motion has led to considerable interest in the nature of these motions and their impact on structural performance. As long ago as the end of the fifties it was suggested [8] that the presence of a single pulse of energy was responsible of the exceptional damage inflicted on structures by the Port Hueneme Earthquake of March 18, 1957, in spite of its small magnitude (Mw = 4.7) and low peak ground acceleration (0.08g). However, the recognition of the effects of ground motions near the causative fault is significantly connected with the study of two other strong motion records, namely those known as Station 2 in the 1966 Parkfield, California Earthquake and Pacoima Dam Station in the 1971 San Fernando, California Earthquake. Though both records were obtained a few kilometers from the source, relatively little damage was caused by the former, characterized by pulses of very short duration, whereas the latter almost immediately awakened the interest of the scientific community, being the first destructive seismic event in the USA with a recorded accelerogram containing severe long duration acceleration pulses which resulted in large ground velocity increments. In particular in [9], in the analysis of the damage suffered by the Olive View Hospital, a few kilometers down the rupture surface of the 1971 San Fernando Earthquake, it was suggested that the significant nonlinear structural behavior would probably have occurred during the response to the relatively long duration pulse highlighted by the Pacoima Dam record. This dynamic demand would have forced the structure beyond its elastic capacity, with consequent destructive damage to the supporting columns of the lower floors. Subsequent to the pulse, the strong ground motion was dominated by higher frequencies than that of the pulse. However such later motion, though containing the overall peak acceleration, appeared to have shaken the damaged building about its newly deformed configuration. The misleading notion of scaling the earthquake intensity near to a fault by a peak ground acceleration value, since it is normally associated to waves of relatively high frequency, had been previously demonstrated in [3], as recalled in [5]. Actually, in near-fault records the most energetic velocity and displacement pulses are not even in phase with the peak acceleration; yet dynamic considerations suggest that the former might produce more profound structural response consequences than the latter.

After the 1979 Imperial Valley, California Earthquake, the incremental velocity was indicated as one of the most important parameters influencing the maximum inelastic response of structures subject to near-fault ground motions; moreover, it was pointed out that long duration acceleration pulses are especially damaging if the width of the pulse is large compared with the natural period of the structure.
These concepts were reasserted in [11, 12]. More recently several studies have focused on the dynamic response of MDOF systems subject to pulse-like ground motions. Simplified modeling techniques were used to highlight the effect of such pulses on multi-storey frames [13-16].

The importance of assessing near-fault effects has led several authors [17-20] to demonstrate that near-fault records with forward directivity can be represented by equivalent pulses defined on the basis of a limited number of ground motion parameters. On recognizing that the intensity and distribution of the seismic energy demand depend upon the duration of the pulses, in [21] the significance of energy-based parameters in the characterization of the seismic demand of structures subject to near-fault pulses was emphasized, and some relationships between energy and displacement demands were suggested. Finally, starting from an energy-based characterization of the damage potential, a series of parameters, namely the incremental velocity, the area enclosed by the input energy spectra and the pulse duration, were identified in order to set the equivalence between idealized and ground motion pulses [20].

In this research, from the study of the response of oscillators having nonlinear behavior, the effect of such distinctive long period pulses derived from records obtained during recent earthquakes has been analyzed by means of: i) synthetic parameters directly derived from the strong ground motion records, such as peak ground acceleration, peak ground velocity, incremental velocity, and ii) elastic and inelastic spectra of input energy, hysteretic energy, displacement and seismic strength. The results indicate that long duration pulses strongly affects the inelastic response, with very high energy and drift demands which may be several times larger than the limit values specified by the majority of codes.

Structural implications of long duration pulses

As a general rule, the current linear elastic response spectra do not provide sufficient information to account for the energy transmission mechanisms attributable to the presence of long duration pulses in near-field ground motions. In this context, even the opportunity of adopting inelastic response spectra derived from the elastic response spectra is questionable, since the excitations that induce the maximum response in elastic and inelastic systems are different in kind. It is therefore necessary that such information should be complemented with data on the duration of strong ground motion and the number, sequence and characteristics of intense, relatively long acceleration pulses associated with large velocity increments.

A comparison of the different effects produced by impulsive and harmonic excitations has been illustrated in [22, 23] by a series of analyses on SDOF elastic and inelastic systems subject to simple idealized ground motion. Again in the present research the study of the mechanical behavior of SDOF elastic and inelastic systems has been carried out in order to highlight the importance of considering, in the assessment of the effective damage potential of earthquakes, the mutual relations between different types of ground motion and the structural performance. The effects of both high frequency and long period pulses have been investigated by computing strength, energy and displacement demand quantities, underlining the significance of energy-based parameters in the characterization of the seismic demand of structural systems subject to such pulses.

Two simple idealized ground motions have been considered, both made up of sinusoidal motions of different frequency and duration, with null initial acceleration, velocity and displacement, and consisting in a single pulse of duration equal to 1.0 s, followed by a harmonic motion with duration equal to 2.0 s and period equal to 0.2 s. The first, denoted as Type 1, is characterized by the fact that both the single pulse and the harmonic motion have values of the relative acceleration maxima equal to 0.35g, while in the second, denoted as Type 2, the relative acceleration maximum of the single pulse is two thirds of that of the harmonic motion.
The response of SDOF systems in terms of displacement (δ) time histories, has been analyzed with reference to a linear elastic and an elasto-plastic model. The results presented herein refer to oscillators with damping coefficient, ξ, strength, C_y, equal to 0.15g and 0.2g. The natural period, T, is equal to 0.2 s, i.e., coincides with the period of the harmonic excitation, and to 0.4 s, i.e., greater than that of the harmonic excitation but still far from the duration of the single pulse. From the inspection of the curves reported in Figure 1, the effects of long duration pulses on the response of oscillators beyond the elastic threshold are clearly visible and it appears that, for a given system, the definition of a critical ground motion strongly depends on the constitutive law adopted for that system.

As expected, for linear-elastic systems, the critical dynamic excitation is that of periodic type with frequency equal to that of the system (i.e., the harmonic part of both types 1 and 2 idealized motions, with period equal to 2.0 s), since it induces a resonance phenomenon in the oscillators with natural period T equal to 2.0 s (Figures 1a and 1b, top). On the contrary, long duration pulses may become critical for inelastic system, especially in the case of oscillators with yielding resistance, R_Y, equal or less than the inertial force corresponding to the effective ground acceleration of the pulse, i.e., $R_Y = m\ddot{u}/g$, where m is the mass of the system, or $C_Y = \ddot{u}/g$. Moreover, the displacement demand increases as the natural period of the oscillators approaches the duration of the single pulse (Figures 1a and 1b, bottom). In the case of elastoplastic contributions to building the response of the system up to its yielding threshold. Once the system begins to yield, the phenomenon of response amplification due to resonance is mitigated, since the energy dissipated through even small inelastic deformations is associated to large values of \ddot{u}. Therefore, large inelastic deformations do not occur during yielding reversal induced by periodic short pulses. Actually, the number and amplitude of these reversals are not sufficient to give rise to low cycle fatigue phenomena, since the amount of inelastic strain, developed in each excursion during an earthquake, is usually so small that the number of cycles necessary to cause collapse would exceed the number which can possibly occur even in the longest strong motions. The high displacement demands, imposed by the long duration pulse, suggest that the effective acceleration values of long duration pulses, generally coincident with the peak ground acceleration, PGA, are greater than those relevant to high frequency excitations, even when the former are characterized by lower values of PGA than the latter.

![Fig. 1](image_url)
Fig. 1 Displacement demand for SDOF systems subject to idealized ground motions

The results presented above confirm that, while the maximum linear-elastic response of a structural system is usually controlled by the resonance phenomenon, considerably larger deformations can be induced by the presence of just one, long pulse with an effective acceleration even slightly greater than that corresponding to the yielding strength of the structure. It is also evident from Figure 1 that, the larger the intensity of the effective acceleration of a pulse with respect to the yielding strength of the system, the
larger the amount of inelastic deformations that will develop; furthermore, while high frequency motions are critical essentially for elastic systems with fundamental period close to the resonance period, long duration pulses appear to be critical for structures with fundamental periods laying within a significantly wider interval. Actually, according to [22], the presence of repeated severe long acceleration pulses can produce a sufficient amount of cumulative damage to give rise to one or a combination of two types of failure, respectively known as low cycle fatigue and incremental collapse or crawling. In [22] it is emphasized the advise to design structures against that type of incremental collapse, between the two listed above, which appears to constitute the critical failure. Similar conclusions may be drawn from Figure 2, that shows, for SDOF systems with \(\gamma = 5\% \), \(T = 0.4 \) s, and \(C_s \) equal to 0.15g and 0.2g, the demand in terms of input energy, \(E_i \), and hysteretic energy, \(E_h \), according to the definition given in [24].

The totality of the energy demand is concentrated in the time interval corresponding to the long duration pulse. This time interval is not long enough for the structure to efficiently utilize the structural damping; consequently, most of the energy is dissipated through hysteresis, which implies the development of structural damage.

Fig. 2 Energy demand for SDOF systems subject to idealized ground motions

Analysis of the response to near-fault records

Near-fault records obtained during the 1979 Imperial Valley Earthquake contain severe velocity and displacement pulses. In Figure 3a the location of the recording stations considered in the present study with respect to the causative fault is shown. Since the strike-slip fault rupture progressed toward the El Centro Array, #7 Imperial Valley College Station (IVC) and #6 Houston Road Station (HOU) can be considered in forward directivity conditions, while Agarias Station (AGR) results in backward directivity conditions. Due to the proximity to the epicenter, Bonds Corner Station (BCR) can be regarded as in neutral position. Records from Calexico Station (CXO), which are not affected by directivity effects, were also considered for mere comparison purposes.

The velocity, \(v_s \), time histories shown in Figures 3b, c, d, e for the fault-normal (FN) components of the four stations affected by directivity indicate the presence of long duration pulses, particularly in forward directivity conditions. In fact, at the beginning of the velocity time histories of Imperial Valley College Station and Houston Road Station, pulses of duration, \(T_p \), equal to approximately 3.7 s are detected. The elastic spectra of input energy, \(E_i \), and seismic coefficient, \(C_s \), are illustrated in Figure 4. The spectral \(E_i \) ordinates are maximum for periods \(T \) close to the value of \(T_p \). Since the energy demand attains largest values in the in the long-period region, i.e., for \(1.0 = T = 4.0 \) s approximately, on reckoning that the seismic
coefficient spectral ordinates keep equal to approximately 0.5g in the same period region, it can be affirmed that critical conditions may develop for a wide class of structures, actually designed to ensure lower values of the seismic coefficient. In fact, a general feature making near-fault signals in forward directivity conditions particularly critical for structures is that the periods range where the energy demand is maximum is wider than that encountered for other type of signals, such as those recorded at Calexico, Bonds Corner and Agrarias stations; moreover, the strength demand keeps considerably high in the same period range.

Fig. 3 1979 Imperial Valley Earthquake: recording stations (a); ground velocity time histories recorded in directivity conditions (b, c, d, e)

Fig. 4 1979 Imperial Valley Earthquake: input energy and seismic coefficient elastic spectra

In Table 1 the values of peak ground acceleration, \(PGA \), peak ground velocity, \(PGV \), incremental velocity, \(IV \), seismic hazard energy factor, \(AE_i \), and peak energy spectral ordinate, \(EI_{\text{max}} \), relevant to the fault-normal, FN, and fault-parallel, FP, components of the ground motions considered are reported. The quantity \(AE_i \), introduced in [25], is defined as the area enclosed by the elastic input energy spectrum in the interval of periods between 0.05 s and 4.0 s. As anticipated, in the records IVC and HOU, velocity and energy parameters appear to be more indicative quantities of the effects of forward directivity on the FN components than the \(PGA \). In fact, while the ratios of the values relevant to the FN component to those
relevant to the FP component are about 2-3 for the former, they are close to the unity for the latter. This result can also be observed in the inelastic case, for values of the ductility ratio, \(\mu \), equal to 2 and 4. Such circumstances do not occur for the remaining signals considered, recorded in backward directivity conditions or outside the near-field. We like to stress the significant differences in terms of energy and velocity demands between the NF components of HOU and IVC, and the other records.

<table>
<thead>
<tr>
<th>1979 IMPERIAL VALLEY EARTHQUAKE: STRONG GROUND MOTIONS PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF HOUSTON Rd</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>PGv (cm/s)</td>
</tr>
<tr>
<td>PGv (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
<tr>
<td>HV (cm/s)</td>
</tr>
</tbody>
</table>

Near-fault records obtained during the 1992 Landers, California Earthquake offer another clear example of forward and backward directivity effects. This event, one of the largest in California since 1952 with magnitude \(M_w = 7.3 \), was caused by a right-lateral strike-slip fault with a slip length of about 70 km. The near-fault stations activated during the earthquake were located in different position with respect to the fault rupture directivity. In particular, the Lucerne Valley Station (LV) was within a distance of 2 km from the fault trace, near the end of the fault segment that ruptured, in a forward directivity position, while the Joshua Tree Station (JT) was located also in the near-field but at a distance of about 8 km from the surface projection of the rupture, in a backward directivity position. Even though both stations were close to the fault, the damage potential exhibited by the corresponding records is very different. The fault normal component of Lucerne Valley record presents a severe long duration pulse in the velocity trace of about 4.5-4.8 s (Figure 5), which is not easily visible in the acceleration trace. This pulse, characterized by an incremental velocity equal to 200 cm/s, contains most of the seismic energy radiating in the direction of the rupture. As shown in Figure 6c, the maximum of the input energy spectrum occurs at a period of approximately 4.5 s, close to the pulse duration.

Fig. 5 1992 Landers Earthquake: ground velocity (a) and acceleration (b) time histories recorded in forward directivity conditions (fault normal components)

In Table 2 the strong ground motion parameters relevant to the FN and FP components of the records considered are reported. Also in this case, the effects of the presence of long-duration pulses in the NF component obtained at Lucerne Valley Station are essentially revealed by velocity and energy parameters.
In fact, the ratio of the values relevant to the FN component to those relevant to the FP component is much greater than unity for these parameters, while the PGA values are comparable in the FN and FP components of both Lucerne Valley and Joshua Tree. It is interesting to remark that the ratio of the values relevant to the FN components of the two records examined is close to the unity only in the case of the maximum input energy, \(E_{I,\text{max}} \) (Table 2, last column).

However, as shown in Figures 6c, d, while the input energy relevant to JT reaches an isolated peak value, rapidly decreasing outside a very narrow band of periods, the values spectral ordinates relevant to LV remain considerably high within a large band of periods. Therefore, it can be concluded that the effects of forward directivity conditions are, in this case, more effectively accounted for by the high values of the parameter \(AE_{I,\text{max}} \). Finally in the periods range corresponding to the maximum demand in energy terms for Lucerne Valley, i.e., 3–5 s, the values of the seismic coefficient spectral ordinates remain close to 0.4g, and considerably greater than those observed for Joshua Tree within the same range of periods (Figures 6a, b).

![Figure 6](image)

Fig. 6 1992 Landers Earthquake: elastic seismic coefficient (a, b) and input energy (c, d) spectra

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Lucerne Valley (LV)</th>
<th>Joshua Tree (JT)</th>
<th>(NF_{I,\text{max}}/NF_{I,\text{m}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{GA}) (cm/s)</td>
<td>713</td>
<td>774</td>
<td>278</td>
</tr>
<tr>
<td>(PGV) (cm/s)</td>
<td>146</td>
<td>33</td>
<td>42.7</td>
</tr>
<tr>
<td>(P_{GV}) (cm/s)</td>
<td>200</td>
<td>33</td>
<td>42.7</td>
</tr>
<tr>
<td>(ME_{I,\text{max}}) (cm/s)</td>
<td>64963</td>
<td>10736</td>
<td>36809</td>
</tr>
<tr>
<td>(ME_{I,\text{m}}) (cm/s)</td>
<td>65342</td>
<td>9225</td>
<td>32861</td>
</tr>
<tr>
<td>(ME_{I,\text{m}}) (cm/s)</td>
<td>64802</td>
<td>7424</td>
<td>28922</td>
</tr>
<tr>
<td>(E_{I,\text{max}}) (cm/s)</td>
<td>32934</td>
<td>7175</td>
<td>31826</td>
</tr>
<tr>
<td>(E_{I,\text{m}}) (cm/s)</td>
<td>28990</td>
<td>7367</td>
<td>26393</td>
</tr>
<tr>
<td>(E_{I,\text{m}}) (cm/s)</td>
<td>26803</td>
<td>6622</td>
<td>18935</td>
</tr>
<tr>
<td>(E_{I,\text{m}}) (cm/s)</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>(E_{I,\text{m}}) (cm/s)</td>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Conditions required for forward directivity are also met in dip slip faulting, including both reverse and normal faults. During the 1994 Northridge earthquake, which occurred on a blind thrust fault, several stations recorded motions affected by rupture directivity effects. The record obtained at Rinaldi Receiving Station (RRS) exhibits significant damage potential due to the presence of a pulse occurring after about 2 s in the velocity FN component, with incremental velocity equal to 255 cm/s and duration of 1.2 s. The peak input energy is attained at a period value approximately equal to the pulse duration value (Figure 7b). As in the cases examined previously, the energy values keep considerably high over a large interval of periods; correspondingly, high values of the seismic coefficient are observed (Figure 7a). In Figure 8 the time histories of the energy dissipated by hysteresis, \(E_{h} \), and the displacement, \(\delta \), are reported for elastoplastic SDOF systems of different natural periods (0.5 s, 0.7 s and 1.3 s), characterized by a seismic coefficient \(C_y \).
= 0.35g and 5% of the critical damping. Due to the high strength demand, all oscillators yield; furthermore, both hysteretic energy and displacement demands do not differ significantly from one oscillator to another, turning out to be critical for a broad class of structures.

Fig. 7 1994 Northridge Earthquake: elastic seismic coefficient (a) and input energy (b) spectra (RRS, FN)

Fig. 8 1994 Northridge Earthquake: hysteretic energy and displacement demands for SDOF systems subject to the Rinaldi Receiving Station FN component

Conclusion

The present research is focused on the characterization of the damage potential of long period pulses recorded, during recent earthquakes, by near-fault instruments. It is particularly important to develop and improve their representation using synthetic parameters, which take into account simultaneously the amplitude, duration and number of cycles of the near-fault pulse, in addition to the conventional response spectra. In this context, velocity, displacement and energy parameters appear to be appropriate indicators of the effects of the presence of near-fault pulses, particularly in forward directivity conditions. Long period pulses, due to near-fault rupture directivity are produced by the superposition of waves radiated from asperities of the fault. The degree of the superposition depends on the station location with respect to the fault, and it is affected by disturbances in the propagation media. The limited number of records from the near-fault region do not allow to characterize the influence of the seismotectonic environment completely, therefore reliance should be placed on realistic seismological simulations in order to quantify the pulse effects adequately.
References

Notes presented at the Workshop

The effect of near-field ground motions on degrading systems
Mr. H. Sucuoğlu (Middle East Technical University, Turkey)
Mr. A. Erberik (Middle East Technical University, Turkey)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

The damage which occurs in degrading systems under-near field ground motions is evaluated by employing energy based hysteresis and damage models. Low-cycle fatigue principle forms the basis of both models where damage is expressed as the reduction in the effective stiffness. The results indicate that both displacement demands and damage in degrading systems increase significantly due to the degradation of stiffness and strength under near-field ground motions of large magnitude earthquakes which cause a significant number of inelastic displacement cycles.

Introduction

Near-field ground motions have two important characteristics regarding their effects on engineering structures. The first one is well identified in the past, which is the presence of a long acceleration pulse leading to a large peak ground velocity, usually exceeding 50 cm/s, sometimes approaching 1 m/s or larger. Such a dominant pulse produces excessive displacement and inter-storey drift demands from structures subjected to the near field ground motions. These demands usually dominate damage in structures.

Another important aspect of near-field ground motions is the presence of a significant number of large amplitude acceleration cycles during their effective duration. This is a result of the fault rupture process during a large magnitude event, where the fault rupture characteristics are directly reflected into the near-field ground motions. Although the amplitudes of these cycles may be less than the dominant pulse, their compound effect is detrimental, especially on systems which degrade under repeated significant excitation cycles.

An energy-based low-cycle fatigue model is proposed for degrading systems in this study, and energy-based hysteresis and damage models are developed for SDOF systems. These models are employed for evaluating the damageability of near field ground motions for assessing their effects on existing structures whose structural properties deteriorate under severe repeated excitation cycles. Damage is expressed in two parts. The first part is related to the maximum response displacement whereas the second part is related to low-cycle fatigue. The objective of the paper is to evaluate the comparative damage in degrading and non-degrading systems, both subjected to samples of near field ground motions from large magnitude earthquakes.

Degrading Systems

Deterioration in the mechanical properties of concrete, masonry and steel structures and soils are usually observed under repeated cyclic loading in the inelastic response range. It is possible to classify deteriorating systems into two groups: a) Only stiffness deteriorating systems (SD), and b) Both stiffness and strength deteriorating systems (SSD). Under imposed constant-amplitude inelastic displacement cycles, the first group displays stable hysteresis loops with constant energy dissipation at each cycle. However the second group can not maintain stable cyclic energy dissipation under the same type of loading (Fig.1.a). Although they may attain their initial strength at larger displacements, they exhibit reduced cyclic energy dissipation capacity under constant-amplitude cycles (Fig.1.b). Therefore cyclic energy dissipation capacity can be employed as a convenient measure in differentiating between SD and SSD systems. In this study,
SD and SSD systems are described as non-deteriorating and deteriorating inelastic systems respectively, regarding their energy dissipation characteristics. The reduction in the energy dissipation capacity with the number of constant amplitude cycles, normalized with respect to the first cycle dissipation, is expressed by the low-cycle fatigue model shown in Figure 2 for non-degrading and several degrading systems.

Energy-Based Hysteresis Model

A simple piece-wise linear hysteresis model is developed in this study for representing the force-deformation response of single degree of freedom deteriorating systems. It is based primarily on the stiffness degrading model (Clough and Johnston, 1966), extended with an energy-based memory for simulating strength deterioration. An energy-based low cycle fatigue model is developed for calculating the reduction in the energy dissipation capacity under repeated inelastic displacement cycles (Figure 2). The fatigue model in Figure 2 is expressed by

\[\bar{E}_{h,n} = \alpha + (1 - \alpha)e^{\beta(1-n)} \]

(1)

where \(\bar{E}_{h,n} \) is the normalized energy dissipation at the n’th cycle, \(\alpha \) and \(\beta \) are two characteristic fatigue parameters. Once the reduced energy dissipation capacity at an equivalent cycle number is predicted by this model, the force-displacement path in the hysteresis model is determined by reducing the strength capacity of the degrading system accordingly (Erberik and Sucuoğlu, 2001).

Figure 1 demonstrates that the hysteresis model simulates the observed energy dissipation reasonably well in a test specimen under low-cycle fatigue loading. The same model can also predict the energy dissipation characteristics under variable-amplitude loading as shown in Figure 3.

Energy-Based Damage Model

Dissipated energy represents the complete response of a system throughout its entire response duration. Therefore deterioration of structural characteristics can be expressed in terms of the loss in energy dissipation capacity if appropriate physical links can be established.

A hybrid damage model is developed here for degrading systems which takes into account the combined effects of maximum displacement response and strength deterioration due to low-cycle fatigue. Displacement response and strength deterioration under seismic excitations are both expressed in terms of dissipated energy as explained in the previous section.

The damage model is adopted to a system which exhibit both stiffness and strength degradation, subjected to low-cycle fatigue cycles as illustrated in Figure 4 where the first and n’th cycles are shown. The projection of the intercept of the equivalent stiffness \(k_n \) with the initial yield level \(F_y \) on the displacement axis indicates that the same amount of damage would be experienced if the system was pushed to the displacement \(u_n \). Accordingly, damage is expressed in two parts constituting \(u_n \), the one is due to the observed maximum displacement \(u_m \), and the other is due to the additional displacement \(\Delta u_n \) arising from strength loss. Both displacement components are transformed into damage through normalizing them with the plastic displacement capacity of the system.

\[D_n = \frac{u_m - u_y}{u_y} + \frac{\Delta u_n}{u_y} = \frac{u_m - u_y + \Delta u_n}{u_y} \]

(2)
Damage Estimation Under Near-Field Ground Motions

The energy-based hysteresis and damage models developed in this study are employed for estimating the seismic performance of inelastic SDOF systems under different strong ground excitations. This may provide an insight on the performance assessment of degrading systems during future earthquakes.

Two different ground motions are used for response analysis. These are the El Centro 1940 NS component (ELC), which is a benchmark record in earthquake engineering, and Yarimea NS component from the 17 August Kocaeli earthquake (YPT). Their acceleration traces are shown in Figure 5. Peak ground accelerations were 340, 314 cm/s², and peak ground velocities were 35, 73 and 70 cm/s for ELC and YPT, respectively. Both ground motions were recorded in the near fields of their respective sources, during strong earthquakes with magnitudes above 7.

Dynamic responses of degrading systems are calculated under the selected ground excitations. Three different sets of low-cycle fatigue parameters are assigned to the energy-based hysteresis model for comparative assessment. There is no strength deterioration in the first set, accordingly $\alpha=1$ and $\beta=0$. This is identical to the Clough-Johnston model, and identified as the non-deteriorating system (ND). The second set represents a moderately deteriorating system (MD) with $\alpha=0.5$ and $\beta=1$, and the third set is a severely deteriorating system (SD) with $\alpha=0.22$ and $\beta=0.82$. This third set of values represent the CH family of specimens tested within the scope of this study, and presented in the companion paper. The low-cycle fatigue models of the three systems are presented in Figure 2 in the normalized cyclic energy dissipation capacity format.

The displacement responses of degrading SDOF systems with 5% critical damping and a yield strength to weight ratio (η) of 0.2 are calculated under the two ground excitations, for vibration periods T between 0 and 2 seconds. A sample of displacement response histories for $T=0.5$ second under the YPT record is shown in Figure 6. It is evident from this figure that both the maximum displacement response amplitude and the number of large-amplitude displacement cycles increase significantly with the level of deterioration under a strong ground excitation.

The spectral displacement responses of the elastic, stiffness deteriorating (ND), and both stiffness and strength deteriorating (MD and SD) systems under ELC and YPT are presented in Figure 7 in the form of inelastic to elastic spectral displacement ratios. Although the number of large-amplitude displacement cycles cannot be compared from this figure, it is clearly observed that spectral displacements of deteriorating systems increase notably in the short and medium period ranges. Further, the well-accepted equal displacement rule, which is based on assuming equal elastic and inelastic spectral displacements in the moderate and long period ranges, does not hold for deteriorating systems in the moderate period range between 0.5 and 1.5 seconds. This range widens with the intensity of ground motion. Similar observations were also reported by Song and Pincheira (2000).

Seismic damage accumulation with time for degrading systems introduced above is calculated under the selected ground motions by using Eq.(2) for SDOF systems in the 0-2 second periods range. Then the maximum damage obtained at the end of each seismic excitation is expressed in spectral form, presented in Figures 8 and 9 for ELC and YPT records respectively. In these figures, two components of the damage function D_s in Eq.(2) are also shown separately. The first component is the damage resulting from the maximum response displacement or ductility, and the second component is the accumulated damage due to low-cycle fatigue. The second component only exists for the systems that exhibit strength deterioration (MD and SD), hence it is zero for the systems with no strength deterioration (ND).
Both figures reveal that the level of deterioration influences the fatigue-based component of damage function much more than it influences the displacement-based component. Although the displacement-based component is effected from the level of deterioration only in the short period range, total damage is sensitive to deterioration over a wider range including both short and medium periods.

The ELC record may be considered weaker in intensity compared to the YPT record in view of the peak ground velocities. However its long duration has a significant influence on the fatigue-based component of damage for degrading systems. Hence spectral distribution of damage for degrading systems under ELC is comparable to the damage distribution under the other ground motion with higher peak ground velocity. Damage spectrum offers a broader definition for the intensity, or damage potential of ground motions since it contains the effect of the number of large-amplitude response cycles, or the effective response duration, which increases damage in degrading systems considerably.

Damage spectra for inelastic systems with constant strength ratio η are obtained as smooth curves, decaying inversely with the vibration period under the selected ground motion components as shown in Figures 8-9. In order to obtain a uniform spectral damage distribution over the entire period range, larger design strength ratios are assigned to shorter period systems in seismic design codes. Accordingly, damage spectra such as these shown in Figures 8-9 reflect the expected shape of the strength spectra for obtaining a uniform damage distribution. Therefore, if strength deterioration under repeated displacement cycles is inherent under long duration seismic excitations, its effect on damage can only be compensated by a larger yield strength.

Conclusions

An energy-based hysteresis model is developed in this study for predicting the seismic response of degrading SDOF systems deteriorating in strength and energy dissipation capacity. Further, a damage model is proposed for measuring the seismic performance of degrading systems. Both models are verified by the test results. Finally, these models are employed for calculating the dynamic performance of degrading systems under strong ground motions. The following conclusions are obtained from the results of the presented study:

1. A hysteresis model which captures the variation of cyclic energy dissipation capacity predicts the response of degrading systems reasonably well.

2. Spectral displacements of deteriorating systems increase significantly with the level of deterioration in the short and medium period ranges, exceeding the elastic displacements by far.

3. Seismic performance of degrading systems reduce remarkably in the short and medium period ranges under long duration strong excitations which produce a number of significant response cycles. This reduction manifested by the fatigue component of damage function has to be considered realistically in seismic performance evaluation of existing structures.
References

Figure 1.a Observed response and analytical simulation of a degrading system under low-cycle fatigue

Figure 1.b Observed and predicted energy dissipation of a degrading system under low-cycle fatigue
Figure 2. Energy-based fatigue model for non-degrading and degrading systems

Figure 3.a Observed and predicted hysteresis relations of a degrading system under variable amplitude displacements
Figure 3.b Comparison of observed and predicted cumulative energy dissipation of a degrading system under variable amplitude displacements
Figure 4. Geometric description of the damage model

Figure 5. The ground motions used in response analysis.
 a) El Centro 1940 NS, b) Yarimca 1999 NS
Figure 6. Displacement responses of elastic and inelastic deteriorating SDOF systems under the YPT ground acceleration (T=0.5 second, $\xi=0.05$, $\eta=0.2$)

Figure 7. Inelastic to elastic spectral displacement ratios under El Centro (ELC) and Yarima (YPT) ground accelerations
Figure 8. Spectral variation of total damage and its components under El Centro for degrading systems
Figure 9. Spectral variation of total damage and its components under Yarimca for degrading system
Session 2 – Dr. N. Simos
(Brookhaven National Laboratory, United States)

Topic 2: Seismic input motion for design purpose
Estimation of the near-source strong ground motion during the Kocaeli, Turkey earthquakes of August 17, 1999 at damaged areas with regards for site effects

Mr. K. Kudo (Earthquake Research Institute, University of Tokyo, Japan)
Mr. T. Kanno (National Research Institute for Earth Science and Disaster Prevention, Japan)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

The estimation of strong ground motions at downtown Adapazari and Golcuk, where heavy damage was observed, is inevitable to understand the relation between ground motion severity and damage to buildings. For this purpose, we adopted an empirical Green’s function method for ground motion synthesis using observed aftershock recordings. First, we estimated the bedrock motion and then convolved the effects of surface sediments taking into account of nonlinear behaviors of soil by an equivalent linear method. We selected five large asperities from the heterogeneous source model determined by Sekiguchi and Iwata (2002) for synthesizing the ground motion from the mainshock. The validity of this simulation was confirmed by the comparison of the strong motion records and the synthetics at several stations near the fault.

Introduction

Major damage to buildings and loss of life during the Kocaeli (Izmit), Turkey earthquake, were concentrated near the surface earthquake fault, therefore, the primary reasons for the damage are attributed to near earthquake source effects, leaving aside the quality of buildings. The strong motion records from the Kocaeli earthquake near the fault were successfully recovered by the Earthquake Research Department (ERD, 1999), and the Kandilli Observatory (KOERI, 1999). However, because of a sparse network in Turkey (Celebi et al., 2000), no strong motion record was obtained at severely damaged areas, except Duzce (DZC). The strong contrast of damage ratios between the strong motion observation site, Sakarya (SKR) and downtown Adapazari, and the wide variation of the damage ratios even in the relatively small area of Golcuk (Architectural Institute of Japan Reconnaissance Team et al., 2000) are also similar issues. It is our concerns to estimate the severity of the ground motions at damaged areas.

The shallow and intermediate-depth S-wave velocity structures in Adapazari and Golcuk areas were determined by the array observation of microtremors (Kudo et al., 2002). In addition, we also conducted temporal array observations of aftershocks to understand the relative differences of site effects on strong motion or damage in and around Golcuk, near the surface fault. It is our concerns to estimate the strong ground motions at the severely damaged areas, especially at downtown Adapazari and Golcuk. In case of Adapazari, the ground motion at SKR is able to use as an input motion to sediment sites, or bedrock motion, for roughly estimating the ground motions in downtown Adapazari (e.g. Kudo et al., 2002; Bakir, et al., 2002), since the S-wave velocity near the surface at SKR is approximately 1,000 m/sec or higher and the distance between SKR and downtown sites is not large. However, there still exist uncertainties, which are the NS motion, near source radiation effects, nonlinear effects of surface soils, and so on. The case of Golcuk is much difficult task, because we have no record near by the sites and the damaged areas in Golcuk, where surface soils are very soft, was very close to the surface earthquake fault.

Nevertheless very limited data and these difficulties, this paper is an attempt to estimate strong ground motions at damaged areas using the empirical Green’s function method with regards for source complexities (asperities) and nonlinear amplification of seismic waves in sedimentary basins.
However, there still exist uncertainties, which are the NS motion, near source radiation effects, nonlinear effects of surface soils, and so on. The case of Golcuk is much difficult task, because we have no record near by the sites and the damaged areas in Golcuk, where surface soils are very soft, was very close to the surface earthquake fault.

Nevertheless very limited data and these difficulties, this paper is an attempt to estimate strong ground motions at damaged areas using the empirical Green's function method with regards for source complexities (asperities) and nonlinear amplification of seismic waves in sedimentary basins.

![Figure 1. Studied area showing locations of epicenters of the mainshock, the aftershocks, and observation sites.](image)

Site characteristics of studied area

Studied areas that we made temporal aftershock observations and array observations of microtremors are shown in Figure 1, with permanent strong motion observation sites SKR, YPT, and IZT and the surface earthquake fault (e.g. Barka et al., 2002). A temporary aftershock observation, which was very short period (three days), was conducted at GLS, GLA, GLF, GLJ, and GLN in the Izmit bay area including YPT (Figure 1). The array observations of microtremors were carried out at SKR, ADC, ADU, YPT, GLF, and GLN and the S-wave velocity structures of sedimentary layers are estimated. The estimated S-wave velocity structures are shown in Table 1, which are mostly reproduced from Table 3 in Kudo et al. (2002) with slight modifications. Underground structures at GLA and GLJ, where only aftershock observations were carried out, were estimated using the following procedures. At first, we computed spectral ratios of the aftershock motions at GLA and GLJ to those at GLF. Next we estimated the S-wave velocity structures so as that the 1D theoretical spectral ratios match with the observed spectral ratios using the genetic algorithm (GA) (e.g., Yamanaka and Ishida, 1996). Figure 2 shows the comparison of the theoretical spectral ratios with the observed ones. We assume further that common seismic basements (bedrock) among sites in Golcuk and Adapazari are the layers of which S-wave velocities are 950 m/sec and 1,500 m/sec, respectively. It is also assumed that the seismic basement of similar S-wave velocity outcrops at GLS and IZT.

The studied areas are very close to the surface earthquake fault, especially the observation sites GLN, GLJ, and GLF are located within a distance of a few hundreds meters from the fault. While the distance of ADC and ADU in Adapazari area from the fault are 6 km and 10 km, respectively.
Figure 2. Comparison of the spectral ratios to GLF estimated by the genetic algorithm with observed ones.

Table 1. The S-wave velocity structure model estimated by the array observations of microtremors (Kudo et al., 2002) and the inversion analysis of spectral ratios of the aftershock records using the GLI.

<table>
<thead>
<tr>
<th>SKR</th>
<th>ADC</th>
<th>ADU</th>
<th>YPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs (m/s)</td>
<td>Thickness (m)</td>
<td>Vs (m/s)</td>
<td>Thickness (m)</td>
</tr>
<tr>
<td>1050</td>
<td>72</td>
<td>234</td>
<td>38</td>
</tr>
<tr>
<td>1500</td>
<td>97</td>
<td>728</td>
<td>242</td>
</tr>
<tr>
<td>1500</td>
<td>---</td>
<td>878</td>
<td>63</td>
</tr>
<tr>
<td>1500</td>
<td>1650</td>
<td>100</td>
<td>950</td>
</tr>
<tr>
<td>283</td>
<td>19</td>
<td>150</td>
<td>14</td>
</tr>
<tr>
<td>312</td>
<td>52</td>
<td>259</td>
<td>70</td>
</tr>
<tr>
<td>694</td>
<td>97</td>
<td>531</td>
<td>270</td>
</tr>
<tr>
<td>752</td>
<td>61</td>
<td>930</td>
<td>---</td>
</tr>
<tr>
<td>950</td>
<td>---</td>
<td>950</td>
<td>---</td>
</tr>
</tbody>
</table>

--- infinity

Estimation of strong ground motion during the mainshock at downtown Adapazari

Preliminary estimation (Linear soil response)

In a previous paper (Kudo et al., 2002), we estimated the ground motions at ADC and ADU during the mainshock. The EW component of the ground motion at SKR deconvolved by the response of the surface layer, although the surface effects are only for very high frequency, is used for the input motion at ADC and ADU. The synthetic motions at ADC and ADU are estimated by convolving the response of sedimentary layers determined by microtremors. The velocity models used in the computation are shown in Table 1, and constant Q factors are assumed associated with the S-wave velocity, ranging from 15 to 80 in the sedimentary layers. The synthetic ground accelerations and the velocities at ADC and ADU were estimated, assuming 1D propagation of S-wave without any corrections to distance and non-linearity (Figure 8). The synthetic motions are only valuable as an upper band of estimations at the sites. The distances at SKR, ADC, and ADU from the nearest surface fault-line were 3.4, 6.4, and 9.6 km, respectively. The peak acceleration (582 cm/sec²) and the velocity (108 cm/sec) at ADC are reduced to 488 cm/sec² and 74 cm/sec, respectively, using the relative distance relation with the help of the empirical formula (Joyner and Boore, 1982). In the case of ADU, they become to 368 cm/sec² and 61 cm/sec, respectively.

Next our concerns are to estimate the effects of nonlinear behaviors of surface soils, NS motion at those sites, and geometrical effects of source radiation for these sites.
Estimation by the equivalent linear method for soil response.

We estimated the strong ground motions during the mainshock in the Adapazari sites similarly to the previous case, but taking into nonlinearity of soils. First, we estimated the incident wave at ADC and ADU by deconvolving the responses of the surface layers estimated by microtremors at SKR from the mainshock record based on the equivalent linear method (Schnabel et al., 1975), while the computer code developed by Yoshida and Suebomi (1995) was used. Next, the estimated input motion is convolved with the response due to the velocity structure models at ADC and ADU, assuming a common seismic bedrock of which S-wave velocity is 1,500 m/sec. Distances form the surface earthquake fault to SKR, ADC, and ADU are 3.4 km, 6.4 km, and 9.6 km, respectively, therefore, a distance correction would be necessary, when we use the ground motion at SKR for input motions to ADC and ADU. As mentioned before, we assumed that the contribution of source to strong ground motion were only five large asperities as shown in Figure 6 (discuss later). We evaluated the distances of those sites using the method of equivalent hypocentral distance (Ohno et al., 1990) by only taking into account the number 3 asperity (see Figure 6), which was closest to the Adapazari area.

![Graph](image)

Figure 3. A dynamic soil property model by Osaki et al. [1978] for equivalent linear method.

As we have not enough data on soil properties at those sites, we used the representative dynamic model of soil property proposed by Osaki et al. (1978) for equivalent linear analyses, as shown in Figure 5. While, we used the effective strain proposed by Sugito et al. (1995), for taking into account damping factors, in which the strain of each layer depends on frequency as equation 1.

\[
\gamma_{\text{eff}}(\omega) = \alpha \gamma_{\text{max}} \frac{F(\omega)}{F_{\text{max}}},
\]

where \(\omega\) is angular frequency, \(\gamma_{\text{eff}}(\omega)\) and \(F(\omega)\) effective strain and Fourier spectra of ground motion strain at \(\omega\), respectively. \(\gamma_{\text{max}}\) and \(F_{\text{max}}\) are the maximum strain and the maximum value of their spectra, respectively. \(\alpha\) is the coefficient (0.65) for the equivalent linear method. In addition, we assumed that the soft layers of which S-wave velocity is lower than 400 m/sec were taken as sand, because of less information of soil properties. An analysis was made for only EW component because of lack of record of NS motion at SKR during the mainshock and the frequency ranges between 0.1 Hz to 10Hz was used following processing.

Figure 4 shows thus estimated ground motions in terms of acceleration and velocity. The equivalent hypocentral distances of SKR, ADC, and ADU are 10.1 km, 11.4 km, and 14.1 km, then correction factors become 0.89 and 0.72 at ADC and ADU, respectively. The estimated peak acceleration at ADC is not so high relative to SKR (factor of 1.1), may due to large damping at high frequency range, while the peak
velocity is a factor of approximately 2 that would be significant to damage of building. This is the case that we assumed the surface layers of both sites to be sand.

Figure 4 Estimated strong ground motion during the mainshock in downtown Adpazari by and the equivalent linear method using the observed earthquake records at SKR that were corrected for distances and responses of surface layers.

Figure 5 Comparisons of ground accelerations and velocities for the cases of surface layers to be sand and clay.
However, we have not enough information on soil properties of the individual sites. We also computed the ground motion in case of clay at ADC and compared the case of sand. The difference of acceleration is considerable, but the ground velocity is almost identical, as shown in Figure 5. Hereafter we will discuss mostly in terms of ground velocity, therefore, we assumed the surface layers for all the sites to be sand and the ground velocities have no significant difference of soil property.

Source model and synthetic motions by the empirical Green’s function method

Near source effects on ground motion are not only distance but also source geometry and fault rupture processes. In order to consider the effects, we employed the empirical Green’s function (EGF) method developed by Irikura (1986), Irikura et al. (1997), and Kamae et al. (1990). The method postulate the omega square model (Aki, 1967; Brune, 1970), synthetics are constructed as followings;

\[
U(t) = \sum_{i=1}^{N} \left(r / r_i \right) \cdot F(t) \ast (C \cdot u(t))
\]

\[
F(t) = \delta(t - t_i) + \frac{1}{n'(1 - \exp(-1))}\sum_{j=1}^{n'} \left[\exp\left\{ -(k - 1)/(N - 1)n' \right\} \delta(t - t_i - (k - 1)T'/(N - 1)n') \right]
\]

\[
t_i = (r_i - r_0) / V_s + \xi / V_r + \epsilon_i
\]

where, \(U(t) \) is the synthetic motion, \(u(t) \) is the small event, \(N \) is ratio of fault length between the large and the small events, and \(r \) and \(r_i \) are hypocentral distance of the small earthquake that is used as a Green’s function, and from the \(i \)-th element to the site, respectively. \(C \) is the ratio of stress parameter between the large and the small event, \(F(t) \) is function for correcting source time function, and \(\ast \) means convolution. \(T \) is rise time of the target event, \(n' \) is an appropriate integer number to shift the fictitious periodicity \(T/(N-1) \) into a high frequency beyond the interest (here \(n' = 100 \) is used), \(V_s \) is the S-wave velocity and \(V_r \) is the rapture velocity of the fault. \(\xi \) is random number to prevent artificial periodicity generated by the relation between a interval of subfaults and rapture velocity. In this study, we used the empirical relation of \(T \) proposed by Geller (1976); \(T=16S \quad 0.5 / \pi 1.5 \quad V_s \), where \(S \) is the fault area of the target event.

![Complex fault model](image)

Complex fault model, which have five asperities referring to Sekiguchi and Iwata (2002) and Kamae and Irikura (2000). Locations of earthquakes and observation sites are also plotted.
Empirical Green's function

We used the records from the largest aftershock (M5.8) of September 13, 1999, at SKR, IZT, and YPT as EGF. At first, we deconvolved the responses of the surface layers from strong motion records based on the above-mentioned equivalent linear method. The effects of nonlinear behavior of soils at SKR and IZT are negligibly small but we processed to keep uniformity of the analyses. We used the deconvolved baserock motions from the largest aftershock, thus obtained, as Green's functions for those sites. The synthetic motion was first constructed as a bedrock motion at each site and then it was convolved the response of surface layers by the equivalent linear method as mentioned above.

Asperity model

Investigations on the complex fault process for the Kocaeli earthquake have been conducted using strong motion records by Sekiguchi and Iwata (2002) and Bouchon (2002), as well jointly with the other data by Yagi and Kikuchi (2000), Li et al. (2002), and Delouis (2002). We only intend to estimate strong ground motion of relatively high frequency, say from 0.3 to 10 Hz, therefore, the constraint by static or long-period motion is not necessary required. We selected five asperities, as shown in Figure 6, referring mostly to the source inversion results by Sekiguchi and Iwata (2002). We, in addition, assumed that the strong motion was generated by only these asperities. In order to confirm the validity of our procedures, we obtained the synthetic motions for the mainshock at SKR, IZT, and YPT. Figure 6 compares the synthetic strong motion with the observations with velocity waveforms and Fourier spectra. Minor modifications, like forward modeling, from the model by Sekiguchi and Iwata (2002) were made, so as to obtain good match between synthetics and observations. The final characterized asperity model is shown Table 2. The frequency ranges in the analyses were restricted to 0.1-10 Hz for SKR and YPT, and to 0.4-10 Hz for IZT, due to the S/N ratios of the aftershock records. A somewhat disagreement in the synthesized strong motion for IZT at high frequency, however, generally the synthetics are in good agreement with the observations. Therefore, we inferred that these procedures and the fault model represented by five asperities would be valid. The numbers of subfaults are 6x4, 2x1, 4x3, 3x2, and 2x2 for the asperities from No.1 to No. 5, respectively, and the ratios of stress parameters are 1.5, 1.0, 1.5, 3.0, and 1.0 for the asperities from No.1 to No.5, respectively, as shown in Table 3.

Effects of radiation pattern

Radiation pattern effects are sometimes ambiguous or frequency dependent. Kamae et al (1990) suggested a method to consider the frequency dependency of source radiation pattern that the observed radiation pattern in a longer period range has a tendency to follow the theoretical one, however, it tends to uniform for all directions in short period range. We assumed the low frequency to be 0.2 Hz and the high frequency to be 2 Hz, and the weights between two frequencies were given following Kamae et al. (1990). In order to include the source radiation pattern effects, because of the differences of strike and dip of a fault between the main- and the aftershock (EGF) and the geometry of the extended fault (asperities) of the mainshock, we first rotated the axis of the bedrock horizontal (NS and EW) motions into radial and transverse motions. Next, the rotated waveforms of the small event are corrected concerning to the radiation pattern, source time function, and time shift for including rapture propagation and then they are summed. Thus obtained synthetic baserock motions were convolved the response of surface layers by the equivalent linear method as described before and they rotated again to NS and EW directions, and they compared in Figure 7.
Estimation of ground motion in downtown Adapazari based on EGF

A lack of the NS component of strong ground motion at SKR during the mainshock brought large ambiguity on estimating the severity of ground motion in downtown Adapazari. A forward directivity effect (e.g. Somerville et al., 1997) on NS motion is the one plausible suggestion. EGF method enables us to estimate the NS motion at SKR and at downtown Adapazari using both horizontal motions from the largest aftershock. Figure 8 shows the estimated ground motions at SKR, ADC, and ADU. The EW motion at SKR is only compared with the observation. The NS component of strong motion at SKR is estimated to be 126 percents in the peak ground acceleration, however, the peak ground velocity is 87 percents of the synthesized EW motion, which is rather small than we expected. Estimated strong motions are prominent in long period, 3 to 4 seconds. The peak ground velocities at ADC and ADU are factors of 2.8 and 1.2 to that at SKR.

We estimated the ground motion at ADC downtown Adapazari using three different methods. Their acceleration response spectra of 5 percents damping are compared in Figure 9. An estimation with linear method will be understand as an upper bound in short period range. There exit a considerable difference of factor 2 between ‘OBS.+non-linear’ and ‘EGF+non-linear’ at longer period than 1 sec., however, no significant difference is found in the peak velocity.

Figure 6. Comparison of the synthetic waveforms during the mainshock from strong motion records during the largest aftershock with the observed earthquake motions during the mainshock.
Table 2. The source parameters of each asperity.

<table>
<thead>
<tr>
<th>Asperity</th>
<th>Rupture starting point</th>
<th>Mechanism</th>
<th>Size</th>
<th>Vs (km/s)</th>
<th>Vr (km/s)</th>
<th>Stress Drop (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Depth (km)</td>
<td>Dip</td>
<td>Strike</td>
<td>Slip</td>
</tr>
<tr>
<td>1</td>
<td>40.700</td>
<td>29.910</td>
<td>15.9</td>
<td>80</td>
<td>89</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>40.699</td>
<td>29.999</td>
<td>4.5</td>
<td>80</td>
<td>91</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>40.692</td>
<td>30.301</td>
<td>13.0</td>
<td>80</td>
<td>95</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>40.701</td>
<td>30.017</td>
<td>15.9</td>
<td>80</td>
<td>91</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>40.695</td>
<td>29.483</td>
<td>15.9</td>
<td>80</td>
<td>89</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 3. The source parameters of the largest aftershock and parameters for synthesis from the largest aftershock records to strong motion during the mainshock.

<table>
<thead>
<tr>
<th>Hypocenter</th>
<th>Largest aftershock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.</td>
<td>40.80</td>
</tr>
<tr>
<td>Long.</td>
<td>30.03</td>
</tr>
<tr>
<td>Depth (km)</td>
<td>4.3</td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>L (km)</td>
<td>5.00</td>
</tr>
<tr>
<td>W (km)</td>
<td>5.00</td>
</tr>
<tr>
<td>number of div.</td>
<td></td>
</tr>
<tr>
<td>Asperity 1</td>
<td>6X4</td>
</tr>
<tr>
<td>Asperity 2</td>
<td>2X1</td>
</tr>
<tr>
<td>Asperity 3</td>
<td>4X3</td>
</tr>
<tr>
<td>Asperity 4</td>
<td>3X2</td>
</tr>
<tr>
<td>Asperity 5</td>
<td>3X2</td>
</tr>
<tr>
<td>Stress Drop (bar)</td>
<td>80</td>
</tr>
</tbody>
</table>
Figure 7. Synthetic NS component of strong motions at SKR and waveforms at ADC and ADU during the mainshock using the empirical Green's function method.

In this study, we used two methods for estimating the incident wave at damaged area. We compare results by two methods as shown in Figure 10. The waveforms in Figure 10 are not the surface motions but the incident waves on the bedrock. They are in agreement in time domain comparably, however, the Fourier amplitude of bedrock motion at damaged area estimated by the observed motion at SKR is smaller than that by the empirical Green's function method in longer period range than 1 second. This reason is attributed to difference of the radiation pattern and the dynamic source process of the fault, because the objective area is located near the fault even though distance between two observation sites is close each other. Therefore, in case that the strong motion data are obtained at rock site near sedimentary site, if both sites are located near the fault, we are necessary to pay attention for use of rock site data as incident wave at sedimentary site.

Figure 8 Comparison of acceleration response spectra for the synthetics by three different methods.
Figure 9. Comparison of the synthetic strong motions at ADC and ADU using between the observed strong motion at SKR during the mainshock and the empirical Green’s function method.

Estimation of strong ground motion in Golcuk area

We examined that we were possible to synthesize the strong ground motion during the mainshock near Izmit Bay area and Adapazari, using the largest aftershock motion. This would be applicable for Golcuk area, however, unfortunately no strong motion records from the largest aftershock was available in Golcuk area. Therefore, we have to estimate the largest aftershock motion in order to synthesize strong ground motion during the mainshock. We will apply two-step estimation, that is, we first simulate the ground motion in Golcuk area during the largest aftershock using two small aftershock data, and next we estimate the ground motion during the mainshock using the simulated aftershock motion as EGF.

Synthesis of the largest aftershock motion using small (M3) aftershocks

Quite temporal aftershock observations were carried out in Golcuk area (Kudo et al., 2002), however, a sparse of instruments, we were obliged to separate observations into 2 groups. The aftershock data of September 13, 1999, (event A) were obtained at GLS, GLA, GLF, and YPT (Group A). Those of September 15, 1999, (event B) were acquired at GLF, GLJ, and GLN (Group B). We estimate earthquake motion during the largest aftershock in Golcuk area using these small events as EGF, similar to the study in Adapazari area.

At first, we use the site YPT as a constraint for determining the source parameters, because both records form the largest and small (event A) aftershocks were obtained. We assumed the small event had the isotropic radiation pattern of 0.63 (Boore and Boatwright, 1984), and used the bedrock motions, which the response of surface soil were deconvolved, as the empirical Green’s functions at those sites. As a result of forward modeling, we obtained the synthetic parameters that a number of subfaults and ratio of stress parameter were 9x9 and 20, respectively, as shown in Table 4.

Figure 11(a) shows a comparison of the synthetic waveform for the largest aftershock with the observed one at YPT. The synthetic waveform matches well with the observations, and then we synthesized the largest aftershock motions at the Group-A sites (Figure 11(b)). Next, we determine necessary parameters for synthesizing the largest aftershock motions at other sites using the small event B. Both A and B events were recovered at GLF, therefore, the parameters were determined so as to match the synthetic motions of the largest aftershock at GLF by comparing their waveforms. Figure 12(a) shows comparison of synthetics for the largest aftershock at GLF using the small event A and B. They are in good agreement, therefore, it is possible to synthesize earthquake motions for GLJ and GLN during the largest aftershock using records from the small event B. The determined parameters for the synthetics are
subfaults of 9x7 and the stress parameter ratio of 12 and the others are shown in Table 4(b). Figure 12(b) shows the synthetic waveforms during the largest aftershock at Group B stations.

Table 4. The source parameters of the aftershock A and B and parameters for synthesis from earthquake motions during the aftershock A and B to strong motion during the largest aftershock.

<table>
<thead>
<tr>
<th>Hypocenter</th>
<th>Aftershock A</th>
<th>Aftershock B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.</td>
<td>40.71</td>
<td>40.74</td>
</tr>
<tr>
<td>Long.</td>
<td>29.98</td>
<td>29.95</td>
</tr>
<tr>
<td>Depth (km)</td>
<td>15.9</td>
<td>11.5</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L (km)</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>W (km)</td>
<td>0.56</td>
<td>0.71</td>
</tr>
<tr>
<td>number of div.</td>
<td>9X9</td>
<td>9X7</td>
</tr>
<tr>
<td>Stress Drop (bar)</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

The estimated bedrock motions at individual sites during the largest aftershock synthesized from small events have differences of a factor 2 in amplitude; however, the phase characteristics are similar among the sites in Golcuk area. Therefore, we postulated that the incident waves or the bedrock motions during the largest aftershock in Golcuk area is identical, because the Golcuk area is relatively narrow and comparatively far from the largest aftershock, therefore, bedrock motions should be almost identical in the area. We computed the average among four sites except for GLS in time domain. At first, we obtain shift time of earthquake motion at each site, which has the best correlation, referring to GLF synthesized from the event A. Next; we estimated the common input motion by stacking with high correlation time shift. The reason why we exclude only GLS is that Vs near the surface at GLS is higher than that of the common bedrock at the other sites. Figure 13 shows the averaged bedrock motion during the largest aftershock in sedimentary area of Golcuk.

Synthesis of strong ground motion during the mainshock using the estimated largest aftershock motion

We apply the parameters for synthesizing the mainshock motion in Golcuk area used in the previous section. The common synthetic motion is used as EGF at bedrock for the individual sites. Figure 14 shows the NS component of synthesized strong ground motion during the mainshock. The strong ground motion at GLS is wealthy with short period motions. The PGA is larger than the other sites (649 cm/sec²), while the PGV is the smallest (47 cm/sec) among others. The PGA and PGV at GLA are estimated to be 197 cm/sec² and 68 cm/sec, respectively, however, their precision will be very low, because the strain of soil sometimes exceeds 10 percents, which the strain level would not be applicable in the equivalent linear method. The PGA and PGV at GLF are estimated to be 363 cm/sec² and 68 cm/sec, at GLJ 385 cm/sec² and 76 cm/sec, and at GLN 622 cm/sec² and 101 cm/sec, respectively. The underground structure at GLN estimated by the array observations of microtremors is rather stiffer than that at GLF; therefore, the site amplification factor computed using the structure at GLN based on 1D propagation theory is predominated with short period motion. Nevertheless, the amplification factor at GLN is smaller than that of GLF; the ground motion at GLN is much larger than GLF. By comparison of bedrock motions at GLF and GLN, a directivity effect is suggested. As noted before, although we have to carefully survey the significant level of strain applicable to the equivalent linear method for soil behavior during strong shaking, the reason of the difference between GLN and GLF will be attributed to that GLF was affected larger damping by nonlinear effects of soil behavior.

The severity of ground motion cannot be evaluated by only peak acceleration or velocity, however, ground motion level in Golcuk, nevertheless the distance to the fault is much closer than that of Adapazari,
seems to be low compared with that of Adapazari. One possible reason is that the period range of the analysis in case of Golcuk was restricted in the shorter period than 2.5 sec., due to the limitation of reliable period range of small events.
Comparison of estimated strong ground motion with the significant earthquake records

We verify strong motion level at damaged area compared with the significant earthquake using acceleration response spectra of 5 percents damping computed from vectorial summation for two horizontal components of the time history of response.

Figure 15 shows acceleration response spectra of strong ground motion estimated using the EGF method at Adapazari and Golcuk areas together with those of some historical recordings. Response spectra at SKR in the shorter period range than 0.5 seconds are larger than ones at Hachinohe from the Tokachi-oki earthquake of 1968 and at El Centro from the Imperial Valley earthquake of 1940; on the other hand, those are similar in the longer period range. The strong ground motion level at ADC, severely damaged area in Adapazari area, is larger in the longer period range than 1 second, especially at the period of about 2 sec., it becomes factor of 3 to those of Hachinohe and El Centro. This is qualitatively consistent with the severe damage to medium-rise buildings. While, the acceleration response at ADU, where the buildings were mostly one or two stories and scarcely damaged, is smaller than that at SKR and Hachinohe in the shorter period range than 1.5 seconds. This is also correlate with less damage to low-rise buildings near ADU.

Response spectra in Golcuk area, except at GLS, show very high level in the longer period range than 1.0 seconds, exceeding to that of JMA Kobe from Hyougo-ken nambu earthquake of 1995. Although we are required to find quantitative relation between ground motion and damage to buildings, however, heavy damage to medium-rise buildings in Golcuk area is much easier to understand qualitatively.
Figure 11. (a): Comparison of the earthquake motions at GLF during the largest aftershock synthesized from the earthquake records of the aftershock A with those of the aftershock B. (b): The earthquake motions at GLJ and GLN during the largest aftershock synthesized from the earthquake records of the aftershock B.
Figure 12. The Averaged velocity waveforms and the Fourier spectra during the largest aftershock on the bedrock in Golcuk area.

Figure 13. Estimated strong ground motions in Golcuk area during the mainshock.
Figure 14. Comparison of the acceleration response spectra with damping of 5 percent of estimated strong ground motion during the mainshock with those of some significant earthquakes.
Concluding remarks

We estimated strong ground motion during the Kocaeli, Turkey earthquake of 1999 at damaged area based on underground structures estimated by array observations of microtremors, the empirical Green’s function method, and the equivalent linear method.

We employed EGF method for bedrock motion as a first stage of simulation for the surface strong motion. This is applied because it is inevitable for the strong ground motion in sedimentary basins to include the effects of nonlinear of basin response. For simplicity, nonlinear behavior of soil layers is evaluated by an equivalent linear method, however, the strain level in Golcuk sometimes exceed the limit of applicability of the method. Therefore, reliability of our results will not be high and it should be carefully taken into account for quantitative evaluation to find relation between ground motion severity and damage ratio. This is due to sparse of available data, however, our approach has a possibility to extend the application for estimating strong ground motion that was not recorded.

As results, the ground motion at a period of 1-2 seconds in downtown Adapazari (ADC) during the mainshock is estimated to be two or three times larger than that of Hachinohe from the Tokachi-oki earthquake of 1968. The estimated strong ground motion at ADU is smaller than that at SKR in shorter period range than 1 second, and this is qualitatively consistent with the damage level.

We have not investigated into details, however, ground motion due to synergetic effects of surface soils and source would be very important. Directivity effects were not distinct in the results of Adapazari, however, the ground motion near Golcuk would be influenced by not only site condition but also source process or rupture propagation of a fault. The ground motion in a longer period than 1 second at damaged area in Golcuk during the mainshock is estimated to be larger than that of JMA-Kobe from Hyogo-ken Nambu earthquake of 1995.

Acknowledgements

We thank the organizations that provide us the strong motion data through their web pages; the Earthquake Research Department, Directorate for Disaster Affairs of the Ministry of Public Works and Settlement and the Kandilli Observatory, Earthquake Research Institute. We thank Prof. A. Ito who provided us the aftershock hypocenter data. The computer code developed by Drs. N. Yoshida and I. Suetomi was used. We are also grateful to Dr. H. Sekiguchi who provided important information on the fault model and Prof. K. Kamae and Prof. K. Irikura who gave us useful advise on the method of analysis.

References

IN ABSENCE OF ACTUAL MAINSHOCK RECORDS, RECORDED AFTERSHOCKS &
ESTIMATED MAINSHOCK MOTIONS AT SOUTH IZMIT BAY DURING THE AUGUST
17, 1999 IZMIT (TURKEY) EARTHQUAKE

Mehmet Celebi
USGS, MS977, 345 Middlefield Rd., Menlo Park, Ca. 94025, celebi@usgs.gov
and
Hanko Sekoguchi
Geological Survey of Japan, Tsukuba, Japan

Abstract

The August 17, 1999 Izmit (Turkey) earthquake (Ms=7.4) will be remembered as one of the largest
eartquakes of recent times that affected a large urban environment (U.S. Geological Survey, 1999).
The shaking that caused the widespread damage and destruction was recorded by a handful of
accelerographs in the earthquake area operated by different networks. Within the epicentral area and
particularly in South Izmit Bay there were no strong-motion stations. However, following the main
shock, temporary dense arrays were deployed at two main regions of South Izmit Bay: in Gölcük and
in and around Yalova, 50 km to the west of Gölcük. Recorded aftershocks are analyzed using spectral
ratio techniques. Aftershocks are also used to estimate the motions at the time of the main event of 17
August 1999. These estimates provide insight as to the extent of damage as well as what might be
expected during future earthquakes.

Introduction

It is now well known that improper design and construction practices played an important role in
detrimental performance of more than 20,000 structures during the August 17, 1999 (Ms=7.4) Izmit
earthquake. This being given, the main goal must be to improve design and construction practices.
During this process, it is important to assess the recorded ground motions, site effects and other
earthquake related hazard issues, which need to be considered during rebuilding efforts.

On-scale recordings of ground shaking during earthquakes are important for understanding causes
of earthquake damage and the physics of fault rupture, and for advancing design codes. Approximately
38 strong-motion mainshock ground records were retrieved by different institutions in Turkey that
operate strong motion networks.

The purposes of this paper are to (a) discuss the characteristics and engineering implications of
the strong-motion records of the Izmit, Turkey earthquake, and (b) deduce from aftershock recordings,
the site response characteristics and estimated mainshock motions at select locations where there were
no stations to record the mainshock.

Strong-Motion Records

The Networks and Recorded Accelerations

The National Strong-Motion Network of the Earthquake Research Department of the Ministry of
Public works (NSMN-ERD), the largest strong-motion network operator in Turkey, has aimed to
deploy one strong-motion instrument in every major town within the earthquake zones of Turkey. This systematic effort on part of NSMN-ERD, supplemented by strong motion stations deployed by Kandilli Observatory and Earthquake Research Institute (KOERI) and Istanbul Technical University (ITU) in Istanbul and Marmara Region, produced very significant and important records that will be useful for studying the earthquake and establishing important and necessary criteria in rebuilding efforts. These organizations recorded the main shock at 38 stations within the epicentral region. Peak accelerations of the records from some of the stations are plotted on the map in Figure 1. To date, detailed site characterizations of these stations have not been documented.

Figure 1. Map showing significant peak accelerations (g) in the earthquake affected area, plotted at relative locations of significant strong-motion stations within and in close proximity to the epicentral area (Base map courtesy of BKS Surveys Ltd., N. Ireland). Approximate fault rupture trace is also shown. Stations YPT and SKR are two significant stations referenced in the paper.

At the time of the earthquake, the strong-motion network in the epicentral area, as well as in other segments of the North Anatolian Fault and elsewhere in Turkey, was quite sparse. Therefore, it is important to consider that recording of larger peak accelerations was possibly missed. For example, no record of the mainshock was obtained in Çölçek and vicinity in the immediate epicentral area where there was extensive damage. Hence, absence of strong-shaking records inhibits reliable evaluation of the effect of the shaking and consequential damage on the typical structures in the area. In addition, only one record (minus a component due to malfunction) was retrieved from Adapazarı, at station SKR, which was on stiff soil in the undamaged part of Adapazarı. There were no permanent stations in the fast-growing urban/industrial areas of the Adapazarı basin. The peak accelerations in the basin almost certainly were amplified compared to that recorded at the stiff soil site. Records of the shaking in the basin would have likely revealed different characteristics such as amplification due to softer layered media, basin effects, and in certain areas, the effect of liquefaction that occurred.

Therefore, during the main shock of the August 17, 1999 earthquake, the largest recorded peak accelerations (SKR, 0.41 g horizontal and Düzce, 0.48 g vertical) were most likely not the largest that actually occurred. This possibility is strengthened by the fact that accelerations with larger peaks were recorded during events of smaller magnitude. This is illustrated in Figure 2 which shows three

1 Since 1999, new strong-motion networks have been deployed in the epicentral areas of 1999 earthquakes to facilitate better and more widespread recording of strong shaking during future events.
acceleration time-histories recorded during: (a) the SKR record cited above, (b) the $M_S=5.7$ aftershock on 13 September 1999 at Tepetarla (a temporary station near Izmit) with peak \(\sim 0.6 \text{ g} \), and (c) the November 12, 1999 ($M_S=7.2$) Duzece event, station (Bozu) with peak \(\sim 0.8 \text{ g} \) (BW).

![Comparison of three records-three events](image)

Figure 2. Comparison of peak accelerations for the August 17, 1999 main shock (station SKR) and two aftershocks, each recorded at a different location.

Two samples of recorded main shock motions presented in Figure 3a shows the acceleration time-histories recorded at SKR (Adapazari in Sakarya Province) on stiff soil. The records exhibit more than three different shocks. Figure 3b shows re-plotted SKR record for 40 seconds and time variant sum of square of acceleration to depict relative cumulative significant shaking (representative of energy). As depicted in Figure 3c, the duration of strong shaking is determined as approximately 5 seconds, using the time span between 5%-95% of the normalized sums (Novikava and Trifunac, 1994). The main shock contributes to approximately 70% of the total significant shaking of the two shocks within the 40 seconds of the record.

![Time-history of SKR record](image)

Figure 3 (a): Time-history of SKR record (Longitudinal component malfunctioned). The plot shows several events, including two significant aftershocks about 20 and 100 s following the main shock.

![Initial 40-second window](image)

Figure 3(b): Initial 40-second window of the SKR acceleration record (top) and cumulative sum of squared amplitude (bottom) to show the significant strong shaking, almost all by the first shock, and indicating the duration of strong shaking as 5-6 s (bottom).
Figure 3(c) Definition of duration of strong shaking (time between 5-95% of the relative cumulative squared acceleration) [Reference: Novikava and Trifunac, 1994].

Figure 3d. Time-history of YPT. The plots show the second event approximately 30-seconds after the first (top) and that the significant strong shaking of the mainshock contributes approximately 70% of the total and the strong shaking duration is 5-6 s (bottom).

In Figure 3d, the acceleration time-history of YPT (an alluvial site at Petro-Chemical Plant in Körfez) is shown. The figure exhibits two distinctive earthquakes. The figure also shows the relative cumulative significant shaking as calculated by summing the square of the acceleration over time. This figure exhibits that the strong shaking of the earthquake lasted approximately 5-6 seconds.

Near-Fault Issues and Pulses

One of the main reasons why near-fault motions are important is the presence of long-duration pulses that result in large displacements, which are detrimental to the performance of long-period structures. Somerville (1998) explains the long-period pulse characteristics of near-fault motions as follows:

- "the propagation of fault rupture toward a site at a velocity close the shear wave velocity causes most of the seismic energy from the rupture to arrive in a single large long-period pulse of motion,"
- "the pulse of motion represents the cumulative effect of almost all of the seismic radiation from the fault," and
- "the radiation pattern of the shear dislocation on the fault causes this large pulse of motion to be oriented in the direction perpendicular to the fault, causing the fault-normal peak velocity to be larger than strike-parallel peak velocity."

Abrahamson recently (2000) noted that, worldwide, for M>7 earthquakes between 1940 and 1999, there were only 8 records within <20 km of a fault rupture. The Turkey earthquakes of 1999 and the Chi-Chi, Taiwan earthquake of September 21, 1999, respectively added 5 and 60 more records for a total of 73.
Since long-duration pulses translate into large displacements, a simple explanation using vibrational physics of pulse action is useful for quick assessment of such actions. Consider four undamped, single-cycle sinusoidal accelerations with equal amplitudes, \ddot{y}, but having different pulse durations. Figure 4 shows that corresponding displacements y, are increased with increase in pulse duration, T_p, by virtue of the relationship $y = \ddot{y}/(2\pi/T_p)^2$. It should be remembered that the amplitude to be considered in this simplified estimation process is the amplitude of the pulse with the longest cyclic period and not necessarily the peak amplitude of the time-history of a record which possibly may occur at higher frequency. Also, in using the simple process for integration, it is assumed that the accelerogram is a continuous sinusoid and not a truncated sinusoid.

![Figure 4. Single-cycle sinusoidal accelerations with constant amplitude but varying periods and corresponding displacements.](image)

This grossly simplified visualization of the effect of long-period pulses in generating large pulse displacements are quantified and verified for two different earthquake records. The YPT record seen in Figure 3d is re-plotted in Figure 5a to better exhibit the long-period pulses and the amplitude spectra with a pulse period (T_p) of about 5 seconds (0.2 Hz) for the horizontal components. With peak acceleration of 0.22g for the EW component, the calculated pulse displacement, $y = 0.22(\ddot{y})/(2\pi/T_p)^2 = 137\text{cm}$ compares reasonably well with the displacement obtained by double-integration (Figure 5b). Figure 6a shows three components of accelerations recorded at Station TCU068 during the (M=7.3) September 21, 1999 Chi-chu (Taiwan) earthquake and their amplitude spectra that exhibit the lowest dominant frequency of approximately 0.11 Hz ($T_p \approx 9.09\text{ s}$). With peak acceleration of 0.37g for the east-west component, the peak pulse displacement of 757 cm is calculated. This compares well with the displacement of 707 cm (Figure 6b) obtained by double integration of the acceleration record (Tsa, 2000). These results are summarized in Table 1. Thus, since long-period pulses result in larger velocities and displacements, it is important to assess how the large displacements affect the response and performance of long-period structures such as tall buildings, long-span bridges, viaducts, overpasses, and base-isolated structures.

![Figure 5a. The three components of the mainshock motions at YPT (Yarimca) recorded during the 19 August 1994 earthquake, along the amplitude spectra of the motions, are shown for the entire record (upper) and for a 20-second window ending prior the first large aftershock.](image)
Consequently, to compensate for the additional demand in design strength caused by such large displacements, recent codes in the United States adopted the Near Fault Factors (UBC, 1997). Thus, the seismic zoning factors are effectively increased by a factor, 1< N< 2 for seismic zone 4 (the highest seismic risk zones in the United States) within 10 km of those fault zones that are capable of generating (a) M>7 earthquakes with slip rates exceeding 5 mm/year or (b) M>6.5 earthquakes with slip rates smaller than 5 mm/year

The North Anatolian Fault (NAF) is tectonically similar to the San Andreas Fault in California; therefore, such factors should also be considered in selective zones along the NAF. The recorded responses clearly show long period pulses (e.g. ~5 sec in case of YPT record – Figure 5b).

Figure 5b. Recorded E-W component of acceleration and integrated velocity and double-integrated displacements at YPT.

Figure 6a. Accelarations recorded at the TCU068 Station during the Chi-Chu (Tuishan) earthquake and the amplitude spectra [data from Lee, W., Shin, T., Kuo, K. and Chen, K., 1999].

Figure 6b. Recorded accelerations, integrated velocity and displacements of TCU068 Station EW Component (from Boore, 2000).

2 In the Uniform Building Code, the total design base shear in a given direction is determined from the following formula: \(V = \left[C_s \cdot \frac{1}{T} \right] W \), where \(C_s \) is the seismic coefficient (for zone 4, \(C_s = 0.32N_s \)), \(0.40N_s \), \(0.56N_s \), \(0.64N_s \), \(0.96N_s \), for soil profile types \(S_h \) [shear wave velocity, \(V_s > 1200 \text{ m/s} \)], \(S_b \) [750< \(V_s < 1500 \text{ m/s} \)], \(S_c \) [360< \(V_s < 1500 \text{ m/s} \)], \(S_p \) [180< \(V_s < 300 \text{ m/s} \)], and \(S_q \) [\(V_s < 180 \text{ m/s} \)] respectively. \(N_s \) is the importance factor, \(I \) is the ductility factor, \(T \) is the fundamental period of the design structure and \(W \) is the weight of the structure. The total design base shear is not to exceed \(V = \left[2.5C_s \cdot \frac{1}{T} \right] W \) but is not to be less than \(V = 0.11C_s \cdot \frac{1}{T} W \). It is the seismic zone factor and is 0.4 for zone 4. In the above, \(1 < N_s < 2 \) and \(1 < N_s < 1.5 \) and are interpolated from tables according to different type of soil profiles and distance from fault. The highest factors are for sites less than 2 km from the faults (Uniform Building Code, 1997).
Table 1. Evaluation of Peak Displacements Using Sinusoidal Pulse Analogy versus Double Integration of Recorded Acceleration.

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Mag,</th>
<th>Station</th>
<th>Peak Acc. [g]</th>
<th>Pulse f(Hz)</th>
<th>Tp (s)</th>
<th>Sinusoidal Pulse Displ. [cm]</th>
<th>Integrated Displ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izmit [Turkey]</td>
<td>7.4</td>
<td>YPT</td>
<td>0.22</td>
<td>0.2</td>
<td>5.0</td>
<td>137</td>
<td>-175</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>[EW]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-chi [Taiwan]</td>
<td>7.6</td>
<td>TCU 068</td>
<td>0.37</td>
<td>0.11</td>
<td>9.09</td>
<td>757</td>
<td>707</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>[EW]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response Spectra

Figures 7a,b and c show the response spectra and the normalized response spectra (all calculated for 5% damping), for north-south and east-west directions, respectively, for five stations, including SKR and YPT for which the time-history plots have been presented (Figures 2-3). These five stations cover the epicentral area (stations IZT and YPT) and locations that are heavily damaged east of the epicentral area (SKR and DZC) and a location in Istanbul (MCK). IZT, YPT and DZC are on alluvial sites whereas SKR and MCK are on stiff soil and rock, respectively. The response spectra show that at different stations, the resonant periods change drastically. Furthermore, the normalized response spectra indicate that both YPT and DZC have long periods (low frequencies). For comparison of response spectra shapes, Figure 7c also shows the current Turkish Code response spectra for stiff soil and alluvial site conditions (Specifications for structures to be built in disaster areas, English translation by Aydinoglu, 1998). The figure indicates that for periods between 0.1-1, the design response spectra, similar to those used in the United States, are exceeded for this earthquake.

Taller buildings on rocky hills of Istanbul, and the two suspension bridges in Istanbul were not adversely affected by the long-period motions of this earthquake – most likely due to attenuated ground motions. However, the important lifeline structures need to be reviewed for an earthquake that might occur closer to Istanbul.

![Figure 7](image-url)

Figure 7 (a and b) Response spectra (5% damped) for 5 stations and (c) Normalized response spectra of 5 stations compared with design response spectra of Turkish Code (1998).
Aftershock Deployments & Site Response Issues

Since, at the time of 1999 earthquakes, the strong-motion network in the epicentral area of the İzmit earthquake was not dense enough to define ground shaking at all damaged areas, a limited number of temporary arrays were deployed to obtain aftershock records to explain site effects at various locations. USGS deployed a number of acceleration and velocity transducers at the South İzmit Bay including Gölçük. Data from these and other deployments are compiled and made public (Celebi and others, 2001). Figure 8a shows the deployment of the temporary array in Gölçük and a set of seismograms of an aftershock obtained from both sides of the observed normal fault scarp that developed during the main event. Stations FOC and GEM are on the hanging wall and LOJ and GYM are on the footwall of the normal fault. The figure exhibits the variation of ground motion at locations that are short distances apart (<1 km) (Çelebi and Şekercioğlu, 2000, 2002) as well as the motions on both sides of the normal fault scarp. The differences of motions on either side of the normal fault are also observed in Figure 8b. The amplitude spectra and the relative cumulative energy plots further reinforce the larger energy at FOC and GEM, on the hanging wall as compared to LOJ and GYM, on the footwall.

Figure 8a. Aftershock deployment map in South İzmit Bay (left) and specifically in Gölçük (right).

Figure 8b. Seismograms from an aftershock recorded at Gölçük temporary array (left). The seismograms show relative amplitudes of velocity records at close distances (<1 km). The stations FOC, GEM and LOJ are within the Ford Plant Grounds near Gölçük. Station GYM is within <1 km of these stations. Amplitude spectra (center) and relative cumulative energy plots (right) of one event exhibiting significant differences of energy on either side of the vertical faulting.

Figure 9 shows the mean transfer functions of 11 events for FOC and LOJ, calculated using Nakamura’s Method (1989, 2000) which, in absence of reference rock sites, facilitates calculation of the transfer function as the ratio of amplitude spectra of horizontal to vertical components of motion at a station \(R = \frac{A(\text{horizontal})}{A(\text{vertical})} \). For frequencies less than 2 Hz, the north-south components
exhibit almost twice the amplification at FOC when compared to LOJ. This implies that in the hanging wall, alluvial deposits are deeper. This is consistent with the fact that, historically, there have been similar earthquakes in the area approximately every 250 years (e.g., two prior earthquakes, now confirmed by geological trenching and carbon dating, have occurred in 1719 and 1599 AD, respectively [Barka, pers. comm., 2000, Sieh, pers. comm., 2000]). Thus, over centuries, repetitive hanging walls have been filled over with alluvial material. Identification and recognition of such fault locations with associated historical events is necessary for siting purposes of facilities and important infrastructures in such areas.

The aftershock data is also used to estimate the strong-motions during the main event. Figure 10 shows the estimated motions for FOC and LOJ using aftershock data at both FOC, LOJ and YPT (same as YPT) and the recorded mainshock at YPT (Çelebi and Sekoguchi, 2002). The particular hybrid process uses (a) simulated ground motion in lower frequency range (0.1-1.5Hz) by theoretical Green’s functions for laterally homogeneous structure model and a source process model obtained by Sekoguchi and Iwata (2002), (b) stochastic Green’s function (Boore, 1983) for higher frequency range (1.5-10Hz). Details of the hybrid model are provided in Appendix A. The NS components, the fault-normal direction, of the estimated motions are highly polarized. These characteristics have been observed at stations in source regions of the past earthquakes. Therefore, it is important to consider directivity effects of near-fault ground motions, as also stated by Somerville (1998).

In the case of Yalova, approximately 50 km from the epicenter, the estimated motions (Figure 11) are again larger and polarized in the fault normal direction. This is also attributable to the fault rupture forward directivity, remarkably as it is at that distance from the epicenter but along the extension of the fault.

![Figure 9 Mean transfer function of 11 events showing the amplification differences on both sides of vertical faulting.](image)

Implications for the future

Finally, an issue that needs to be addressed is the forecasting of the future earthquakes following the 17 August 1999 earthquake. Parsons and others (2000) calculated that the August 1999 event increased the stress in the Marmara Sea close to Istanbul, the largest city of Turkey (Figure 12). They forecast that the stress increase results in a probability of 62 ± 15% for a M>7 earthquake to occur in the next 30 years. Thus, there is an urgent need to be ready.
Figure 10. Estimated (mainshock) ground motions at FOC, LOJ and YPT using inverson technique with aftershock recordings at FOC, LOJ and YPT (from Çelebi and Sekiguchi, 2002). Note differences in scales for different components, and that the fault-normal (NS) motions are larger for both FOC, LOJ and YPT.

Figure 11. Estimated (mainshock) ground motions at YO6, YO7, YO8, AKS, and YP1 using inverson technique with aftershock recordings at YO6, YO7, YO8 and YP1 (from Çelebi and Sekiguchi, 2002). Note the fault-normal motions are somewhat larger.
Figure 12. [courtesy of R. Steen] Change in Stress pattern triggered by the Izmit earthquake on 17 August 1999. Yellow to red colors indicate the area where stress increased whereas green to purple colors show the area where the stress decreased in the wake of the Izmit event (Parsons and others, 2000).

Conclusions

1. At the time of 1999 earthquakes, the strong-motion network on the North Anatolian Fault was very sparse. Denser arrays have now been added. The arrays should be supplemented with downhole accelerographs and piezometer arrays in liquefaction susceptible areas. It is important to increase the number of accelerographs in urban environments to cover different geological settings so that the actual motions in the basins and heavily damaged areas can be recorded.

2. Detailed site-characterization of the stations are not known. A systematic effort should be embarked upon to characterize the sites.

3. In absence of strong-motion records, aftershock motions have been used to estimate the strong-shaking during the main event. The estimated motions are very strong in the epicentral area, and in particular show stronger shaking in the fault-normal direction. The differences caused by site effects among sites closely located to each other are particularly noted. The motions are somewhat strong at distances of approximately 50 km from the epicenter due to a combination of distance and site effects.

4. Furthermore, on either side of a vertical fault, the amplification is observed to be larger on the hanging wall and is likely due to greater thickness of softer sediments. Therefore, it is essential to better identify existing normal faults for siting of important infrastructure and facilities.

5. The long-period pulses from near-fault motions must be accounted for in assessing the performance of structures. One possible way is to establish, in selected zones of the NAF, near-fault factors that increase the seismic coefficients in the codes.

6. Whenever applicable (e.g. in Adapazari basin), special site-specific design response spectra should be developed.

References

Abrahamsen, N., 2000, seminar talk at USGS.
Ambraseys, N. N., 1988, Engineering seismology Earthquake Engineering and Structural Dynamics, v 17, no. 1, 1-105.

Boore, D., 2000, effect of Baseline Corrections on Displacements and Response Spectra for Four Recordings of the 1999 Chi-Chi, Taiwan, earthquake, BSAA, Chi-Chi Special Issue, v.1.1.

Lee, W., Shun, T., Kuo, K., and Chen, K., 1999, CWD Free-Field Strong-Motion Data from the 9-21 1999 Chi-Chi earthquake, V 1. Digital Acceleration Files on CD.

Tsai, Y-B, (no date), Some Observations about the Chi-Chi, Taiwan earthquake of September 21, 1999, Technical report, National Taiwan University (Taiwan), 29p.

Appendix A: Estimation of ground motion during the mainshock at sites without observation

In order to estimate ground motions in a wide frequency range at sites without mainshock recordings but with aftershock observations, we adopted a hybrid method. Ground motions in the lower frequency range (0.1-1.5Hz) were simulated using theoretical Green's functions and a source process model obtained by waveform inversion (Sekiguchi and Iwata, 2000, hereafter, SI model). The higher frequency (1.5-10Hz) ground motions were simulated using the stochastic Green's function method (Boore, 1983) from asperities extracted from the SI model. The bounding frequency of the two ranges nearly corresponds to the frequency at which the radiation pattern in observed seismic motions is submerged (Somerville et al., 1997).

Lower frequency range (0.1-1.5Hz):

Theoretical Green's functions were calculated for a laterally homogeneous velocity structure model using the discrete wave-number method (Bouchon, 1981) together with the reflection transmission method (Kennett and Kerry, 1979) [in laterally homogeneous (1-D) velocity structure models]. Assumed velocity structure models are based on Mindevalli and Mitchel (1989) for the deeper part and Kudo et al. (2000) for the subsurface part. The slip time functions and the rupture propagation correction functions inside each subfault from the SI model were convolved with the Green's functions. Then they are summed up taking into account the rupture propagation over the fault plane.

Higher frequency range (1.5-10Hz):

Based on Boore (1983), we generated ground motions from small earthquakes with the subfault size. Thus, the acceleration spectra of a small earthquake is given by:

$$ A(f) = C S(f) R^{-3} \exp \left[-\frac{\pi R}{\mathcal{Q}(f) \beta} \right] g(f), $$

(A.1)

where $S(f) = M_0 (2\pi f)^{1/2} \left[1 + (f/f_c)^2 \right]$ is a type acceleration spectra (Aki, 1967), R is a ray path length between a subfault and an observation station, $R^{-3} \exp \left[-\frac{\pi R}{\mathcal{Q}(f) \beta} \right]$ is the propagation path effect (geometrical spreading and attenuation), $g(f)$ is a site amplification factor, and C is a constant including free surface effects and radiation patterns etc. M_0 and f_c are seismic moment and corner frequency. Corner frequency was assumed to be 0.35 Hz by Madaraga's (1976) equation for a circular crack. Frequency dependent Q was based on Aki et al. (1995). The site amplification factor was obtained through modeling aftershock ground motion spectra using equation (A.1).

To generate ground motion from a large earthquake from those of small earthquakes, we used the method of Inoue (1986), who proposed a filtering function which consists of a delta function and a boxcar function with duration of large earthquake's rise time to adjust the difference in slip time function between a large earthquake and a small one. For high frequency, the correction function is approximated by a delta function.

The source for the higher frequency motions were confined to asperites extracted by Miyakoshi (personal communication) from the SI model following the criterion by Somerville et al. (1997). This assumption is based on the results by Miyakoshi et al. (2000) and Miyake et al. (2000). The strong motion generation area found by Miyake et al. (2000) for a $M_w=6.5$ earthquake in 2.0-10Hz range is consistent with the asperity region extracted from the source model in lower frequency range (0.1-
0.5 Hz) for the same earthquake determined by Miyakoshi et al. (2000) and the contribution of the off-asperity area in the lower frequency source model is necessary for lower frequency ground motions but negligible for higher frequency ground motions.

Acknowledgements for Appendix A

We acknowledge the help and work of Tomotaishi Iwata, Hiroe Miyake, Ken Miyakoshi, Masato Tsunugi.

References for Appendix A

Kudo, K., T. Kanno, H. Okada, O. Ozel and M. Erdik, 2000, Site effects on strong ground motions during the Kocaeli, Turkey, earthquake of August 17, 1999, as inferred from array microtremors observations and aftershock data, Proceedings of 3rd Japan-Turkey Workshop.
The study for the evaluation methods for the design basis earthquake ground motions

Mr. R. Kikuchi (Seismic Engineering Center, Nuclear Power Engineering Corporation, Japan)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

NUPEC (Nuclear Power Engineering Corporation, Japan) has been carrying out a series of Seismic Reliability Studies relating to seismic design for nuclear power plants. We are currently conducting two studies under commission by METI (Ministry of Economy, Trade and Industry, Japan).

One of these studies, entitled “Evaluation Methods for Seismic Wave Propagation Characteristics”, has been in progress since the 1994 FY. In this study, NUPEC carried out earthquake observations using a down-hole array of 1670m depth in the Kobe area. This vertical array observation system is equipped with eight seismometers from deep seismic bedrock to the surface stratum. We have observed 144 earthquake events in the period of 1999-2002. The major objective of the study is to verify current methods for evaluating design earthquake ground motions based on detailed investigations of observed seismic wave propagation data. In order to enhance the study, NUPEC is installing an additional earthquake observation system comprising a 1300m-depth down-hole array in the Narita area.

The other study, entitled “Evaluation Methods for Strong Ground Motion in the Near-field Region”, has been in progress since the 1998 FY. In this study, NUPEC collected and studied near-field strong earthquake ground motion data mainly from California. We also carried out a peer review on current seismological views relating to near-field strong motion characteristics. Up to the 2002 FY, we will verify the current methodologies for evaluating design earthquake ground motion especially in the near-field region.

Introduction

In Japan, all new nuclear power plants have been designed in accordance the Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities in Power Plants (latest version July 20, 1981, by the Nuclear Safety Commission), the design basis earthquake ground motion have been defined on the rock outcrop*1 free surface of the base stratum*2.

This Regulatory Guide was established about twenty years ago, but it currently considered desirable the design basis earthquake ground motion to be defined on seismic bedrock obtained from analysis using observation records. Thus, NUPEC has been carrying out observations of seismic ground motions at vertical array stations equipped with seismometers from the seismic bedrock to the surface. We are also carrying out detailed geological investigations. We have been carrying out observations in the Kobe area from 1999 to March 2002, and in the Narita area since September 2002.

NUPEC has also been carrying out investigations to more precisely evaluate the seismic ground motion in the near-field region. This study has used observation records obtained mainly in California. Because each seismometer was only installed on the surface, we have calculated seismic ground motions on the rock outcrop. We researched detailed geological conditions for the selected observatory stations in California using a drilling survey and a micro-tremor array survey.
Evaluation Methods for Seismic Wave Propagation Characteristics

This study was undertaken to investigate seismic wave propagation characteristics from the seismic bedrock to the rock outcrop defined as the design basis earthquake ground motion. It is outlined as follows.

1. Investigation of the soil/rock profiles and properties from the surface to the seismic bedrock by drilling, sampling and laboratory tests
2. Installation of accelerometers at the various depths in the boreholes to carry out the vertical array observation
3. Observation of the seismic ground motions and data acquisition
4. Study of the evaluation methods considering the seismic wave propagation characteristics from the seismic bedrock to the rock outcrop

The Kobe vertical array station (KHG) is located in the land reclaimed for the Higashinada Gas Turbine Power Plant of the Kansai Electric Power Company, as shown in Figure 1. Eight vertical array accelerometers were installed in December 1998. The depths at which the accelerometers are installed are GL-2m, GL-10m, GL-25m, GL-50m, GL-110m, GL-200m, GL-750m and GL-1,670m from the surface. The shear wave velocity of this seismic bedrock (GL-1,670m) is about Vs=3,200m/s.

The Narita vertical array station (NTY) is located on the Kanto Plain, in the Toyozumi industrial development complex of Narita City, as shown in Figure 2. NIED (National Research Institute for Earth Science and Disaster Prevention, Japan) had primarily installed two vertical array accelerometers in this area, and NUPEC installed four vertical array accelerometers adjoining them. When both accelerometers are put together, this vertical array observation system is composed of six accelerometers. The depths at which the accelerometers are installed are GL-2m, GL-10m, GL-25m, GL-65m, GL-300m and GL-1,300m from the surface. The shear wave velocity of this seismic bedrock (-1,300m) is not clear. The primary wave velocity is about Vp=6,000m/s. This observation system was just installed completely in this September.

This study is outlined in Figure 3. In Kobe, the bedrock forms a basin-edge structure and has a slope beneath KHB site, although it is almost horizontal in Narita. We will estimate the effect on the differences of seismic bedrock slopes. Records at only two stations are considered insufficient to evaluate the seismic ground motions. Thus, it precedes to the examination with other observation records (KiK-net data) that NIED open to the public via Internet in seismic bedrock as well recently in Japan.

The observation record, which it could get more for this study, and a part of that result of an examination, are introduced. Though the space from 1999 until 2002 could get 144 records, the biggest record was the Western Tottori Earthquake (October 6, 2000, JMA magnitude Mj=7.3, Epicentral distance Δ=187km). This acceleration records in the NS direction at Kobe vertical array station is shown in Figure 4. Moreover, the result that velocity response spectra were calculated by using these observation records with two-dimensional FEM on each position of the rock outcrop and seismic bedrock is shown in Figure 5.

Evaluation Methods for Strong Ground Motion in the Near-field Region

This study was undertaken to evaluate the characteristics of strong ground motion in the near-field region by using observation records from California earthquakes. Figure 6 shows the distribution of epicenters of seven earthquakes in California. For the investigation, we selected observatory stations within 20 km of the fault rupture for those earthquakes. There are not so many observatory stations, except for the Imperial Valley Earthquake in 1979 and the Northridge Earthquake in 1994.
Because each seismometer was only installed on the surface, we predicted the seismic ground motion on the rock outcrop. We investigated the detailed geological conditions for the selected observatory stations in California using a drilling survey, a micro-tremor array survey, and laboratory tests. The seismic ground motion on the rock outcrop was estimated by a non-linear analysis method based on those data. In the analysis, the horizontal components of the observation records were transformed to a fault-normal component and a fault-parallel component.

In the earthquakes in California and in the Hyogo-ken Nanbu Earthquake in 1995, Japan, the dominance of the fault-normal component with periods from one to a few seconds was seen in the near-field region. It is said to have an NFRD (Near Fault Rupture Directivity) effect in the near-field region. Figure 7 shows the ratio of response spectral amplitude of the fault-normal component to that of the fault-parallel component based on the predicted seismic motion on the rock outcrop. This shows that the fault-normal component tends to be greater than the fault-parallel component for periods greater than 1.0 second, while dispersion is recognized in those results.

Period of the Study

1. Study of Evaluation Methods for Seismic Wave Propagation Characteristics
 This study was planned for the 1994 FY to the 2004 FY.
2. Study of Evaluation Methods for Strong Ground Motion in the Near-field Region
 This study was planned for the 1998 FY to the 2002 FY.

Acknowledgement

These two studies have just been started under the sponsorship of the Ministry of Economy, Trade and Industry (METI). NUPEC has established an executive committee for both studies. The Study of Evaluation Methods for Seismic Wave Propagation Characteristics is chaired by Professor Emeritus H.Kobayashi, and the Study of Evaluation Methods for Strong Ground Motion in the Near-field Region is chaired by Professor K.Kudo. The author wishes to express his deep appreciation to the responsible officials of METI and the members of both committees.

Note

*1 "the rock outcrop"

The rock outcrop is a nearly flat surface of the base stratum extending over a considerable area, and above which neither surface layers nor structures are assumed to be present. The base stratum is firm bedrock which was formed in general in the Tertiary or earlier era and which is not significantly weathered.
Figure-1 Outline explanation of Kobe vertical array station
Figure-2 Outline explanation of Narita vertical array station
Earthquake Motion Observations at Kobe and Narita areas and Outline of the Investigations

Schematic Drawing of the Present Evaluation Method of Design Basis Earthquake Ground Motion

Schematic Drawing of Evaluation Method of Design Basis Earthquake Ground Motion Investigated by This Study

Figure-3 Outline of the Study for the Evaluation Methods for the Design Basis
Earthquake Ground Motions

(Gal) KHG000 NS \[\text{MAX} = 15.319 \]

(Gal) KHG001 NS \[\text{MAX} = 12.663 \]

(Gal) KHG002 NS \[\text{MAX} = 10.740 \]

(Gal) KHG005 NS \[\text{MAX} = 10.101 \]

(Gal) KHG011 NS \[\text{MAX} = 9.516 \]

(Gal) KHG020 NS \[\text{MAX} = 11.051 \]

(Gal) KHG075 NS \[\text{MAX} = 7.786 \]

(Gal) KHG167 NS \[\text{MAX} = 3.257 \]

Figure-4 Acceleration time history of Western Tottori Earthquake in 2000 at Kobe observation station (NS direction)
Figure-5 Velocity response spectra calculated Western Tottori Earthquake in 2000 at Kobe observation station
Figure-6 Distribution of epicenters of investigating earthquakes in California
(a) All records (b) Average and standard deviations of records in which the NFRD effect is predominant

(1) Near-source records in which the NFRD effect is predominant in the 1994 Northridge earthquake

(2) Near-source records in which the NFRD effect is predominant in the 1979 Imperial Valley earthquake

(3) Near-source records in which the NFRD effect is predominant in 7 California earthquakes

Figure-7 Fault-normal to fault-parallel response spectral ratios of predicted horizontal seismic ground motion on the rock outcrop
Strong ground motion simulations for South-eastern Fennoscandia

Mr. P. Varpasuo (Fortum Nuclear Services Ltd Vantaa, Finland)
Mr. J. Saari (Fortum Nuclear Services Ltd Vantaa, Finland)
Mr. Y. Nikkari (Fortum Nuclear Services Ltd Vantaa, Finland)
Mr. C. Sinadinovski (Australian Geological Survey Organisation, Australia)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract:

The majority of earthquakes in the world take place in inter-plate boundaries. However, a large number of moderate to large earthquakes occur intra-plate, i.e. within the plates. The seismicity in Fennoscandia is similar to the intra-plate environments. The purpose of the present work is the estimation of seismic hazard and ground motion in territory of South-Eastern Fennoscandia in areas of possible locations of atomic power stations in Olkiluoto near the town of Rauma and on the island of Hästholmen near the town of Loviisa and in Sosnovy Bor at the site of Leningrad Nuclear power Plant. In the absence of quality strong motion records of intra-plate earthquakes at short distances, synthetic seismograms are commonly used for testing of object behaviour. There are no registered strong motion acceleration recordings of earthquakes in South-Eastern Fennoscandia. For this reason, the earthquake recordings from Saguenay and Newcastle regions from Canada and Australia were taken as sources of initial data because of their geological and tectonical similarity to South-Eastern Fennoscandia. The probabilistic seismic hazard assessment consists of three parts: 1) source effects, 2) path effects, 3) site effects. The site effects phase of the study is not relevant to this study because the prospective target sites are located on solid bedrock. Theoretical bases of determination of seismic hazard, questions of seismicity of a southern part of Finland, initial data on earthquakes and techniques of their processing, are considered below.

Keywords: Intraplate earthquakes, seismic hazard, ground-motion simulation, ground response spectra

1 INTRODUCTION

Although the majority of earthquakes happen inter-plate, moderate to large earthquakes occur within the crustal plates themselves. The interiors of the plates suffer relatively moderate earthquakes. The territory of Finland lies within the Fennoscandian or Baltic Shield which continental crust was formed during four periods of orogenic activity [1]. The seismicity of Finland (Figure.1-1) is comparable with that of other intra-plate environments. According to the World Earthquake Database in the last 100 years, around 3,000 earthquakes have been recorded in the Fennoscandian area with magnitudes of 2.0 or
greater. Most of them occurred in offshore Norway, in the area of thin crust. The largest magnitudes determined in Fennoscandia and Finland are 6.1 and 4.9, respectively.

![Epicentral Map of Fennoscandia (1900 - 1995), magnitude M ≥ 2](image)

Earthquakes in Finland are shallow and occur within the crust, with largest depths of 58 km in the SE part. The focal mechanisms of some 200 earthquakes indicate that the dominant stress direction is horizontal. Several studies based on the Fennoscandian Rock Stress Data Base (FRSDB) suggest that on average, the horizontal stresses are three times higher than the vertical ones. Thus a typical earthquake in southern Finland would be a strike-slip event relaxing compression stresses in NW direction which is consistent with the compiled FRSDB in-situ stress measurements and local observations.

Intra-plate earthquakes in Fennoscandia tend to concentrate around the zones of crustal weakness reactivated by the recent stress activity. However, intra-plate earthquakes are difficult to be seismically generalised due to their long and infrequent appearance, especially the estimate of their magnitude. The Osmussaar earthquake (in the Gulf of Finland) of 25 October 1976 is one such event with a magnitude of $M_L = 4.9$, felt in the wider area.
2 PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR SOUTHERN FINLAND

Although instrumental earthquake observations started in Finland in the 1920's, local short period recordings started in 1956 [2]. The events in Finland and in Fennoscandia have been predominantly instrumentally located since the mid 1960's. The instrumental magnitudes are based on the Richter's classical local magnitude scale, M_L, modified for the Fennoscandian region. The uncertainty of macro-seismic magnitudes is assumed to be 10% at best. References [1], [2] and [3] show that southern Finland, which is the target area of this study, is characterised by relatively low seismicity.

![Map of northern Europe showcasing earthquake epicenters]

Figure 2-1 Distribution of the earthquake epicenters in northern Europe since 1375 according to FENCAT [1].

181
The most active belts of seismicity close to it are the Swedish coast from the Bothnian Sea to the Bothnian Bay, western Lapland and the northern Bothnian Bay-Kuusamo region. Southern Finland and areas south and east of it are characterised generally by a lower seismic activity. However, two NW-SE oriented belts of relatively high seismic activity run through the region [3]. The northern zone of higher activity runs from the southern Bothnian Bay towards Ladoga (B-L). The other active belt (Å-P-P) runs from the Åland archipelago to southeastern Estonia, where it extends to from Paldis to Pskov. The zones are distinguished from their surroundings particularly by the occurrence of relatively large earthquakes. However, the period of pronounced seismic activity from 1920 to 1941 brings out the same seismic belts in southern Finland, but elsewhere as well.

Figure 2-2 Belts of higher seismic activity (shaded areas). Historical events (1375-1964) with magnitude M > 3.5 and instrumentally located (1965-1995) events with magnitude M > 3.0 are shown by open and filled black circles, respectively. Crosses denote earthquakes during the period of increased seismic activity 1920-1941. B-L Southern Bothnian Bay - Ladoga Zone, Å-P-P = Åland Archipelago- Paldis-Pskov Zone, CFQZ= Central Finland Quiet Zone, SFQZ = Southern Finland Quiet Zone.
By preparing the initial data according to the requirements of probabilistic seismic hazard assessment, the further analysis was carried out on Fortran Computer Program for Seismic Risk Analysis developed by Perkins and Bender as described in reference [4]. The contour curves for peak ground acceleration for target window in Southern Finland are described in Figure 2-3 and the design ground response spectrum in Figure 2-4:

![Peak ground acceleration (g)](image)

Figure 2-3 Peak ground acceleration for 100 000 year median return period for target window

![Spectral acceleration (g)](image)

Figure 2-4 Ground response spectrum for Southern Finland acc. to YVL 2.6 Guide [5].
3 SEISMIC HAZARD AND GROUND MOTION SIMULATION AT THE SITE OF LENINGREAD NUCLEAR POWER PLANT IN SOSNOVY BOR

3.1 SPECTRAL ACCELERATION ATTENUATION FOR SOSNOVY BOR SITE

The spectral attenuation equations for ground acceleration used as input for SEISRISK III [4] and EZ-FRISK [6] are given in table format. The parameter in these attenuation tables is the earthquake magnitude and the argument is the hypocentral distance R. All attenuation relationships are developed for solid bedrock and all site effects are taken into account in a separate study for site amplification described in the subsequent section. The attenuation equations were calculated from the Saguenay data set from eastern Canada and from Newcastle data set from eastern Australia. The plots for attenuation fits calculated from longitudinal component of Saguenay data set are presented in Figure 3-1.

![Attenuation Isagu](image)

Figure 3-1 Spectral attenuation fit for Saguenay longitudinal component. Damping 5%. Magnitude 5.8.

3.2 DECISION TREE FOR THE TREATMENT OF UNCERTAINTIES

The code basis for the ground motion estimation in probabilistic seismic hazard studies stipulates the median spectra for mean return period of 100 000 years [7]. The decision three used in the treatment of uncertainties in this study is presented in Figure 3-2. The first level of the decision tree includes two equally weighted branches called Sosnovy Bor catalog and Lovisa catalog. The meaning of these bars are the 500 km radius source regions around both prospective sites. These bars are called catalogs because they include that particular subset of the parent catalog FENCAT that is located inside each particular
source circle. Each catalog in its turn is divided to source areas. Both Loviisa and Sosnowy Bor catalogs have six source areas, which contiguously fill whole source circle drawn around Loviisa, and Sosnowy Bor sites. The source term seismicity felt at particular site is originated in the source areas. The seismicity of source areas is quantified by Gutenberg-Richter magnitude recurrence relationship determined by two parameters: a and b. Consequently, the four following branch bars in the decision tree characterize the seismicity of source areas. Two different hypotheses are adopted to characterize the source areas, namely, characterization by areas itself or characterization by respective parent catalogs. Characterization by sources means that Richter's parameters are estimated on the basis of events occurring inside each particular source area. Regional characterization means that Richter's a and b parameters are calculated on the basis of all events occurred inside each particular catalog. Seismic activity parameters estimated for each of the source areas (weight = 0.6) is considered more reliable than the corresponding regional estimates (weight = 0.4). Next eight branches in the decision tree describe various assumptions concerning the maximum possible magnitude inside each source. The determination of maximum magnitudes attributed to source areas is probably the most difficult and controversial aspect of probabilistic seismic hazard analysis. In this study the maximum observed magnitude \(\text{MAX}(M_{\text{FENCAT}}, M_{\text{FSU-CATALOG}}) \) inside each source area was added by 0.1 magnitude units and 0.5 magnitude units. Both these hypotheses were assigned equal weights. In the fourth level of the decision tree branches to 32 branches meaning the attenuation of earthquake ground motion. The adopted four variants of the attenuation relationships were models evaluated based on Canadian events longitudinal component recordings, Canadian transversal component recordings, Australian longitudinal and Australian transversal recordings, respectively. The weights for Canadian data were 0.3 and for Australian data 0.2. Each branch end node in logic-tree of Figure 3-2 characterizes the credible alternative inputs to probabilistic seismic hazard analysis and their likelihoods. The end node likelihood can be calculated by multiplying the branch likelihoods leading to end node. The sum of end node likelihoods as well as branch likelihoods at each level must be one.

![Figure 3-2 Logic three structure for treating uncertainties.](image)

185
3.3 SITE EFFECTS

The seismic response of the soil structure is a combination of processes on two different scales: The incidence seismic wave operates in the scale of tens or hundreds of kilometers whereas in soil dynamics the scale is of tens or hundreds of meters. In the soil structure, seismic waves can be amplified as they propagate owing to a variety of factors: contrasting impedance between the bedrock and superficial layers due to the conservation of energy; resonance phenomena if the dominant period of the incident wave is close to the fundamental period of the superficial layer; and topographical effects. This modification of ground motion is often called amplification, but also site effect. The flat topography and geological interpretation [1] of the southern coast of the Gulf of Finland indicate that the bedrock is a horizontal plane and the superficial soil layers are horizontally stratified. The lack of topographical effects enables to present the soil characteristics by a column. A given soil column is assumed to be composed of a number of uniform soil layers of arbitrary thickness, each with linear soil properties. The site effects of the Sosnovy Bor are analyzed with the program CARES [9]. The soil characteristics of the NPP site are presented in Table 3-1. The total thickness of the soil column is 180 m. The damping ratio used in the analysis is the average of Dp and Ds.

<table>
<thead>
<tr>
<th>Layer</th>
<th>h (m)</th>
<th>Vp (m/s)</th>
<th>Vs (m/s)</th>
<th>ρ (g/cm³)</th>
<th>Dp</th>
<th>Ds</th>
<th>μ (kg/ms²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>400</td>
<td>180</td>
<td>1.7</td>
<td>0.55</td>
<td>0.6</td>
<td>5.51E+07</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1100</td>
<td>250</td>
<td>1.8</td>
<td>0.5</td>
<td>0.6</td>
<td>1.13E+08</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1500</td>
<td>350</td>
<td>1.9</td>
<td>0.4</td>
<td>0.5</td>
<td>2.33E+08</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>2000</td>
<td>350</td>
<td>2.2</td>
<td>0.15</td>
<td>0.4</td>
<td>2.70E+08</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>2200</td>
<td>450</td>
<td>2.3</td>
<td>0.1</td>
<td>0.35</td>
<td>4.66E+08</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>2500</td>
<td>650</td>
<td>2.4</td>
<td>0.05</td>
<td>0.005</td>
<td>1.01E+09</td>
</tr>
</tbody>
</table>

Table 3-1 Soil characteristics of the Sosnovy Bor site. h= thickness of the layer; Vp and Vs = P- and S-wave velocity; ρ = density; Dp and Ds = damping factors for P- and S-waves; μ=shear modulus.

The objective of the analysis is to determine the acceleration response spectra at the soil surface, when a specified acceleration time history (accelerogram) is input at the basement (bedrock) of the soil column. The first step of the analysis is to generate an acceleration time history and Fourier components compatible to the design spectrum generated according to the Section 3-2. The second step deals with seismic waves propagating through the layered soil. Seismic waves are simulated as shear waves traveling vertically through a soil idealized as horizontally bedded layers. The Fourier components of the motion at any depth of the profile can be obtained through a deconvolution/convolution analysis. In this study, the Fourier components of the motion at the surface are calculated. Finally, the acceleration time history and response spectrum at the surface are generated from the results of deconvolution analysis, i.e. from the Fourier components of the surface ground motion.
3.4 RESULTS

The median seismic hazard curve in peak ground acceleration for Sosnovy Bor site is given in Figure 3-3:

![Median hazard curve for Sosnovy Bor site for solid bedrock acceleration](image)

Figure 3-3 Median hazard curve for Sosnovy Bor site for solid bedrock acceleration

The artificial acceleration history at the with a peak ground amplitude 0.065g (Figure 3-3) was obtained through the numerical simulation from the target spectra selected (Figure 2-4). This 15 seconds long accelerogram has been used as an excitation at the bottom of the stratified soil structure. The analysis of the site effects show that the soil structure resonates at the frequency of 5 Hz (Figure 3-4 and Figure 3-5). The peak ground acceleration at the soil surface is 0.16g and the acceleration value at the frequency of 5 Hz is 0.85g. These values are likely to be somewhat smaller at the basement level of the power plant, which is 6 meters depth from free field surface.
Figure 3-4 Synthetic bedrock and free-field acc. time histories at Sosnovy Bor

Figure 3-5 Ground response spectrum calc. from the free-field motion of Figure 3-4

4 STRONG MOTION SIMULATED FROM MICRO-EVENT REGISTRATIONS

4.1 INTRODUCTORY REMARKS ON METHODOLOGY

In the superposition method or Green's Function Method, it is assumed equivalent source parameters, path and site effects for the main event as well as for its aftershocks. With the aid of superposition method earthquake can be simulated by the summation in
time of a number of sub-events. Each sub-event is considered to have a slightly different origin time and location to represent the propagation of a rupture along the fault plane, and the signals are then summed together to produce the synthetic record. With a proper choice for the number of sub-events and their waveform scaling factor, the spectrum of the simulated events produced by this method can be made to conform to low- and high-frequency limits. Those values are determined by the ratio of the seismic moment of the simulated event to that of the sub-event. The quality of the final outcome will depend on how well the model represents the distribution of slip over space and time [10].

4.2 INPUT RECORD

Figure 4-1 shows the recorded ground motion over a period of 6 seconds. The highest peak acceleration is observed on the N-S component, reaching values of 3.5 mm/s². It should be expected that with right fault orientation, these characteristic features would be preserved in the synthetics.

![Acceleration record at Loviisa station of 28 January 1991, M_L = 1.3](image)

Figure 4-1 Acceleration record at Loviisa station of 28 January 1991, \(M_L = 1.3 \)

4.3 OUTPUT RECORD

The 28 January 1991 Loviisa record of the \(M_L=1.3 \) earthquake was used as a sub-event to simulate movement along a possible capable fault with length of 3km, to produce a record of \(M_L=5.5 \) earthquake (Figure 4-2). The other parameters for superposition simulation method are as follows, i.e. fault orientation and velocities (\(V_p=6.06\text{km/s} \), \(V_S=3.51\text{km/s} \), and rupture velocity of \(0.9V_S \), with a model dimensions of 3:1 horizontal versus vertical ratio). The superposition procedure was applied in two steps, summing 1,400 sub-events and thus gradually increasing the magnitude from 1.3 to 5.5. The depth of the fault plane was constrained in order not to influence the final results. In the program, it was assumed that the rupture started in the centre of the fault and simultaneously propagated toward the ends. The peak accelerations are proportional to the scaling factor used in the formula to multiply with the sub-event, and when converted from counts maximum values of about 0.15g to 0.2g can be expected.
Figure 4-2 Synthetic record of $M_L = 5.5$ earthquake at Loviisa station

4.4 COMPARISON OF RESPONSE SPECTRA

The standard Response Spectrum program was used to calculate the response spectrum of the synthetic records of Figure 4-2 as described in the USGS procedure [11]. In the processing step, the maximum response of a simple (single degree of freedom, damped, harmonic) oscillator is calculated, subjected to the input acceleration time series. The maximum response is calculated for oscillators having damping ratios of 0%, 2%, 5%, 10% and 20% of critical damping, and for different natural periods. Figure 4-3 represents the acceleration response spectra for the synthetic Loviisa mainshock for n-component, for an oscillator with frequencies from $0.3 - 100$ Hz, and for 5% damping ratio and the target response spectra shape of Figure 2-4 obtained by simulation technics for uniform risk spectra for Southern Finland sites. Both spectral shapes were scaled to the peak ground acceleration of 1g.
Figure 4-3 Comparison of synthetic ground response spectral shapes obtained by uniform risk spectrum method and Green's Function superposition method

5 CONCLUSION

On the basis of the preliminary analysis it could be concluded that the synthetically produced record using the registered micro event (M_L = 1.3) in Loviisa station using Green's Function superposition method produces reasonable approximation. The simulated acceleration is quite compatible with the observed ground motion in other areas prone to intra-plate earthquakes.

The comparison of ground response spectrum shapes from synthetic motions generated by uniform risk spectrum method and Green's Function superposition method show that both methods generate motions with comparable spectral amplification factors (2.3 -3.0). However, the location of spectral peak for Green's Function superposition method is situated significantly higher (25Hz) than the peak for uniform risk spectrum method (10Hz).

6 REFERENCES

Session 3 – Mr. J. Donald
(Health and Safety Executive, Nuclear Safety directorate, United Kingdom)

Topic 3 Regulatory aspects
The new IAEA safety guide on seismic hazard analysis (with emphasis on considerations for zones of diffuse seismicity)

Dr. A. Gürpınar (International Atomic Energy Agency, Austria)

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
İstanbul, 16-18 October 2002

The New IAEA Safety Guide on Seismic Hazard Analysis
(with emphasis on considerations for zones of diffuse seismicity)

Aybars Gürpınar, SH-ESS-IAEA
17 – 18 October 2002
OECD-NEA Workshop, İstanbul

History of the Revisions

- The Safety Guide on "Earthquakes and Associated Hazards in Relation to NPP Siting" was first published in 1978.
- The first revision was made in 1991.
- The process for the new revision is complete and the Safety Guide on "Seismic Hazard Analysis for NPPs" will be published in 2003.
Basis for the new revision

Feedback from IAEA review services for seismic input of nuclear facilities (1990-1999)

- New developments
 - regulatory approach to licensing
 - external event PSA for new and existing plants
 - new data from significant recent earthquakes
 - new approaches in methods of analysis

Summary of IAEA Review Services for the Seismic Input of Nuclear Facilities (90 - 99)

- Total number of reviews: 95
- Number of sites/facilities: 34
- Number of countries: 26
- Different types of facility: 5
- Number of external experts: ~100
- Number of reviews involving seismic PSA: 5

Sample of Reviewed Plants/Sites of Nuclear Installations (1990 – 1999)

- **Europe:** Gork, Chnnea, Leningrad, Smolensk, Temelin, Mochove, Bohunice, Paks, Cernavoda, Pitesti, Kozloduy, Belene, Krsko, Medzamor, Cekmece
- **Asia:** Bushehr, Alatau, Ulken, Ulugbek, Chashma, Kanupp, Rooppur, Muria, Madura, Bangkok, Ulchin, Sinpo, Tianwan
Sample (Continued)

- **Africa**: Sidi Bouibra, Maamora, Rabat, Cairo, Koeburg
- **Australia**: Lucas Heights
- **South America**: Santiago, Huarangal, Angra

Major Changes

- Provide more guidance on new topics of data generation such as paleoseismology
- Provide guidance on methods for probabilistic seismic hazard analysis
 Provide further guidance on development of ground motion response spectra - decouple this from the 'design' issue.

More guidance on new topics, e.g. paleoseismology

The feedback from review services confirmed the need for a 'solid' database before proceeding with analysis. Paleoseismology provides a crucial link between historical seismology and neotectonic studies. This will be even more important where historical data is deficient.
Guidance on probabilistic seismic hazard analysis methods

Probabilistic methods are specifically recommended for hazard studies in the Site Evaluation Requirements (draft). Several examples from seismic input reviews had showed that there is a need for guidance on recommended methods. This guidance is provided in the new version of the guide.

PSHA is recommended more strongly also because of the current trend of conducting external events PSA conducted in many Member States. This is also an IAEA requirement.

Response spectra

Guidance has been provided for developing response spectra tied with PSHA, that is, uniform hazard RS. The RS in the Seismic Hazard Analysis guide and the Seismic Design guide have been treated separately, the first as a site related requirement and the latter as a 'load case'.

Sample recommendations

2.7 The general approach to seismic hazard assessment should be directed towards reducing the uncertainties at various stages of the process. Experience shows that the most effective way of achieving this is to collect a sufficient amount of reliable and relevant data. There is generally a trade-off between the effort needed to compile a detailed, reliable and relevant database and the degree of uncertainty that the analyst should take into consideration at each step of the process.
Sample Recommendations

2.8 Essentially every aspect of the analysis, identification and characterization of seismic sources and estimation of ground motion may involve substantial subjective interpretation by experts. Particular care should be taken to avoid bias. Experts should not promote any one hypothesis or model but should evaluate all viable hypotheses and models using the available data and then develop an integrated evaluation which incorporates both knowledge and uncertainties.

Sample Recommendations

3.10 To supplement the published and unpublished information on near regional areas, specific investigations should typically include the definition of the stratigraphy, structural geology and tectonic history of the near region. Tectonic history should be very well defined for the current tectonic regime, for example: Upper Pliocene-Holocene may be adequate for interplate regions and Pliocene-Quaternary for intraplate regions.

Sample Recommendations

4.4 ... any seismotectonic model consists, to a greater or lesser extent, of two types of seismic sources:
- Those seismogenic structures which can be identified using the available database,
- Diffuse seismicity (consisting usually, but not always, of small to moderate earthquakes) which is not attributable to specific structures using the available database.
4.5 However, the second type, diffuse seismicity, is a particularly complex problem in seismic hazard assessment and generally will involve greater uncertainty because the sources of the earthquakes are not well understood. A complete definition of these elements involves expert interpretations that are uncertain. The uncertainty in the interpretations should be properly assessed in order to incorporate it into the ground motion hazard at the site.

5.15 Probabilistic methods have advanced in practice to the extent that they can be effectively used to determine ground motion hazard. Results of probabilistic seismic hazard analyses are necessary for the external event PSA's that are being conducted for plants. Generally seismic hazard curves that are used as input to seismic PSA studies need to extend to lower frequency per year levels than those used for design. This should be taken into consideration.

5.16 The method allows for uncertainties in the parameters of the seismotectonic model as well as alternative interpretations of models to be explicitly included in the hazard analysis and propagated through the hazard results. Alternative models may be proposed by different experts or expert groups and these may be formally included in the probabilistic hazard computation. When this method is used, the results of international practice in the application of such multiple evaluations for PSA should be reviewed.
New Challenges – Hazard Analyst

- Keep uncertainties as low as reasonably possible – involves substantial data collection
- Calculate ground motion hazards corresponding to lower frequencies per year (~ 10^{-6})

New Challenges – Ground Motion Specialist

- Modelling of the ground motion from different types of sources separately,
- Avoid duplication in modelling of the same phenomenon (in attenuation relationships and in site effects modelling).

New Challenges – External Event PSA Specialist

- For innovative NPP designs (which depend mostly on passive systems) it is likely that external events (especially seismic) will become more and more dominant as a "Core Damage" initiator,
- Need for methods to evaluate probabilities of phenomenological failures (need to work closely with structural/mechanical engineers)
New Challenges – Structural Engineer

- Need for effective methods to distinguish between “first excursion” type failure (e.g., RS) and “cumulative” type (energy based) failure,
- Modelling of phenomenological failures of singletons (especially in innovative NPP designs)
Seismic hazard determination of nuclear facilities in the Czech Republic

Dr. D. Procházková
(Emergency Planning Department, Fire and Rescue Service, Czech Republic)

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Seismic safety management and seismic risk management strategies

Seismic safety management strategy and seismic risk management strategy [22] are in the Czech Republic based on the real seismic hazard knowledge and on the use of preventive measures (technological and organisational) that at a strong earthquake occurrence mitigate or even avert severe earthquake impacts. To be able to reduce a seismic risk we must know site seismic hazard, site, facility and technology seismic vulnerabilities.

By legal rules and seismic design code in force we require:

- determining the real site seismic hazard corresponding to time periods 100 and 10 000 years,
- determining the NPP seismic risk in dependence on NPP type and local conditions,
- adhering the defined professional principles and procedures at site evaluation, designing, construction and operation,
- using the construction procedures, technical measures (materials, structural elements, equipment etc.) and operation procedures that reduce seismic vulnerability during construction and operation,
- preparing the set of organisational measures for the case of strong earthquake occurrence.

Legal rules in force

To guarantee the NPPs seismic protection against earthquakes the legal rules [1 - 5] in force are used, i.e. Civil Construction Act, Nuclear Safety State Supervision Act, Special decrees and technical standards. These regulations are in keeping with the current used international rules and the IAEA recommendations [6,7].

By legal rules in force we require:

- to determine the real site seismic hazard corresponding to time periods 100 and 10 000 years,
- to adhere the defined professional principles and procedures at site evaluation, designing, construction and operation,
- to use the construction procedures, technical measures (materials, structural elements, equipment etc.) and operation procedures that reduce seismic vulnerability during construction and operation,
- to prepare set of organisational measures for the case of strong earthquake occurrence.

Data sets used

The seismic database contains the earthquake catalogues (macroseismic and instrumental) for Central Europe and for its individual parts, atlas of isoseismal maps of earthquakes macroseismically felt on the territory of Central Europe, maps of maximum observed intensities, investigations of individual earthquakes or earthquake sequences (e.g. swarms), description and characteristics of seismic regime of Central Europe and of individual focal zones being found there and analysis of seismotectonic relations. Data on earthquakes considered are for the last 1000 years.
The geological database contains the geological maps, hydro-geological maps, tectonic maps, maps of vertical crustal movements, gravimetric, geomagnetic and geothermal maps for Central Europe and for individual regions in several different scales, tables and professional analysis and synthesis of data. Data for geological structure and tectonic movements considered are for the last 200 Ma.

To obtain realistic seismic hazard assessment the following ground-works were compiled for Central Europe:
- neotectonic movements chronological model for the last 40 Ma [9],
- neotectonic regional units and their present movements [9],
- earthquake occurrence scenarios [8,10],
- seismogenic movements determination [9, 20].

Methodology of investigation and evaluation of earthquakes

For the seismic hazard determination we use the methodology specified in the IAEA safety guide [6]. Seismic, geological and tectonic histories of Central Europe and its parts were evaluated by several independent methods. Revealed basic trends are generally coincident, only in evaluation of some partial events some differences from time to time occur.

A seismic hazard of any site depends on:
- a model of earthquake occurrence used,
- input data that calibrate the model used as:
 - the boundaries of focal regions or the boundaries of seismactive parts of faults (i.e. fault parts that can produce an earthquake),
 - the values of maximum earthquakes that can be generated.

The assumptions and demands for the seismic hazard determination are given in the papers [11,18].

The assumptions are:
- earthquake may origin at any place of a focal zone or a seismactive part of a fault,
- attenuation in the direction „focal zone - given locality“ is the least favourable (from the safety reasons) of all empirical relations known,
- M_{max} value must be determined by the following way:
 - in a focal zone as a magnitude equal to the magnitude of maximum observed earthquakes in the history (ca last 1000 years) plus 0.5 - 1 degree MSK-64,
 - as a result of expert assessment of symptoms of fault ability to generate earthquakes.

Taking into account the results of seismotectonic and statistical studies there are for given site determined: the safe shutdown earthquake (corresponding to SL-2 according to the IAEA recommendation), the design basis earthquake (corresponding to SL-1 according to the IAEA recommendation), the hazard curves for different return periods, the ground motion parameters of the site (site accelerograms or site specific spectral shape scaling to the ground motion level). If accelerograms are calculated from the response spectra the maximum probable estimation of duration of maximum phase of acceleration for real site is considered. The design response spectra, the zero period peak ground acceleration, the accelerograms and the duration of the maximum phase of acceleration are passed to the NPP designers and operators.

The used determination of site accelerograms, site response spectra, duration of maximum phase of acceleration in given site and the used evaluation of influence of local soil conditions on seismic waves are in the agreement with the IAEA recommendations [6,7]. Because the response spectra predicted from the ground acceleration time histories, the amplitudes and the amplification effects vary over the period range and are strongly affected by the subsoil, the magnitude of earthquake and the distance of NPP structure to the
source rupture, their determination is very careful. They are determined in agreement with the IAEA materials [6,7,12,15].

Taking into account the real data [8-10,20] the seismic hazards of NPPs sites are less than 0.1 g for Dukovany NPP and Temelin NPP, 0.1 g for Mochovce NPP and 0.25 g for Jaslovské Bohunice NPP [21].

Taking into account the models of constructions of individual plant buildings of the category I of seismic resistance (the finite element method is used), the site dependent ground accelerograms and the site dependent design ground response spectra the set of floor design response spectra for individual constructions and floors are calculated considering the site specific soil conditions. The floor response spectra are generated by help of ground accelerograms and of the individual buildings models for several places on the floor and the results are obtained by the technique „median plus σ (standard deviation)“. The combination of seismic stresses with other stresses resulted from dead load, live load, thermal load, pressure load, etc. in the total stress determination is considered for generation of floor response spectra for design and qualification of mechanical and electrical equipment and piping systems [17,19].

For the important equipment that are ranked in the category I of seismic resistance, the bounding spectra are determined taking into account the corresponding floor accelerograms, floor response spectra, floor model and the load combinations corresponding to the normal operating conditions [13] using the expert system [14].

Seismic terms of references

On the basis of real data we determine:

Maximum Calculated (safe shutdown) Earthquake - the greatest earthquake, defined as an extreme natural event of this type, which may potentially occur at the location of the given nuclear power plant. In conformity to the IAEA recommendation (SL-2) [6] it is required that its minimum value be chosen as 0.1 g.

Design (basis) earthquake - the greatest earthquake, defined as a standard external event, whose occurrence may reasonably be expected at the locality of the given nuclear power plant in the course of its technical service life. In the IAEA recommendation [6] the denotation (SL-1) is used. It is the earthquake, which produces the vibratory ground motion for which those features of the NPP necessary for continued operation without undue risk to the health and safety of the public are designed to remain functional.

Control Earthquake - an earthquake that the nuclear power plant will withstand without problems as far as of nuclear safety and functionality are concerned. It is usually considered to be equal to design basis earthquake and it is important for the correct setting of the nuclear power plant seismometric instrumentation.

Ground Motion Accroerogram - accelerogram representing the time dependent acceleration at the building's foundation or at ground level.

Floor accelerogram - accelerogram representing the time dependent acceleration of a selected point on the floor.

Ground Response Spectrum - response spectrum designed for the given free field accelerogram, or for the accelerogram at ground level.

Floor Response Spectrum - response spectrum designed for the given floor accelerogram.

Real seismic terms of references depend on site seismic parameters and on a NPP model and type [11,17,19]. They consist of safe shutdown earthquake, design basis earthquake, control earthquake, set of ground motion accelerograms, set of floor accelerograms, ground response spectra, floor response spectra, bounding spectra for important equipment, ranking the constructions, systems and components of the NPP into seismic categories.

The seismic categories [17,18] are defined in agreement with the IAEA guide [7] as follows:
Category I of Seismic Resistance - contains those safety systems and selected systems linked to nuclear safety including all works of civil engineering connected therewith and individual facilities components that are necessary for the fulfilment of the main safety functions of the unit in case of earthquake and must be seismically resistant up to the safe shutdown earthquake level and also in case of aircraft impact or external pressure wave on the reactor building and on other selected civil structures of the Nuclear Power Plant, as well as systems, structures and components, whose disturbance or failure during earthquakes up to the safe shutdown earthquake level inclusive, or in the case of aircraft impact or external pressure wave, could as a secondary consequence threaten other systems, structures or components in their vicinity that are important for nuclear safety in the case of an earthquake, or in the case of an airplane crash or impact of an external pressure wave. Included in the mentioned category are:

- civil structures, systems and individual components, whose failure could directly or indirectly cause the occurrence of emergency conditions,
- civil structures, systems and components that are necessary for safety shutdown of the reactor, monitoring critical parameters, for maintaining the reactor under safe shutdown conditions, and the remove of the reactor's residual heat for a sufficiently long period of time,
- civil structures, systems and individual components that are essential of preventing the spread of radioactive substances and ionising radiation into the vicinity, or for the maintenance of the respective leakage under the limits that apply to emergency conditions.

Conservatively, the category I of seismic resistance also includes selected civil structures, systems and components that are designed for the mitigation of the consequences of design accidents, postulated for the primary circuit, regardless of the fact that the primary circuit is in and of itself designed as being seismically resistant up to the safe shutdown level inclusively. Note: The category I of seismic resistance is further operatively divided to three sub-categories:

- sub-category Ia - seismic resistance is required in the sense of preserving full functionality,
- sub-category Ib - seismic resistance is required in the sense of preserving mechanical rigidity and hermetic sealing in accordance with the respective rigidity standards and regulations; partial violations of functionality are possible,
- sub-category Ic - seismic resistance is required only in the sense of possible seismic interactions with other civil structures, systems or components, most often in the sense of preserving the stability of the position, partial disturbance of functionality, mechanical rigidity or hermetic sealing being possible. This concerns such civil structures, systems and components that could, due to their location, forced motion and in particular their eventual loss of stability, impact civil structures, systems and components included in the seismic sub-categories Ia and Ib.

Category II of Seismic Resistance - means that there is not requirement to do seismic assessment of structures, components and systems.

Mitigation of earthquake impacts on NPP

The nuclear power plant seismic resistance is defined as the ability of the nuclear power plant civil structures, systems and components to maintain their functionality, mechanical rigidity and hermetic sealing, or only to prevent their being disturbed as a result of seismic interactions. Seismic interactions denote events occurring in the course of an earthquake and similar phenomena that may cause damage to systems, structures, technical systems or individual components as the result of a mechanical interaction with civil structures, system or components in their vicinity [17,19].

The evaluation of the seismic resistance of civil structures, systems and components of the nuclear power plant's facilities of the category I of seismic resistance must be carried out by calculations and tests, the details are in report [17].
In conjunction with the impact of a seismic alarm on the functionality of the regulating devices of the concrete reactor, it must be demonstrated by calculations or by experiment that the duration of their emergency outage from the full level of operational functioning, with the electromagnets switched off, even in the case of safe shutdown earthquake will be within allowable limits given by the manufacturer, i.e., less than 4 seconds [17].

In conjunction with the installation of viscous pipe dampers on the primary circuit, condenser circuit and other piping systems, the requirements of the respective technical conditions stipulated for their delivery must be met, including the requirement for an attestation of these dampers for use at a nuclear power plant.

To proof the resistance against earthquakes only verified, generally accessible and reliable methods, models, codes and standards are acceptable [3].

The NPP protection against to earthquakes is provided by:
- aseismic design of civil structures, systems and components that belong to the category I of seismic resistance (they must be resistant to predicted impacts of design basis earthquake and of safe shutdown earthquake, respectively),
- selection of systems and technological components that belong to the category I of seismic resistance (they must be resistant to predicted impacts of design basis earthquake and of safe shutdown earthquake, respectively),
- the use of different types of supports, dampers, anchoring, etc.
[2,3,7,15,16].

Aseismic design

Facilities that are important for nuclear safety must be designed in such a way that in the case of natural events that may realistically be expected to occur (earthquakes, hurricanes, flooding, etc.) or events caused by human activity outside of the nuclear energy facility (airplane crashes, explosion in the nuclear power plant's vicinity, etc.) it should be possible:
- to safety shutdown the reactor and maintain it in a sub-critical condition,
- to remove the residual output of the reactor for a sufficiently extensive period of time,
- to maintain any radioactive leakage under the limiting values stipulated for the given locality of the nuclear energy facility
[3,15] in agreement with the IAEA recommendations [6,7,16].

Seismometric instrumentation

The seismometric instrumentation (SMS) must be designed in conformity with the IAEA requirements [7,17,19]. It is considered acceptable if control earthquake is equal to design earthquake for the nuclear power plant [17,19]. In conformity with the IAEA instructions [7] the following is applied:
- SMS is seismically resistant up to the safe shutdown earthquake level, including the respective electrical supply,
- SMS is dependent on the primary circuit diagnostic systems and the probability of its failure is smaller than once in 105 years,
- SMS is automatically activated if the measured absolute acceleration in any direction and at any arbitrary location of the sensors exceeds the value of 0.01 g,
- SMS meets the minimum requirements on the number and location of the accelerometers based on IAEA 50-SG-D15 instruction [7] and the signalling equipment is connected to the unit control room, with a link to the NPP computer information system.

Inspections and walkdowns

Systematic investigation of NPP seismic resistance is provided by regular inspections of the State Office for Nuclear Safety [2] and by professional walkdowns either after stronger earthquakes (greater or equal to design basis earthquake) or after important inspector’s findings (e.g. effects caused by ageing) [18].

References

A developing risk-informed design basis earthquake ground motion methodology for nuclear power facilities in Japan

Mr. T. Konno (Secretariat of Nuclear Safety Commission, Japan)

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

ABSTRACT

Design basis earthquake ground motions for nuclear installations in Japan should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modern earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the ongoing modernization of the Examination Guide for Seismic Design on NPP's in the Nuclear Safety Commission (NSC) of Japan.

INTRODUCTION

The seismic safety of reactor facilities is required to assure the reactor safety and radiation protection to the public health and safety by defense-in-depth philosophy for any supposed seismic load occurrences during the reactor operation. The Examination Guide for Seismic Design by the NSC requires that the safety-related structures, systems and components (SSCs) shall be designed to withstand the effects of earthquakes without loss of capability to perform their safety functions in accordance with the classification of seismic importance.

Two types of design basis earthquake ground motions for seismic design are defined. One is derived as the design basis maximum earthquake S1 specified from the past earthquake records and active faults. The other one is derived as the design basis extreme earthquake S2 that exceeds the S1 and would have the greatest effect at a proposed site. However, the sufficiency of the intensity of the current S2 earthquake determination became a controversial problem after the recent inland earthquake experiences such as 1995 Hyogo-ken Nanbu Earthquake Mj=7.2 or 2000 Tottori-ken Seibu Earthquake Mj=7.3. The disasters in the damage belt of the 1995 Hyogo-ken Nanbu earthquake Mj=7.2 that struck the densely populated city of Kobe demonstrated to the public the dangerous power of the near-fault inland earthquakes. The 2000 Tottori-ken Seibu earthquake Mj=7.3 occurred at a previously unknown active fault for which the epicenter was located approximately 45 km southeast from an existing NPP. This caused discussion about the sufficiency of the blind fault earthquake magnitude that is required in the S2 earthquake; commonly a magnitude 6.5 earthquake at the hypocenter distance of 10 km is currently used for seismic design of every exiting NPP. These recent earthquake experiences awoke public concern about the seismic safety of NPPs that the current examination guide considers necessary for review based on the state of the art knowledge of seismology, geology, and earthquake engineering to ensure the seismic safety performance of NPPs from the point of risk managements.

The method to numerically handle the total earthquake effects to the site as probabilistic events is recently evolving in seismic probabilistic safety assessments (seismic PSAs). These systematic examinations are beneficial in identifying plant-specific vulnerabilities to severe accidents to evaluate the risk involved in the seismic safety design of the reactor facilities. Previous results of seismic PSAs for Japanese NPP's by JAERI [1] or NUPEC [2] showed that the reactor core damage occurrence frequency curve has the peak close to the design earthquake levels rather than excessively extreme earthquake level. This suggests the
importance of not only the seismic safety assessment for the total earthquake hazard in identifying plant-specific vulnerabilities but also the importance of seismic design for design basis earthquakes including the risk-dominant earthquake level informed by seismic PSAs. The seismic design based on the risk-informed should confirm the integrity of structures and safety functions of the safety-related SSCs by the dynamic response analyses using design basis earthquake ground motions defined including the risk dominant level earthquake that is important to ensure the seismic safety reliability on the seismic design in the face of significant uncertainties.

The seismic safety performances should be confirmed in accordance with the multiple levels of safety conditions complying with the risk information from seismic PSAs to meet the defense-in-depth philosophy. The safety levels that should be assured are: normal operation during high frequency occurrence earthquakes; transient incident of moderate frequency occurrence earthquakes; accidental incident of low frequency occurrence earthquakes. Based on these considerations, severe accident management should be planned for the probabilistic seismic risk. However current deterministic design practice to meet this seismic design requirement is not suitable for thoroughly explaining the relationship between the reactor safety performance and the integrities of structures, systems and components (SSCs). This is because uncertainties both of the seismic hazard among earthquake magnitude, occurrence, ground motion attenuation and of the seismic safety performance within the complex functional structures of reactor facilities.

A probabilistic approach to seismic safety assessment is important from the point of view of “How safe is safe enough.” Such an approach takes into account the ground motion from the full range of earthquake magnitudes, allowing explanation of the relationship between the reactor safety performance and the strengths of safety-related SSCs considering the uncertainties within the seismic hazard and the safety performance system. The probabilistic approach to seismic hazard characterization is very compatible with current trends in earthquake engineering and the development of building codes, which have embraced the concept of performance-based design. The objective of the performance-based design is to clarify how reactor safety performance is degrading with the increasing magnitude of earthquakes. Earthquake occurrences are probabilistic events. Design basis earthquakes (DBEs) should consider the effects of every seismic event by occurrence probability to confirm the seismic safety of reactor facilities. Earthquake ground motions are made complex by the effects of the source, path, and site conditions, that is, it can be said the same ground motion will not again.

As experienced the disasters by the near-fault earthquake ground motions of the 1995 Hyogo-ken Nanbu Earthquake, the estimation of the effects of earthquakes to structures is difficult only from the response spectra of earthquake ground motions. The seismic impacts to structures should be evaluated by time domain dynamic response analyses. The adequacy of design basis earthquake ground motions to assure the seismic safety of the complex facilities of NPPs does not suitably explained only by the envelopment response spectrum or a uniform hazard spectrum of seismic sources. The current Examination Guide is under reviewed reflecting the risk insights informed by recent study results of seismic PSAs. The task group on seismic design guide was organized on July 10, 2001 under the Special Committee on Safety Standard in the NSC.

In this paper, a methodology of development the risk-informed design basis earthquake ground motions of NPPs is discussed based on the risk information by seismic PSAs compared with the risk insights by the current deterministic design basis earthquake ground motions.

SEISMIC SAFETY BY DEFENSE -IN-DEPTH PHILOSOPHY

Seismic classification comply the defense-in-depth philosophy

The seismic safety of NPPs by defense-in-depth philosophy is usually explained in Japan that 1) prevention of abnormal event occurrence, 2) early detection of abnormal event occurrence and mitigation to reduce the influence of the event before it become the accident, and 3) at the accident occurrence, prevent the accident progress and mitigate the accident to reduce the influence by the multiple preparation with diversity and redundancy of the various safety functions of prevention and mitigation systems. If any accident is induced it will be detected quickly and managed to the safety conditions by the safety functions, which hold high reliability due to diversity and redundancy the integrity of safety functions of safe shutdown, safe cooling and containment should be maintained assuming the combination with a random failure of prevention functions and a unit failure of mitigation functions. The seismic design basis requirements defined the performance criterion for the protection against earthquakes that safety related
SSCs that are important to assure reactor safety and radiation protection shall be designed to withstand the effects of any supposed earthquakes without loss of capability to perform their safety functions in the seismic design examination guide by the NSC.

The examination guide classified the seismic grades of reactor facilities in accordance with the importance of the safety functions into four classes from high important to low important facilities as called seismic grades As, A, B, and C from the point of the magnitudes of radiation release impacts to environments and public health. The corresponding design basis earthquake ground motions are categorized into four classes from extreme to small earthquake magnitudes considering probability of occurrence frequencies, that are, extreme design earthquake (S2), maximum design earthquake (S1), 1.5 times a non-nuclear facilities design earthquake as the Ss, and non-nuclear facilities design earthquake as the Sc so that the integrity of safety-related SSCs required should be maintained, respectively. Each seismic grade facilities are designed to maintain the structural and functional integrities for corresponding earthquakes. Each seismic grade facilities should not be damaged to lose the safety functions by the failure of lower class facilities. The maximum design earthquake S1 is determined based on past earthquakes, earthquakes due to active faults with high activity whose recurrence interval is shorter than 10,000 years. The extreme design earthquake S2 is determined based on the both of seismo-tectonic structures and active faults of high to less activity faults whose recurrence interval is shorter than 50,000 years considering the seismological possibilities of exceed the S1 event occurrence based on the characteristics of past earthquakes, active faults and possible blind faults. Current seismic design employed deterministically the seismic source of magnitude M6.5, hypocenter distance X=10 km, to represent the unknown blind faults assuming that could take place at any inland location in Japan. This seismic design requirement is intended to consider sufficient range of earthquakes to assure reactor safety for any potential earthquake shaking.

Plant safety levels related with seismic events

In general, earthquake occurrence frequency is higher in the small seismic. As shown in the Figure 1, generally speaking, plant safety conditions might be induced into from slightly abnormal conditions to highly abnormal conditions along with the intensity of earthquake events increased. These abnormal conditions induced by earthquake events should be detected quickly and settled to safety conditions by various safety functions of mitigation. Assuming the combination with a low occurrence frequency/large accident event by random failure, the safety conditions can be induced to severe condition even in a small earthquake. How much the severe earthquake events should be considered and also how much severe event combinations should be considered is therefore become important point in the deterministic seismic design relied on the risk insights. To obtain the quantitative answer to this problem, seismic PSAs might be a useful method to provide adequate solution based on the risk information. The design basis earthquakes also should be defined explicitly the relations with the probability of annual exceedance occurrence frequencies so that the event combinations considering random failures and human factors can be rationally employed for the safety managements in reactor operations.

![Diagram of Probability occurrence of plant states](image-url)
Figure 1 Plant safety levels related with earthquake events. The safety level is higher when the plant states closer to the normal operation.

UNCERTAINTY IN CURRENT SEISMIC DESIGN

Considering the uncertainty of variables, the seismic load and the seismic capacity of a plant can generally be represented by lognormal density functions. The design basis seismic loads and seismic capacity are determined considering the standard deviations, respectively, so that the loads exceedance capacity rates become negligibly small. The seismic loads of structures are derived from the collaborations both of the earthquake ground motions and structure responses. The earthquake ground motions from a seismic source can be predicted many numbers of different ground motions. In the current seismic design, plant-specific safety margin is secured deterministically between the design basis seismic load and seismic capacity based on the engineering judge in the face of risk insights that the safety might not be compromised by uncertainties as shown in the Figure 2. In the deterministic approach, the earthquake ground motion is generally determined as the most likely ground motion of occurrence at a site, such as the mean value derived from the most significant seismic source to a site. On the other hand, the earthquake ground motions might be considered all variations related with the occurrence frequency in the probabilistic approach. The variable range of seismic loads will become larger than deterministic one corresponding the earthquake ground motion variations. The risk of the probability of the seismic loads exceed the seismic capacity becomes larger in the case of considering the variation of earthquake ground motions. The design basis seismic loads derived from the earthquake ground motion variations should not exceed the design basis seismic capacity at least in the reliable range of the ground motion variation from the seismological point due to the safety margin included in the seismic design. Current seismic design addresses this qualitatively but does not explicitly perform the quantitative confirmations. The determination of the reliable variation range of the extreme design earthquake ground motion S2 is necessary to explain rationally based on the risk information considering the influences of the uncertainty concerning the seismic safety assured by current seismic design. The accumulation of many strong earthquake ground motion records by the recent densely installed earthquake observations and disastrous earthquake experiences are developing the knowledge on the effects of source rupture process, source and site location relations, and deep soil structures to the earthquake ground motions.

Figure 2 Concept of seismic safety margin in deterministic design. The safety
margin should be remained in considerations of the ground motion variability in seismically reliable range.

EARTHQUAKE GROUND MOTION DERIVED FROM SOURCE

Seismic hazard and source characterization

The earthquake ground motions derived from a seismic source can be predicted many variety of different ground motions. The investigation to identify the characteristics of the sources existing around a site region is important to provide a systematic and comprehensive evaluation of the seismic hazard and its effects on the safe operation of nuclear power plants. Many seismic sources might exist, from the small to large magnitudes and from known active faults to unknown blind faults around a site region. These seismic sources should be characterized based on the past earthquake records, geological and geophysical surveys, and micro earthquake observations. Some of the blind seismic sources might be still remained unknown even after the investigations. As one of the way to represent the effects of seismic sources to a site, a seismic hazard curve is made by defining the annual frequency of exceedance in terms of levels of a ground motion intensity, such as peak ground accelerations, which can be correlated with the damage of critical structures, systems, and components (SSCs) into beyond the current design basis earthquake by the probabilistic seismic hazard analysis. From the site-specific hazard curves, a set of Uniform Hazard Spectrum as recommended in US NRC, may be obtained as the seismic design spectra. One of the objectives in developing seismic design spectra is to achieve approximate uniformity of seismic risk for the safety-related SSCs designed to those spectra, across a range of seismic environments, annual probabilities, and structural frequencies.

As shown in Figure 3, a seismic hazard curve is obtained by the contribution of many sources and the contribution rate of the sources to the annual exceedance of earthquake occurrence frequency is different by each source. The seismic safety assurance into the non-linear range of nuclear power plants consisted with the multiple dimensions and complex systems is essentially required that should be performed based on the dynamic response analyses using time domain earthquake ground motions. However, the determination of the earthquake ground motions from the seismic design spectra such as an envelope spectrum or a uniform hazard spectrum of seismic sources brings up another problem regarding the disconnection with the individual source characteristics. These should also accommodate uncertainty in the site-specific dynamic material properties as well as local and regional seismicity and attenuation characteristics.

The determination of an earthquake ground motion to envelop all the prediction is almost impossible. But, development of design basis earthquake ground motions to represent the effective earthquake ground motions could be possible. In order to include the influences of surrounding source effects in to the design basis earthquake ground motions, determination methods using envelope response spectra or uniform hazard spectra of multiple sources are usually employed. In current seismic design it is generally assumed that the DBEs represent the effects of earthquake ground motions by surrounding earthquake sources at proposed site using envelope response spectrum of influential earthquake ground motions with certain margin instead of using all earthquake ground motions predicted. However, the potential variations of ground motion derive from the envelope response spectrum of the design basis ground motion are not explicitly explained.

The relationship between individual sources and the ground motions is not clear in this method. It is not sufficient to represent the earthquake influences only by the spectrum and maximum amplitude of ground motions. The earthquake influences to structures represented by the frequency contents of the amplitudes and phase of acceleration, velocity, displacement, impact force, etc., can be changed by the dynamic characteristics of structures. The seismic capacities of structures are also influenced by the accumulation of fatigue depending on the cycles and intensities of earthquake ground motions. Therefore, earthquake ground motions should be determined to represent the varied amplitude, frequency, and phase characteristics. This can only be done by sufficient numbers of time domain earthquake ground motions.
Figure 3 Source contributions to seismic hazard at a site. The each source contribution rates are changed according with the probability of exceedance frequency changing.

DBE for evaluation seismic impact on safety requirements

Nuclear power stations generally have several reactor units in a site. The earthquake ground motions in a site could vary at the each unit depend on the deep soil structures even though the up coming incident waves are same at the seismic base-rock at a site. The seismic impacts to multiple units in a site regarding the reactor safety and the radiation protection should be assured by the estimation based on the all units in a site. The design basis earthquake ground motions of the each unit are usually determined on the free field rock surface supposed depend on the location of the unit layout basically considering the incident upcoming waves could be defined on the seismic base-rock surface at a site. The reactor safety can be confirmed by the response analyses of each unit. The safety for the radiation protection should be confirmed based on the radiation dose rate by the total release of radiations from the all units in the site. As shown in the Figure 4, the evaluation of the seismic safety on multiple units is preferable to be performed in detail by response analyses using the earthquake ground motions on the seismic base-rock at a site considering the deep soil structures and the unit layout. The seismic response evaluation of a unit using earthquake ground motions defined on the rock surface at a site can be acceptable when the design basis earthquake ground motions at the rock surface is determined conservatively as the representative earthquake by selecting most severe condition for the unit in a site. The evaluation of the seismic safety for radiation protection regarding multiple units is also possible to estimate conservatively based on the summation of the each unit evaluations by the design basis earthquake ground motions defined on the rock surface. However, the estimation method might be too conservative and could be resulted to have excessive dose rate estimation to the public. In order to assure the reasonable radiation protection to the public by the evaluation more detailed, it is preferable to perform the seismic response analyses of the multiple units considering the plant layout using the earthquake ground motions defined on the seismic base-rock surface at a site. The wave reflection and refraction survey to investigate the seismic-base rock in the site can be presents useful information to the determination of the magnitude and location of blind faults.
RISK-INFORMED DESIGN BASIS EARTHQUAKE GROUND MOTIONS

Risk dominant earthquake informed by seismic PSA

The design basis earthquake ground motions should be risk-informed by the seismic PSA on the proposed site. This is so that the necessity of assuming the extremely large earthquake beyond the design basis earthquakes that could cause the damage of reactor core by the failure of the seismic capacity of almost all safety-related SSCs, is negligible from the point of the risk. The earthquake ground motions should be derived on the source of most significant contribution rate for the risk-dominant earthquake. Identification of dominant seismic risk contributors considering the uncertainties involved are an important process in a seismic design to enhance the reliability of the seismic safety assurance. The current results of seismic PSAs for existing nuclear power plants shows a tendency that the risk of core damage frequency caused by earthquakes are largely contributed by less severe initiating events. The large contribution rate of initiating events are, in the order from larger rate: loss of the offsite power accident (LOSP); small break loss of coolant accident (S.LOCA); medium break loss of coolant accident (M. LOCA); large break loss of coolant accident (L. LOCA); and reactor pressure vessel failure as shown in the Figure 5. The result shows the seismic risk is rather dominated by the failures of less important SSCs than high important SSCs according with the relations of the seismic hazard and fragility curves. The conditional core damage frequency by the each initiating event is shown to become larger along with the seismic load increasing until to show maximum peak at the certain earthquake level and then decreasing the risk curve. It indicates the risk-dominant earthquake is derived in the range of the initiating event of loss of offsite power accident (LOSP).

Current seismic PSA can confirm the necessary conditions of reactor safety by secure the success path of safety-related SSCs, but are not yet sufficient to confirm the design basis criteria of reactor safety performances that can be confirmed based on the time domain analyses of reactor behaviors on abnormal operation in seismic events. In order to assure the seismic safety of reactor facilities to the dominant earthquake events, integrities of structures and safety functions of the safety-related SSCs that are necessary to maintain reactor safety conditions in the seismic events should be evaluated by the dynamic response analyses using time domain earthquake ground motions. This is essential to confirm the reactor safety and also the safety for radiation to the public based on the estimation of radiation release derived from the failures of the SSCs.
Development risk-informed DBE ground motions

When the risk-dominant earthquake ground motion intensity is obtained from the peak of the core damage frequency curve estimate, the probability of annual exceedance earthquake occurrence frequency of the dominant level earthquake is decided by the seismic hazard curve estimate. Then the seismic sources contributing the risk-dominant earthquake ground motion intensity are identified as shown in the Figure 6. The method to identify the seismic sources consistent with the occurrence frequency of the risk-dominant earthquake level is available by the studies of Ishikawa and Kameda (1995) [3] or JAERI [4]. The probability occurrence of the earthquake ground motions generated by the sources is distributed as a lognormal density function and the exceedance probability of the risk dominant earthquake level correspond at some deviations apart from the median to low occurrence rate depend on the each source contributions. The design basis ground motions by the risk-dominant seismic source should be derived the two types of ground motions, that are, the most likely earthquake ground motion for the extreme design earthquake S2 by the median exceedance probability and the ground motion by the low exceedance probability to be the risk-dominant earthquake.

The risk-dominant earthquake ground motion could be defined newly as the site evaluation earthquake Ss that could be used for the evaluation of the reactor safety by the plant seismic capacity with the criterion of high confidence low probability of failure (HCLPF), and also, for the evaluation of radiation safety to the public based on the radiation release by the failure of safety related SSCs on the multiple units in a site. The studies to obtain the time history of such low occurrence rate earthquake ground motions that is likely large deviated from the median were not much performed and the evaluation method to be acceptable is not yet established. The evaluation methods of such earthquake ground motions should be developed based on the numerical method considering the variation of the source rapture process parameters using seismic fault model. The new, high-quality data recorded in the near-fault region of recent large earthquakes are useful to source characterization such as spatial variations of slip, slip velocity, or rupture velocity for accomplish precise strong motion prediction by modern earthquake ground motion evaluation technology. In the numerical simulation methods to estimate the ground motions, a recipe for prediction of scenario earthquake strong ground motion caused by active fault by means of numerical analysis considering the spatial distribution of fault slip and the time function of slip on the fault has been proposed (Irikura, 2000)[5]. The influences by the factor of the earthquake such as acceleration, velocity, displacement, impact force etc. to the structures are different the significance depend on the dynamic response characteristics of the objectives. The earthquake ground motions to be used in the evaluation of the seismic
safety of the reactor facilities are necessary to be derived enough numbers of ground motions to represent the seismic impacts considering the many aspects required for the ground motions depend on the characteristics of objectives.

(a) Probability of risk-dominant earthquake on seismic hazard curve

Site response

Deep structure

Asperity

(b) Contribution rates of seismic source to risk-dominant earthquake

(M₃, X₃)

(M₂, X₂)

(M₁, X₁)

Extreme design EQ S₂

Site evaluation EQ Sₛ

PGA

PGA

PGA

Figure 6 Risk-dominant earthquake ground motion methodology.

Improvement comply with risk information

The other aspects to utilize the risk information by the seismic PSA are the improvements of the risk contribution rate distributions to be uniformed if it is inclined too much to the less important event, and also, if the risk-dominant earthquake level is smaller than the extreme design earthquake S₂, it should be improved the seismic vulnerability to be beyond the S₂. The contribution rate of the initiating events for the core damage frequency is generally inclined to the events induced by the failures of not much important facilities for reactor safety such as the LOSP. This tendency of the risk contribution rate could be improved to be uniformed the distribution by grade up of the seismic integrity of the mitigation systems of safety-related SSCs to mitigate the influences of the LOSP accident that are usually considered unimportant as shown in Figure 7.

(a) Fagility curves of prevention and mitigation systems

(b) Core damage frequency curve

Figure 7 Improvement of seismic vulnerability to uniform risk contribution rate of controlling events.
CONCLUSION

The seismic design of nuclear power plants should evolve by considering quantitatively the risk induced by earthquakes to be more consistent with the nuclear safety philosophy. Concerning the risk information in a seismic PSA, seismic design should be performed including the risk dominant level earthquake. A development of the risk-informed design basis earthquake ground motions methodology was discussed and summarized here.

First of all, the risk-dominant earthquake level should be identified by the preliminary seismic PSA at the proposed site in the site-licensing phase. If the dominant earthquake level is smaller than the extreme design earthquake the seismic vulnerability should be improved to be beyond the S2.

The extreme design earthquake S2 is not enough to explain the safety beyond DBEs. The DBE ground motions by the risk-dominant seismic source should be used to derive the two types of ground motions that are the most likely earthquake ground motion for the extreme design earthquake S2 by the median exceedance probability and the ground motion by the low exceedance probability to be the risk-dominant earthquake in order to assure the safety beyond DBEs.

The risk-dominant earthquake ground motion could be defined newly as the site evaluation earthquake Ss that could be used for the evaluation of the reactor safety by the plant seismic capacity with the criterion of high confidence low probability of failure (HCLPF), and also, for the evaluation of radiation safety to the public based on the radiation release by the failure of safety-related SSCs on the multiple units in a site.

The numerical evaluation methods are useful for determination the time domain ground motions of the site evaluation earthquake Ss consistent with the probability of exceedance occurrence rate of risk-dominant earthquake by the seismic source of most significant contribution. The time domain earthquake ground motions should be employed, with several different time histories needed to represent sufficiently the seismic impact to the safety-related SSCs.

The seismic performance confirmations by the other design basis earthquakes such as Sc, Ss, and S1 defined by the current examination guide are also important for the safety management. The DBEs should be defined explicitly with the relations with the probability of annual exceedance occurrence frequencies so that the event combinations considering random failures and human factors can be rationally employed for the safety managements in reactor operations.

ACKNOWLEDGEMENTS

The on-going discussions for modernization of the current Examination Guide for Seismic Design on NPPs under the Special Committee on Safety Standard in the NSC inspired the author’s view that is greatly appreciated.

DISCLAIMER

The views expressed in this paper are those of author and should not be construed to reflect the official Japanese NSC position.

REFERENCES

220
NUCLEAR POWER PLANTS SEISMIC INSTRUMENTATION:
SPANISH PRACTICE.

Jiménez Juan*, A., and Sánchez-Caballero*, J.G.

Abstract

Seismic instrumentation system of Spanish plants are required to reach the following main goals: first at all to determine the OBE exceedance, and second to obtain site specific data in order to capture or reduce both uncertainties from the site and the structural design (e.g. near field attenuation and site effects models, or structural ageing effects and design models), and to improve the safety re-evaluation analysis. From licensing, the main Spanish NPP’s (5 sites) were equipped with the best analogical instrumentation at that time, adequate to record strong earthquakes, but with limited resolution to register on free field low accelerations with reasonably confidence.

In a general way, seismic PRA results addressed new and higher perception on the earthquake occurrence probability in Spain, and a cost/benefit program to improve seismic instrumentation of all plants was planned. Implementing this action requires to get new digital free field instrumentation, and to develop procedures to quickly decide an OBE exceedance, like it is recommended in USNRC regulatory guides 1.12, rev. 2, and 1.166. Plant owners endorsed these guides and proposed a full change of their seismic monitoring system instrumentation, what includes a review of the plant Technical Specifications. Some instrumental improvements like universal time reference or higher resolution than 12 bits are recommended.

Introduction

New earthquake occurrence and developed knowledge on seismic sources, transmission path, and site effects, show a necessity of capture the current uncertainties in order to perform in a more consistent way new seismic designs, or to know plants seismic margin and vulnerabilities through safety re-evaluations analysis.

Far from the seismic margin concept (Ref. 2), Spanish NPP’s seismic design is enveloped by two levels: the SSE (Safe Shutdown Earthquake) and the OBE (Operating Basis Earthquake). Both quakes are characterized to design on free field, and OBE input was selected as SSE/2. OBE is assumed that can occur at least one time in the plant life.

If OBE is exceeding, the affected plant is beyond of the established design basis to have a safety operation and does not fulfill the limits and conditions of its Operation Permit. If an OBE or minor earthquake occurs, plant seismic design guarantee an elastic behavior of its structures, systems and components (SSC’s); but if the earthquake is larger it’s not possible to reject plastic behavior with permanent

* Consejo de Seguridad Nuclear, Spain. C/ Justo Dorado, 11, Madrid, 28040, aji@csn.es, jsg@csn.es. The opinions expressed in this paper are those of the authors and do not necessarily represent CSN position.

Nuclear power plants seismic instrumentation: Spanish practice.
displacements for seismic class SSC’s and, relate to plant safety operation, it will not be consistent to assure SSC’s availability.

To detect an OBE instrumental exceedance on free field and to reach aims like reducing uncertainties, it’s necessary to compare plant OBE master values in front off in situ measured values, through a plant seismic monitoring system capable to record different earthquakes sizes with good quality.

Original status

According with the following licensing process, the Spanish NPP’s were obtained an new Operation Permit for ten years (the process is not yet finished for Trillo, and José Cabrera -the oldest one- will must be shutdown on April 2006 before beginning its decommission). Those permits was awarded as result of a Safety Periodic Review process started five years ago, in which some detected items were capable to be improved under low cost and Nuclear Safety benefits criteria. These ones are the following:

- The oldest Spanish plants (José Cabrera, St Mª de Garoña) have been from the beginning non seismic instrumented plants.
- The rest of Spanish plants (Almaraz I-II, Ascó I-II, Cofrentes, Vandellós II, and Trillo) were full equipped according the USNRC R.G. 1.12, Revs. 0 and 1, and had associated procedures to use if an earthquake occurs.
- The original seismic monitoring system instrumentation of these plants was, in general, anallogical and did not let to quickly analyze seismic records in an automatically way (by the moment any earthquake has been recorded on a nuclear site in Spain). However, one plant (Vandellós II) had tape register adapted to analyze automatically possible records.
- Global resolution of the systems measures was limited (it could reach till 0,05g in some plants) if comparing to PGA of Spanish plants OBE (from 0,033g to 0,1g). Also the systems had not adequate resolution to compare in situ measured values in front of design response spectra values with two decimals.
- Free field sensors were sitting outside plant buildings but, in general, were not free of structures influence, because sensors were anchored to metallic tanks or into 400kV electric park (relay huts non seismic qualified).
- Plants did not have technical procedures about OBE exceedance, and seismic monitoring systems only applied criteria to determine spectral exceedance. And these criteria may be too conservative for near field earthquakes with high PGA, but low energy to transfer significant damage.
- Available anallogical instrumentation of plants was varied and heterogeneous in record performance. And maintenance, verification and calibration tests of seismic monitoring systems required by Technical Specifications (TS), did not have well comparing with new digital instruments, including type and number of instruments needed to be tested. After twenty years of operation, availability of elements and components was limited.
Table 1 collects the name of the seven Spanish sites and operating units, beside to reactor type, electric power installed, year of operation starting, and SSE and OBE inputs to each one. Table 1 also includes the Spanish low/medium level radioactive waste repository named El Cabril. Figure 1 shows those eight Spanish nuclear sites overlapped on known seismicity of the Iberian Peninsula till 1999 year.

<table>
<thead>
<tr>
<th>Site</th>
<th>Reactor type</th>
<th>Power (MWe)</th>
<th>Operation since</th>
<th>SSE (PGA)</th>
<th>OBE Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jose Cabrera</td>
<td>Westinghouse-PWR</td>
<td>160</td>
<td>1968</td>
<td>0.07g</td>
<td>0.035g - 0.022g, Nureg/Cr-0096</td>
</tr>
<tr>
<td>S.M. Garoña</td>
<td>Gen. Electric-BWR</td>
<td>466</td>
<td>1971</td>
<td>0.10g</td>
<td>0.05g, RG-1.60</td>
</tr>
<tr>
<td>Almaraz I- II</td>
<td>Westinghouse-PWR</td>
<td>974 - 983</td>
<td>1981 - 1983</td>
<td>0.10g</td>
<td>0.05g - 0.033g, Newmark</td>
</tr>
<tr>
<td>Asco I- II</td>
<td>Westinghouse-PWR</td>
<td>1026 - 1027</td>
<td>1983 - 1985</td>
<td>0.13g</td>
<td>0.07g - 0.0467g, Newmark</td>
</tr>
<tr>
<td>Cofrentes</td>
<td>Gen. Electric-BWR</td>
<td>1025</td>
<td>1984</td>
<td>0.17g</td>
<td>0.065g, RG-1.60</td>
</tr>
<tr>
<td>Vandellós II</td>
<td>Westinghouse-PWR</td>
<td>1087</td>
<td>1988</td>
<td>0.20g</td>
<td>0.10g, RG-1.60</td>
</tr>
<tr>
<td>Trillo</td>
<td>Siemens/KWU-PWR</td>
<td>1066</td>
<td>1988</td>
<td>0.12g</td>
<td>0.06g**, RG-1.60</td>
</tr>
<tr>
<td>El Cabril</td>
<td>L.R. Waste Disposal</td>
<td>1992</td>
<td></td>
<td>0.24g</td>
<td>0.12g, RG-1.60</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of the Spanish nuclear power plants.

**Formally it’s a level of inspection. Trillo plant must apply a technical procedure addressed to find plant damages if a 0.04g PGA (Peak Ground Acceleration) value is reached in free field conditions.

Current status

Highlighting from above mentioned RPS results and seismic IPEEE analysis performed in ninety years (Refs 1 and 2), seismic monitoring systems have been full renewed in all Spanish NPP’s, and OBE border conditions have been formally established in a clear way in the licensing documents and technical procedures. This updating process has tried to know potential plant vulnerabilities if an earthquake higher than OBE occurs, and also try to implement some improvements as is written in this paper with reasonable cost (economical and radiological) and Nuclear Safety benefits to Spanish NPP’s. These improvements are the following:

- Original seismic monitoring system has been full replaced by accelerometers according with USNRC R.G.-1.12, rev. 2.
- OBE exceedance criteria as USNRC R.G.-1.166 have been adopted.
- Seismic monitoring of structures was adapted to sensors number and locations recommended by R.G.-1.12, Rev. 2. Plants with two units -Almaraz, Asco- only monitor one unit.
- As possible, changing process identified new sites closer to free field conditions in order to observe the importance assigned to this sensors by R.G.-1.166.
- All seismic monitoring systems have been synchronized by the universal time.
- In general, seismic monitoring systems with higher resolution than 12 bits were considered.

Nuclear power plants seismic instrumentation: Spanish practice.
Seismic monitoring synchronization by universal time makes possible to use free field records in a larger way through future seismic re-evaluations, or future new designs in the same site. That improvement can reduce uncertainties on source location and distance of the recorded earthquake. Constraint these uncertainties is important if near field earthquake occur (in areas with low seismicity like most part of Spain it's usual to have low seismic monitoring coverage by national network agencies, and the resulting resolution in location can be an order of some tens of kilometers.

An improvement in the same way consists of placing seismic monitoring with a global resolution larger than 12 bits. This resolution is good enough to analyze strong earthquakes records, but it's limited if small quakes occur, just those of in the same level than OBE in areas with low/moderate seismicity like Spain. Resolution of 12 bits can be also limited to analyze low fore and aftershocks of the main shock. Some plants in Spain (Ascó I-II, Cofrentes, and Vandellós II) have systems with 12 bits, and they are complemented by a seismograph (in the same way El Cabril will install an broad band seismograph). Table 2 inserts decommissioned instrumentation and current seismic systems status in Spain.

<table>
<thead>
<tr>
<th>Site</th>
<th>Original System</th>
<th>Current System - updated to RG-1.12, rev. 2</th>
<th>Supplier</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jose Cabrera</td>
<td>None</td>
<td>Geosis</td>
<td>19 bits</td>
<td>4 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>Sta. Mª de Garoña</td>
<td>None</td>
<td>Kinematics</td>
<td>18 bits</td>
<td>8 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>Almargen I – II</td>
<td>Full RG-1.12, rev.0</td>
<td>Kinematics</td>
<td>18 bits</td>
<td>8 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>Ascó I – II</td>
<td>Full RG-1.12, rev.1</td>
<td>Syscom</td>
<td>12 bits</td>
<td>5 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>Cofrentes</td>
<td>Full RG-1.12, rev.1</td>
<td>Syscom</td>
<td>12 bits</td>
<td>5 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>Vandellós II</td>
<td>Full RG-1.12, rev.1</td>
<td>Syscom</td>
<td>12 bits</td>
<td>5 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>Trillo</td>
<td>Full RG-1.12, rev.1</td>
<td>Kinematics</td>
<td>18 bits</td>
<td>8 x 10^5 g</td>
<td></td>
</tr>
<tr>
<td>El Cabril (URWD)</td>
<td>Free field</td>
<td>Geosis</td>
<td>24 bits</td>
<td>1 x 10^7 g</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Spanish nuclear power plants seismic instrumentation systems.

Like in the origin, current monitoring systems have seismic qualification adequate to register seismic input of design basis, but in some plants it was not possible to have qualification of routing between new free field sensors and register center. To prevent appropriate actions if an earthquake cut that communication router, it has been developed a procedure to handling extract and analyzes free field records.

Technical Specifications of Spanish NPP’s collect a specific Operating Limit Condition if OBE is exceeding, requiring plant shutdown in a safe manner, with the purpose of including accomplish of limits and conditions in a licensing document. Also has been developed technical procedures linked to Emergency Plan of the plants, to enclose OBE exceedance criteria and actions to adopt if an earthquake occurs.

On the other hand, some applicants showed that periodical test of old analogical systems (system and sensors calibrations, and function verification) are obsolete, and
they are too hard if comparing with supplier user's guide of new digital instrumentation. The applicants propose to review those periodical test after analyzing during several refuel cycles system behavior.

References

Figure 1: Ibero-Maghrébian seismicity from 1220 to 1999. The green dots are earthquakes happened before XIX Century, the red ones are shocks instrumentally well located, and the brown ones only are roughly located. The biggest size represents earthquakes with MSK Intensity ≥ VIII.
DISCUSSIONS ON IMPROVING JAPANESE “EXAMINATION GUIDE FOR ASEISMIC DESIGN OF NUCLEAR POWER REACTOR FACILITIES”

Kenji Takashima and Shuji Kawahara
Nuclear and Industrial Safety Agency,
Ministry of Economy, Trade and Industry (METI), Japan

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

Various technologies related to seismic design have been advanced, since “Examination Guide for Seismic Design of Nuclear Power Reactor Facilities” was established 20 years ago. Through the experiences of big earthquakes including the Hyogo-ken Nanbu Earthquake (Kobe Earthquake), the latest knowledge related to earthquakes and earthquake ground motions has been accumulated. By taking into account these circumstances, it is commonly recognized by Japanese experts on seismology and seismic engineering that some improvement in the Examination Guide for Nuclear Power Plants is necessary to enhance the reliability of seismic safety of nuclear facilities based on the latest knowledge. In this paper we introduce the state-of-the-arts of the study on improving Japanese “Examination Guide” and some key points of the discussions on the improvement.

Introduction

The current Japanese “Examination Guide for Seismic Design of Nuclear Power Reactor Facilities” (Examination Guide) was established 20 years ago [1]. Since then various knowledge and technologies related to seismic engineering have been advanced through the experiences of big earthquakes including the Hyogo-ken Nanbu Earthquake (Kobe Earthquake) [2]. During this period, METI has also contributed the advancement of the knowledge and technologies as a regulating agency by undertaking numerous projects to enhance seismic reliability and to improve seismic design methodology of Nuclear Power Plants (NPPs). These projects have also contributed to upgrading the rationalization of seismic design of NPPs. In addition, knowledge concerning earthquakes has progressed greatly and a large number of earthquake ground motion records have been accumulated. By taking these facts into account, it is commonly recognized by Japanese experts on seismology and seismic engineering that some improvement in the Examination Guide for Nuclear Power Plants is necessary to enhance the reliability of seismic safety of nuclear facilities based on the latest knowledge.

The basic items to be discussed among the experts in regards to improving the Examination guide are roughly grouped into the following three categories:

Items related to the logical structure of seismic design evaluation criteria:
- Definition and framework of seismic safety,
- Relationship between deterministic and probabilistic approaches,
- Review of SSC (System, Structures, and Components) classification on the basis of their seismic safety importance,
- Performance regulation for advanced technologies including new siting methodologies.
Items related to the criteria for determining the design basis ground motion:
- Identification and characterization of seismic sources to be considered,
- Methodology to estimate design basis earthquake including fault model,
- Introduction of probabilistic approach,
- Requirements for geological, seismological, and geophysical investigation of plant region,
- Evaluation of seismically induced hazard sources including tsunami and eruption.

Items related to the criteria for assuring integrity of systems, structure, and components:
- Determination of design basis earthquake motion (method, single or multiple, horizontal and vertical components),
- Methodologies for earthquake response analysis of SSC,
- Method for stress analysis of SSC,
- Load combination,
- Allowable limit for assurance of functionality of SSC,
- Allocation of safety margin, consideration of reliability based structural design approach.

To date, the discussion is being focused on the following items as:
1. Evaluation of near field earthquakes (how to determine design earthquake ground motion),
2. Clarification of the concept for securing seismic safety:
 How to introduce Seismic Safety Goals,
 How to evaluate seismic safety quantitatively (e.g., application of seismic PSA).

In this paper, we firstly introduce the activities of METI as a regulating agency relating to the examination guide mostly aiming at proving and confirming the procedure of the current design practice as well as upgrading the design methodologies.

Then we describe our recent activities to study how to introduce probabilistic approaches to seismic design examination processes.

Activities of METI in The Seismic Engineering Field

METI has been carrying out many projects covering the whole area of seismic engineering to comprehend and resolve the various issues from the viewpoint of a regulation agency as follows;
- earthquake ground motion (near field earthquake and the ground motion propagation)
- earthquake response of structures and equipment (shaking table test and field test)
- upgrading of seismic design engineering (new siting issue and study of vertical motion).

Besides the above, we are studying probabilistic methodologies to handle the uncertainties relating to seismic design of NPPs. However handling of the uncertainty becomes big argument in the discussion of revising the guidelines. Therefore we introduce the studies in the next chapter together with the discussion. And here we introduce the projects described above carried out to briefly elucidate the phenomenon relating to seismic issues [3].

Fig.1 The Earthquake Observation Well at Kobe Site.
Earthquake ground motion

Seismic Wave Propagation in The Vertical Direction (FY1994-2004)

The major objective of the project is to study the characteristics of seismic wave propagation from seismic bedrock to the current seismic design ground motion definition outcrop level. The study is being carried out using earthquake observation data collected by seismometers set at depth of from the surface to seismic bedrock since 1998 and will be terminated by 2002.

Figure 1 shows a cross sectional outline of the earthquake observation well at the Kobe site. The depths of earthquake observation wells are 1,700m at the Kobe site and 1,200m at Kanto Plane site.

Strong Ground Motion Study in the Near Field (FY1998-2002)

The major objectives of the project are to study strong ground motions by near field earthquakes and to advance evaluating methodology of near field earthquake ground motion. Figure 2 shows earthquake ground motion data caused by near field active faults being used in this project. The data are used to study the relationship between fault parameters and strong ground motion characteristics. The study is being carried out using recent fault models. We have performed simulation analyses to check, and modified the fault model. Then the results are reflected to advancing the fault models and evaluation methodologies for the near field strong ground motion.

Earthquake Response of Structures and Equipment

The earthquake response of structures and equipment of NPP has been a big concern of METI. Thus, we have carried out many test projects. In the following section we briefly introduce the outlines of the projects.

Structural Response Study

Our efforts have been mainly toward structures, more specifically, the soil-structure interaction (SSI) and the nonlinear characteristics of reinforced concrete (RC) shear walls. Figure 3 shows a snap-shot of an SSI test project. In the SSI test, we have accumulated a large volume of earthquake observation data. The test data have been used to check the applicability and to confirm the appropriateness of analytical methodologies of SSI.

Fig.2 Near Field Earthquake Ground Motion Data Being used in this project

Fig.3 SSI Field Test Example (Reactor and Turbine Building Modes)
Also in the RC shear wall test, we have accumulated various data to predict dynamic nonlinear behavior of RC buildings during earthquakes up to their failure, including under the multi-axis loading condition. The test data have been used to evaluate seismic design margins of RC building to the design earthquake ground motions.

Equipment Response Study

We have been carrying out equipment response studies as the seismic proving tests of NPP installations for over 20 years. Up to the present, fourteen projects have been completed and three projects are on going. The seismic proving tests have been conducted in the four stages, i.e., (1) demonstration of structural integrity of massive and heavy components, (2) proving of functional integrity of safety systems, (3) demonstration of newly developed equipment, and (4) confirming seismic margins of equipments.

Figure 4 shows an example of item (2), the proving test of the reactor shutdown cooling system.

The mission of the seismic proving test has been changed gradually over these 20 years from item (1), demonstration of seismic integrity of major components, to item (4), check of functional integrity and/or seismic margins of equipment.

Figure 5 shows conceptual drawing of a new test project started this year (2002-2004). The test applying sub shaking table on the Tadotsu Shaking Table that amplifies input motion to the specimen up to 6g of maximum acceleration to confirm functional integrity of electric panels and horizontal pumps.

Upgrading of Seismic Design Engineering

The purpose of the study is to upgrade seismic design engineering from the viewpoint of a regulatory agency. Belonging to these technical issues are new siting technologies and handling of vertical motion in seismic design.

The study of new siting technologies has been carried out with the aim of expanding the possibility of future NPP construction sites because current standards for NPP siting require that NPP should be constructed on bedrock.
The new siting technologies we have investigated are quaternary deposit siting, underground siting and artificial island siting. Figure 6 shows a conceptual drawing of an NPP sited underground. Our major mission in this new siting study is to develop a preliminary version of evaluated guidelines for future NPP site applications.

Beside this, the study of upgrading seismic design engineering has been undertaken to improve the methodologies of handling vertical earthquake ground motion, to create analytical building models and components for evaluating the earthquake response to vertical motion, and to handle nonlinear analysis of piping systems.

Study on Seismic Probabilistic Safety Assessment

METI has carried out a study on Seismic Probabilistic Safety Assessment (SPSA) as a part of the probabilistic safety assessment study to understand its scheme and applicability to Japanese NPPs. Figure 7 shows an outline of the SPSA used in the study. The SPSA methodology used is based on the precedent studies in US [4].

![SPSA Diagram](image)

Fig.7 An Outline of The SPSA Used in The Study

In order to do the SPSA, realistic responses of buildings and components to earthquake ground motion are calculated using the Monte Carlo response analysis method considering modeling uncertainties directly or using the response factor method that deals the uncertainties indirectly. In the latter method, the response factor is defined as the ratio of design response to realistic response excluding all conservatism introduced in the seismic design.

The response factors obtained for each component group in advance are applied to obtain the realistic responses. Then probabilistic distribution of capacity of components, which is the intensity of earthquake motion leading to its malfunction or failure, is evaluated realistically based on design information, literature surveys for an existing evaluation or test data. The probability distributions of the capacity and realistic response are used to calculate the component failure probability for each level of earthquake motion.

System vulnerability is evaluated by applying the component failure probability to a fault tree model to obtain the conditional core damage probability as a function of, for example, the maximum acceleration at the bedrock. The core damage frequency due to earthquakes is calculated by integrating the conditional core damage probability over the whole range of the ground motion with the seismic hazard curve.
Discussion on Improving Examination Guide

As described in the previous section, current deliberation to revise the Examination Guide in the Nuclear Safety Commission (NSC) of Japan is focused on the issues of clarification of the concept for securing seismic safety and of the evaluation methodologies of design earthquake ground motions.

Concerning the clarification of the concept for securing NPP seismic safety, there are some expectations for introducing probabilistic approaches to the Examination Guide to resolve seismic issues relating to uncertainties in determining design earthquake ground motion and in evaluating earthquake response of structures and components. However at the same time, there are also experts of the opinion that the committee should not have too many expectations for the probabilistic approaches for seismic design evaluation.

For the other issue, the discussion is being carried out as to how to consider the design earthquakes. Current design earthquake ground motions for an NPP in Japan are typically defined by the so-called Ohsaki Spectra. An earthquake ground motion defined at an NPP site based on the Ohsaki Spectra by taking into account the earthquake magnitude and focal distance of probable big earthquakes, that would affect the NPP site, has been considered as the biggest ground motion on the bedrock in that condition.

In this chapter, we firstly describe the issues related to the discussions on design earthquake ground motion then we describe the probabilistic approaches that are expected to be introduced in the framework of the revised examination guide.

Definition of Design Earthquake Ground Motion

In the preliminary discussion we are talking on both deterministic and probabilistic methodologies as to how to apply them to the revised design guide.

Deterministic Approach

In these past 20 years we have accumulated many records of earthquakes that have occurred in Japan and surveys of active faults in land and submarine areas have been unveiled. In accordance with the development of such research, studies on the relationship between active faults and the maximum magnitude of an earthquake that is supposed to occur in the future at the site in concern have been conducted.

![Diagram](https://example.com/diagram.png)

Fig. 8 The Outline of The Proposed Empirical Method for Evaluating Design Response Spectra for an NPP Site [5]
Based on the results of these studies, an empirical method for evaluating response spectra for an NPP design earthquake ground motion has been proposed. Figure 8 shows the outline of the proposed method. In this method, averaged response spectra of horizontal and vertical ground motions between the periods of 0.02 and 5 seconds at a site on rock surfaces are evaluated by the product of those earthquake ground motion spectra on seismic bedrock and the correction terms which take in the amplifications effect of horizontal and vertical motion due to surface layers.

The introduction of the vertical motion can makes the vertical seismic load rationalize, because the vertical load is taken as a static load (based on the half the level of the horizontal peak acceleration) in the current seismic design practice. The features of the proposed design earthquake ground motions point out that it takes diverse tectonics into account and is defined based on averaged levels of observed earthquake ground motions. Therefore in applying the ground motion to an NPP design, we have to consider the effect of the variations from the average levels [5].

In order to cope with this issue, we can propose a measure that introduces a seismic margin earthquake, having a maximum acceleration level exceeding that of the design earthquake, e.g., by one standard deviation on the averaged level. However, this methodology might lead to an overly pessimistic result for existing NPPs and result in excessively conservative designs for new NPPs. Therefore cautious consideration based on statistics of earthquake records is required in introducing the seismic margin earthquake.

Other concerns of the NPP design earthquake ground motions are the issues on near-field earthquake ground motions. Damaging ground motions due to earthquakes in far and intermediate fields were caused by strong magnitude earthquakes (typically larger than Mw6.5). These earthquakes had generated some traces (faults) on the ground surface, thus we can evaluate the potential earthquake occurrence in the near future with considerable high reliability by taking into account the results of detailed field surveys of faults around an NPP site. On the other hand, a near field earthquake has a severely damaging potential even for weak magnitude earthquakes. This kind of earthquake in the past might have left no traces on the ground surface. In such a case, we cannot identify any evidence of the earthquakes having happened whereas there might be a possibility that some weak magnitude potentially destructive earthquakes had occurred near the site in concern. Therefore, the seismic design system should be formulated to take into account the risk, e.g., introduction of seismic margins in the design ground motion, structures and equipment.

Probabilistic Approach

In order to take into consideration the possibility of unidentified near field earthquake ground motion in the seismic design of NPPs, we are facing the needs to introduce some probabilistic approach for determining the design earthquakes.

For this purposes, the seismic hazard evaluation methodology is promising. There are several precedents that propose the application of the seismic hazard evaluation in the

Fig. 9 Outline of Seismic Hazard Evaluation

233
establishment of seismic the design review guide, including that of USNRC [6] and [7].

The seismic hazard curve defined as a relation between intensity of ground motion at a specific site expressed in terms of the maximum or spectral acceleration of the bedrock of the site, a, versus annual frequency that the intensity of ground motion exceeds a is estimated based on the data of seismic activity around the site and attenuation model for seismic ground motion as shown in Fig.9.

In the seismic hazard analysis we propose to use both historical records of earthquakes and active fault data for the evaluation of the seismic hazard at the site as follows:

1) Grids having historical records of sources of earthquakes in Fig.9 are set as earthquake regions around a site. The occurrence frequency of a ground motions at each ground motion level at the site is calculated for each grid, considering the statistical distributions of the magnitude and frequency of earthquakes expected to occur at the grid and the attenuation of the ground motion propagating to the site. The relationship between the frequency and the magnitude of earthquakes in a grid is expressed as a simple correlation between the magnitude and the number of occurrences obtained from the historical earthquake records.

2) The occurrence frequency of ground motions at each ground motion level at the site is calculated for each active fault around the site. The earthquake magnitude is determined with an empirical equation, which relates it with the length of the active fault and the occurrence frequency estimated from the observation of fault dislocation and the displacement velocity at the active fault.

3) The seismic hazard for the site is obtained by summing up the above two occurrence frequencies.

One of the issues in this process of seismic hazard evaluation is the existence of a large uncertainty in the attenuation models, resulting in a large uncertain range of seismic hazard level at a given frequency of exceedance. To reduce this uncertainty, JAERI developed a procedure for mechanistic prediction of seismic ground motion under the guidance [8] based on the "fault model". The model is defined by parameters that describe the characteristics of hypocenter, propagation pass and site, as illustrated in Fig.10. We (NUPEC/METI) have developed a methodology to evaluate ground motion due to diffusive earthquakes from unidentified faults near and/or around the site more precisely than ever, by treating the timing, location and magnitude of earthquakes statistically, together with the revised b-value model [9].

We also propose to utilize the solicitation of expert judgments in the processes to characterize both seismic sources and ground motion propagation and quantify the uncertainty in the hazard curve at the site. The task is to determine a design basis ground motion based on the analysis of seismic hazard at the site in concern. An issue of the deliberation was how to deal with uncertainties in the identification of seismic sources around an NPP site and in the prediction of the frequency of earthquakes expected to occur at the sources [10].
Application of SPSA

It is widely recognized in Japan that a lot of proof tests and tests-to-failure have been conducted to ensure that there is substantial margin in the capacity of the SSC in the framework of the current seismic design evaluation criteria. Nevertheless, many opinions have arisen that require quantitative seismic margins of the SSC.

Furthermore, a quick review of the basic items being deliberated among the experts for improving the Examination Guide described in the introduction of this paper suggested to us that important common issues of the deliberation are closely related to the uncertainty in the identification of seismic sources, earthquake response of the SSC of NPPs and seismic margins of the SSC. These uncertainties are already taken into consideration in the current seismic design evaluation criteria independently in the determination of both design base seismic loads and the acceptance criteria for responses of the SSC. However, some experts insist that it is important to evaluate the seismic safety of a plant under the existence of these uncertainties as transparently as possible. From this viewpoint, the experts require the evaluation of the seismic risk of NPPs by taking those uncertainties into account as rationally as possible [10].

For that reason, application of the SPSA methodology is now under discussion as a tool for evaluating the seismic safety of the NPPs that have been designed. Some experts propose introducing SPSA more positively together with a probabilistic safety goal such as defined in the IAEA Safety Guide to the seismic safety evaluation of NPPs at the occasion of the revision of the seismic design evaluation criteria of the Nuclear Safety Commission of Japan.

The schematic diagram of the proposed framework for seismic safety evaluation is shown in Fig.11, which is composed of design basis earthquake (DBE) determination based on the seismic hazard evaluation, acceptance criteria for the responses of safety-related SSC to the DBE at the basic design review, and acceptance criteria of seismic risk of the NPP obtained by SPSA at the detailed design review.

Discussion on Application of the Probabilistic Approach to The Examination Guide

As described in the previous sections, the trend of the discussions on the revision of the examination guide is toward the introduction and/or application of a probabilistic approach. Therefore discussions among the experts are naturally focused on the application of probabilistic
approaches. In this section, we will introduce some of the discussion points.

Application of the probabilistic method on the determination of DBE

One point for discussion on determining the DBE is whether the DBE based on seismic hazard analysis is sufficiently reliable as compared with the conventional determining of the DBE. Some experts in seismology point out that even though the phenomena related to the occurrence of earthquakes are gradually being unveiled, understanding is still very limited. Therefore the evaluation of parameters related to the probability of the failure of the future occurrence is still difficult.

Acceptance criteria for the responses of buildings and components

Many experts support the opinion that the SPSA will play an important role in evaluating existing plants under the revised examination criteria. Furthermore the SPSA should have a proper position in the revised criteria, as for the measurement of an integral check of the validity of seismic design.

Issues Related to Uncertainties in SPSA

It is recognized that there are uncertainties in the risk estimation by SPSAs not only that due to the uncertainty of input data such as common cause failure rates but also due to variations in the success criteria of safety systems functions. However, as PSAs include efforts to quantify these uncertainties as transparently as possible, even by explicitly and systematically requiring expert judgments, the results can be used to rank safety systems and to make decisions that have an impact on plant safety that take risk and uncertainty into account.

Issues in Application of Safety Goals

The opinion, of introducing SPSA into the examination guide, simultaneously aims at introducing seismic safety goals, such as that the core damage frequency for any given year should be below the value of, for example, 10^{-5}. In this framework of the seismic design, the result of the SPSA can be used in the detailed examination of the seismic safety evaluation, including a check as to whether the plant design is consistent with the safety goals. If the safety goals were not being met, modifications in plant design would be required. However, as for the discussion on the safety goals, some experts are worrying about the evaluation results. This is because as it has been described in relation to uncertainty issues, the results of SPSA contain a large degree of uncertainty, thus the determination of the safety goals without deep consideration might be a cause of confusion in the design and/or operation of NPPs.

CONCLUDING REMARKS

Modification of the Japanese NPP design evaluation criteria has been under investigation since 2001 by the Nuclear Safety Commission (NSC) of Japan. As for the background of this revision, there is a common recognition that the knowledge and technology related to seismic design for NPPs has advanced significantly in the past 20 years. In this paper, at first we introduced the activities the Ministry of Economy, Trade and Industry of Japan (METI) toward improving NPP seismic design technology, and then we introduced the major discussion issues in the deliberations by the committee organized by NSC, i.e., the definition of design basis earthquake ground motion and the application of probabilistic approaches to the examination guide. Although the discussions are now underway and no concrete conclusion has yet been reached, there are apparent trends toward introducing some probabilistic approaches into the framework of the revised examination guide. However, at the same time, there are wide discrepancies among the opinions of experts regarding their expectations from these probabilistic approaches. From now on, from our perspective as a regulatory agency, we will watch and listen to the opinions cautiously, and these opinions will play an important role in developing the new examination Guide.
REFERENCES

Session 4 – Dr. A. Gürpınar
(International Atomic Energy Agency, Austria)

Topic 2 Seismic input motion for design purpose
SEISMIC GROUND MOTION MODELLING AND DAMAGE EARTHQUAKE SCENARIOS
A BRIDGE BETWEEN SEISMOLOGISTS AND SEISMIC ENGINEERS

G.F. Panza1,2, F. Romanelli3
1Dipartimento di Scienze della Terra - Universita' di Trieste
2The Abdus Salam International Center for Theoretical Physics - Miramar, Trieste
panza@dsi.unitn.it, romanelli@dsi.unitn.it

F. Vaccari
INGV - Oss. Vesuviano, c/o Dipartimento di Scienze della Terra - Universita' di Trieste
vaccari@dsi.unitn.it

L. Decanini, F. Mollaioli
Dipartimento di Ingegneria Strutturale e Geotecnica - Universita' di Roma "La Sapienza"
Luis.Decanini@uniroma1.it, Fabrizio.Mollaioli@uniroma1.it

Abstract

The input for the seismic risk analysis can be expressed with a description of “groundshaking scenarios”, or with probabilistic maps of perhaps relevant parameters.

The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods.

We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm.

Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzonation, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes.

The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthenig of structures, also when innovative techniques, like seismic isolation, are employed.

For these reasons the skill of seismology to estimate realistic ground motions at a particular site should be fully exploited by seismic engineers. In fact, even if recently strong motion records in near-fault, soft soil, or basin conditions have been obtained, their number is still very limited to be statistically significant for seismic engineering applications.
1. Introduction

Earthquakes, as many other natural disasters, have both immediate and long-term economic effects. Within a fraction of a minute, single earthquakes can inflict damage to houses, business, government buildings, and infrastructures. A single earthquake may trigger a global ecological catastrophe, cause up to thousands of casualties and global economic depression: the disruption of commerce will affect the rate of economic growth, inflation, productivity and trade balance.

Case studies of seismic hazard assessment techniques indicate the limits of the currently used methodologies, deeply rooted in engineering practice, based on a probabilistic approach. The probabilistic analysis supplies indications that can be useful but not sufficiently reliable to characterize the seismic hazard.

The mathematical modelling, with different degrees of complexity, based on probabilistic concepts cannot fill in the gap due to the lack of knowledge about the physical process behind an earthquake, at the most it can supply some guidelines. Moreover, it may loose validity in dealing with uncertainties that are so large that may not be quantifiable in a meaningful sense (Chandlier et al., 2001) as it happens in low to moderate seismicity regions, or regions lacking historical and instrumental earthquake data.

For a given zone, the mathematical modelling of the occurrence of seismic events and of the related values of probability are derived from empirical data that may fail to describe adequately the reality.

When constructing appropriate earthquake-resistant structures, design and construction should not be such that an extreme event no damage occurs but rather that an acceptable level of damage takes place as a function of the corresponding performance expectations (operational, safe-life, etc.).

Therefore the realistic definition of hazard in scenario-like format should be accompanied by the determination of advanced hazard indicators as, for instance, damaging potential. Such a determination, due to the limitation of the available strong ground motion records, requires resorting to broad band synthetic seismograms that allow us to perform realistic wavefield modelling for different seismotectonic environments. The modelling takes into account source properties, like dimensions, directivity, duration, lateral heterogeneity’s along the path and local site features. Such a procedure is a must since it has been proven both experimentally (e.g. Wang and Nishida, 1999) and theoretically (Romano and Vaccari 1999; Field et al., 2000; Panza et al. 2001) that the so-called local site effects can be strongly dependent upon the characteristics of the seismic source generating the seismic input. At present, only from a careful performance of modelling experiments it is possible to realistically account for effects such as long duration pulses, shaking duration, temporal distribution of pulses, amplitude and, connected to them, the linear and nonlinear structural response in terms of strength, energy and displacement.

2. General problems in seismic hazard assessment

The typical seismic hazard problem lies in the determination of the ground motion characteristics associated to future earthquakes, both on regional and on local scale. The input for the subsequent seismic risk analysis can be expressed in various ways, e.g. with a description of the ground shaking severity due to an earthquake of a given distance and magnitude ("groundshaking scenario"), or with probabilistic maps of relevant parameters describing the ground motion. For example, the historically
most used parameter in the engineering analysis for the characterization of the seismic hazard is the PGA (Peak Ground Acceleration), which is a single-value indicator commonly used in seismic hazard assessment. Actually, it is recognized that the PGA alone cannot describe adequately all the effects associated to the ground shaking, since the frequency content and the duration of a seismic wavetrain can play a decisive role. Although it has been understood that the characteristics of the ground motion such as its amplitude, frequency content and duration are relevant to estimate its damaging potential, some of these characteristics have been often ignored.

A more adequate definition of the seismic ground motion due to an earthquake with a given magnitude and source-to-site distance, can be done following two main approaches. The first one (denoted as engineering approach) is based on the analysis of the available strong motion databases, collected by existing seismic networks, and on the grouping of those accelerograms that contain similar source, path, and site effects (e.g. Decanini and Moltinoli, 1998). A fundamental step in this approach involves the estimation of realistic source-to-site transfer functions.

The second approach (seismological approach) is based on modeling techniques, developed from the knowledge of the seismic source process and of the propagation of seismic waves, that can realistically simulate the ground motion associated with the given earthquake scenario (Panza et al., 1996; Field et al., 2000). The ideal procedure is to follow the two complementary ways, in order to validate, for the different areas to be investigated, the numerical modeling with the available recordings (e.g. Decanini et al., 1999; Panza et al., 2000a,b). In the last decades the number of the recorded strong motions has considerably increased, especially for North America, Japan and Taiwan, but the installation and maintenance costs make the deployment of a dense seismic network in each earthquake prone area a too expensive operation. For most of the European seismic zones strong motion data are very scarce and most of the available data for destructive events are only the macroseismic intensities. In these cases synthetic signals, to be used as seismic input in a subsequent engineering analysis, must be produced (immediately and at a very low cost/benefit ratio) taking into account the source characteristics, the path and the local geological and geotechnical conditions and must be validated against observed intensities.

As a result, we suggest a scenario-based, deterministic approach in view of the limited seismological data and of the multiscale seismicity model formulated by Molchan et al. (1997). According to this model only the ensemble of events that are geometrically small, compared with the elements of the seismotectonic regionalization, can be described by a log-linear FM relation. This condition, largely fulfilled by the early global investigation by Gutenberg and Richter (e.g. see Fig. 49 of Bath, 1973), has been subsequently violated in many investigations. This violation has given rise to the Characteristic Earthquake (CE) concept (Schwartz and Coppersmith, 1984) in opposition to the Self-Organized Criticality (SOC) paradigm (Bak and Tang, 1989). The multiscale model implies that, in order to apply the probabilistic approach the seismic zonation must be made at several scales, depending upon the self-similarity conditions of the seismic events and the linearity of the log FM relation, in the magnitude range of interest.

Moreover, the macroseismic observations made in correspondence of the destructive events of the last century have clearly evidenced the influence of other two fundamental aspects in the characterization of the damage distribution: the near-surface geological and topographical conditions. This observation highlights the large spatial variability of the destructive potential of earthquake ground motion. Since most of the anthropised areas are settled in correspondence of sedimentary basins (e.g. river valleys), a realistic definition of the seismic input that takes into account the site response has become one of the most relevant tasks in the seismic engineering analysis. The soft surface layering often controls local amplification of the ground motion. The impedance contrast between the soft surface soils and the underlying bedrock leads to the trapping of the seismic energy,
and the relatively simple onset of vertical resonance can be transformed into a complex resonance's pattern, strongly dependent on the characteristics of the sub-surface layers and the bedrock configuration.

The most traditional empirical techniques for the estimation of site effects are based on the computation of the spectral ratio between the signal (or a portion of it, e.g. a single phase) recorded at the sedimentary site and a reference one, preferably recorded at a nearby bedrock site (Borchardt, 1970). Quite often a signal recorded on bedrock is not available close to the investigated sites, so that directional effects due to the source could become relevant. Even in the favorable condition that such a reference site exists, unless well isolated single phases are used, the spectral ratios are not completely free from source influences (e.g. Romanelli and Vaccari, 1999). Some techniques have been proposed that are non-reference-site dependent (e.g. Boatwright et al., 1991).

An alternative approach, originally applied by Langston (1979) for crustal and upper mantle studies, is based on the measurement of the spectral ratio between the horizontal and vertical components of motion. The method is based on the assumption, not always fulfilled, that the propagation of the vertical component of motion (in general only S-waves are considered) is not perturbed by the uppermost surface layers, and can therefore be used to remove source and path effects from the horizontal components. Anyway, this method produced unsatisfactory results, as verified in recent severe earthquakes.

As a matter of fact, local site effects can be strongly dependent upon the characteristics of the seismic source (e.g. Romanelli and Vaccari, 1999). Therefore, the use of synthetic seismograms is fundamental even when relevant observational data are available, in order to explore the local responses that may correspond to sources that are different from the known ones.

The wide use of synthetic signals allows us to easily construct scenarios based on ground motion descriptors, strictly linked with energy and displacement demands (Decanini and Moltaroli, 2001).

3. Shortcomings of the probabilistic approach

The probabilistic analysis of the seismic hazard determines the probability rate of exceeding, over a specified period of time, various levels of ground motion. It is basically conditioned by the definition of the seismogenic zones, which is affected by serious uncertainties. Within each of them, the seismogenic process is frequently assumed to be rather uniform, however the uncritical assumption of homogeneity can introduce significant errors in the estimate of the seismic hazard in a given site. For a recent extreme example concerning the Italian territory reference can be made to the 17 July 2001 (Mw=4.9, Me=4.0, NEIC) event occurred in NorthEast Italy outside the defined seismogenic zones (Meletti et al., 2000), thus in a region not considered for hazard analysis.

The multiscale seismicity model supplies a formal framework that describes the intrinsic difficulty of the probabilistic evaluation of the occurrence of earthquakes (Molchan et al., 1997). The problem is chiefly due to the difficulty to properly choose the size of the region to analyze, so that it is large enough to guarantee the applicability of the Gutenberg-Richter law and related concepts. In order to apply the probabilistic approach, the seismogenic zonation must be made at several scales, depending upon the self-similarity conditions of the seismic events and the linearity of the log frequency-magnitude (FM) relation, in the magnitude range of interest.

The difficulty to evaluate the occurrence of the earthquakes (log FM relations) and the propagation of their effects (attenuation laws), as well as the parameters characterizing the destructive

244
potential of the ground motion leads to a probabilistic estimate of the seismic hazard that could represent a gross approximation of the reality. When the multiscale seismicity model is applied to analyze the seismicity, the time dependence of seismicity becomes unimportant. In fact, the classical Poisson hypothesis (seismic events are time independent) can hardly be accepted if the considered seismic events are those associated to a specific source (where there are processes of storage and release of energy). The Poisson hypothesis can be physically acceptable when the considered area is large enough to contain a great number of sources.

To deal with the time dependence of seismicity, that is relevant only if we consider a very small number of seismic sources, the concept of renewal process has been introduced (Esteva, 1970; Araya and Der Kiureghian, 1988; Hagivara, 1974; Savva et al., 1980). Accordingly with the renewal process model, a memory is introduced so that each event, with some probability, depends from the previous one. In these models the recurrence time between two events does not follow an exponential distribution, thus the probability of occurrence of an earthquake is not constant with time. Assuming that the seismic crisis is over or during a seismic sequence, the occurrence of the events is interpreted using mixed functions of the density of probability, obtained with the combination of two different functions. These functions depend upon the seismogenic properties of the sources and upon the time evolution of the sequences; therefore they differ from place to place. Such models rely upon several assumptions that to be verified require the availability of observations that often are not available or insufficient, and this makes it difficult, if not impossible, the calibration of the distribution functions. The application of the renewal process model requires the evaluation of the time elapsed from the last event. Such an evaluation can be impossible if the length of the catalogue is smaller than the storage and release time interval and palaeoseismological data are not available, or when a linear source does not correspond to a single fault but to a system of multiple faults almost parallel. In the latter case the occurrence of severe seismic events, within close epicentral zones and during short time intervals, could not be analyzed resorting to criteria based on the existence of seismic gaps.

Further shortcomings of the probabilistic approach are connected with (1) the choice of the parameters characterizing the destructiveness potential of earthquake ground motion, and (2) the attenuation relationships for the estimation of the ground motion at a site for a given earthquake.

3.1 Characterization of earthquake destructiveness potential

The characterization of seismic motion in earthquake prone areas requires the identification of adequate parameters that characterize accurately the earthquake destructiveness potential. The specification of these parameters in general requires the selection of significant signals for the design of new structures or the seismic safety assessment of existing ones. To define, in general, a design earthquake represents a fundamental step in a seismic hazard analysis. The adoption of adequate parameters can lead to the definition of a non-realistic design earthquake and, consequently, to the unreliable evaluation of the seismic risk. Recent earthquakes (e.g. Imperial Valley 1979, Loma Prieta 1989, Landers 1992, Northridge 1994, Kobe 1995, Turkey 1999, Taiwan 1999, Greece 1999, Gujarat, 2001) have demonstrated that the seismic hazard evaluation, based prevalently on a probabilistic approach, has underestimated considerably these demands, particularly in near-fault regions.

The quite large number of near-fault records from recent earthquakes indicate that, for a given soil condition, the characteristics of strong ground motion and consequently of the damage potential can vary significantly as a function of the location of the site with respect to the propagation of the rupture. Particularly, in the case of forward rupture directivity most of the energy arrives in a single large pulse of motion which may give rise to an amplification of the ground motion at sites toward which fracture propagation progresses (e.g. Bolt, 1983; Panza and Suhadolc, 1987; Heaton et al.,
The long-period parts of the signals in forward directivity locations can be energetic due to the development of one or more, unidirectional, long-period pulses. The dynamic response of a structure depends simultaneously on its mechanical properties and on the characteristics of the induced excitation. Therefore it is necessary to investigate if certain properties which are efficient to mitigate the structure response when subjected to certain inputs might have an undesirable effect during other seismic inputs. Moreover, the presence of long duration accelerometric pulses in the ground motion constitutes an important factor in causing damage, as it involves the transmission of large energy amounts to the structures in a very short time, with high energy dissipation and displacement demands.

The quantification of the ground motion expected at a particular site, that would drive the structure to its critical response, resulting in the highest damage potential, requires: (a) the identification of the ground motion parameters that characterize the severity and the damage potential of the earthquake ground motion (for a more complete discussion on this topic see Appendix), and (b) the seismological, geological, and topographic factors that affect them. In this context, energy-based and displacement demand parameters constitute an adequate approach to highlight the damaging potential of these kind of signals (Decanini and Mollaoli, 1998; Decanini et al., 2000). This necessity is confirmed by the analysis performed by Panza et al. (1999) when seeking for a correlation between maximum observed macroseismic intensity, I (MCS) and computed peak values of ground motion, like Design Ground Acceleration (DGA), Peak Ground Velocities (PGV) and Peak Ground Displacements (PGD). They do not show any significant improvement in the regression scatter when going from DGA to PGV and PGD. The slope value is always close to 0.3, a value that corresponds to the relation $DGA(I-1)/DGA(I)=PGV(I-1)/PGV(I)=PGD(I-1)/PGD(I)=2$. Such a value is not contradicted by the numerous empirical relations (see Sikkenberg et al., 1993 and references therein) found when considering peak values of ground acceleration.

The large energy demand in the near-field region ($D_s < 5$ km), with respect to larger distance ranges, is clearly evidenced in Tab. 1. In the table, a comparison between maximum input energy E_{input} and a Seismic Hazard Energy Factor AE_i (Decanini and Mollaoli, 1998) is given for sites located on a soil of intermediate mechanical properties, $S2$, for different values of interval of magnitude (M) and source-to-site distance (D_s) classes. D_s is defined as the closest distance from the intersection with the free surface of the fault plane, or of its extension to the surface for blind faults.

<table>
<thead>
<tr>
<th>Soil S2</th>
<th>$5.4 < M < 6.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s (km)</td>
<td>AE_{input} cm2/s E_{input} cm2/s2</td>
</tr>
<tr>
<td>$D_s < 5$</td>
<td>45000</td>
</tr>
<tr>
<td>$5 < D_s < 12$</td>
<td>18000</td>
</tr>
<tr>
<td>$12 < D_s < 30$</td>
<td>10000</td>
</tr>
<tr>
<td>$D_s > 30$</td>
<td>3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil S2</th>
<th>$6.5 < M < 7.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s (km)</td>
<td>AE_{input} cm2/s E_{input} cm2/s2</td>
</tr>
<tr>
<td>$D_s < 5$</td>
<td>110000</td>
</tr>
<tr>
<td>$5 < D_s < 12$</td>
<td>75000</td>
</tr>
<tr>
<td>$12 < D_s < 30$</td>
<td>50000</td>
</tr>
<tr>
<td>$D_s > 30$</td>
<td>15000</td>
</tr>
</tbody>
</table>

Table 1. Comparison between AE_i (design and maximum observed) and E_i (maximum observed). Soil S2 (intermediate).
The input energy per unit of mass, \(\frac{E_{x, y}}{m} = \int \dot{u}_x \, dx - \int \dot{u}_y \, dy \), has been extensively used for the evaluation of the damage potential of earthquake ground motion (Akiyama, 1988; Uang and Bertero, 1988; Fujita and Fishinger, 1990; Uang and Bertero, 1990; Bertero and Uang, 1992; Krawinkler 1997; Decanini and Mollaoi, 1998; Decanini and Mollaoi, 2001). The parameter \(AE_4 = \int_0^{E_4} (x_{5%,7}) \, dx \), which represents the area enclosed by the elastic input energy spectrum in the interval of periods between 0.05 and 4.0 seconds, may be considered a global hazard index in energy terms (Decanini and Mollaoi, 1998). In fact it considers the influence of the energy demand in the whole period range. The proposed values of \(E_4 \) and \(AE_4 \) were determined from a database of 300 acceleration time histories taken from 37 different seismic events with magnitude ranging from 4 to 8.1 and distance, from the horizontal projection of the causative fault, from 0 to 390 km.

The large difference among the energy parameters in the near-fault (\(D_s \leq 5 \) km) and at other locations (\(5 < D_s \leq 12 \) km; \(12 < D_s \leq 30 \) km; \(D_s > 30 \) km) has been found for the displacement demand too, as shown in Fig. 1. The largest displacements can be observed on soft soil sites (SS), in the same distance and magnitude range (Fig. 2), as the amplification of ground motions may be significantly affected by the combined effect of the source and of the soil stiffness and thickness.

Fig. 1. Mean Displacement Spectra for different source-to-site distance ranges. Intermediate soil class (S2), \(6.5 \leq M \leq 7.1 \).

Fig. 2. Mean Displacement Spectra for different source-to-site distance ranges; soft soil (SS), \(6.5 \leq M \leq 7.1 \).

Each recorded strong ground motion history is a useful addition to the time record database, which increases our choices in selecting acceleration histories for various analyses. The growing database for near-field and soft soil strong motion records, gives the opportunity to enhance the state of knowledge in damage potential evaluation. Anyway, it has been noted that other seismological characteristics, such as the different styles of faulting, the radiation pattern, the orientation of the seismic source, etc., should inevitably be taken into account. These issues may be clearly understood resorting to seismological modeling techniques. For example, due to the lack of data, the nature of near-fault ground motions from larger magnitude earthquakes should be examined using seismologically based ground motion simulation methods.

3.2 Attenuation relationships

The other factor which influences a seismic-hazard estimate is represented by the assessment of the attenuation relationships of the ground motion parameters. These relationships can differ in the assumed functional form, the number and definition of independent variables, the data selection criteria, and the statistical treatment of the data. Anyway, in general, attenuation laws assume the same propagation model for all the size and type of events, but such a hypothesis is not very realistic. The
most frequently used attenuation models of ground motion parameters, like PGA, PGV, etc., have the form:

\[\log y = a + b M + c \log r_f + d D_e + e S \] \hspace{1cm} (1)

where \(y \) is the ground motion parameter, \(a, b, c, d, \) and \(e \) are coefficients empirically determined, \(r_f \) is derived from \(D_e \) by considering a conventional depth \(h_0 \) with \(r_f = \sqrt{D_e / h_0^2} \), and \(S \) is a binary variable (0, 1) which depends on the soil type. Generally, the coefficients are determined empirically by means of regression analyses and they turn out to be quite sensitive to the data set utilized. Usually regional data sets are statistically not significant, while the national or global data sets, even if statistically significant, they can represent very different seismotectonic styles that therefore are not mixable. Quite often the coefficients are obtained in such a way that they turn out to be (almost) independent from magnitude, distance and soil type. A nice example of the strong dependence of attenuation laws on the procedure followed in the data processing is given by Parvez et al. (2001) for the Himalayas. Moreover, typically the standard deviation associated with the predictions of the attenuation relationships ranges between 50% and 100% of the mean value.

Introducing the relative decay

\[R_p = y_f/y_{source} \] \hspace{1cm} (2)

where the suffix "source" indicates the values at the closest instrument to the source (typically \(D_{source} \) may be about 2 km), we obtain

\[\log R_p = c (\log r_f - \log r_{source}) + d (D_r - D_{source}) \] \hspace{1cm} (3)

Thus the relative decay does not depend upon the magnitude (size of the event) and the type of soils (local soil conditions). In general, \(r_f \) is different for PGA and PGV because a different conventional depth \(h_0 \) is assumed: usually \(3 \leq h_0 \leq 10 \) km for PGA and PGV. The parameter \(h_0 \) has a strong influence on the relative decay, conditioning the reliability of the results.

In the particular case of Sabatta and Pugliese (1987) relations (SP87) \(c=1, d=0 \) thus

\[\log R_p = \log r_{source} - \log r_f \] \hspace{1cm} (4)

and \(h_0 \) is 5.8 km for PGA and 3.6 km for PGV.

The attenuation relationships utilized by Ambraseys et al. (1996) for the evaluation of peak ground acceleration (PGA), with \(h_0 \) equal to 3.5 km, results (AMB96):

\[\log R_p = 0.922 (\log r_{source} - \log r_f) \] \hspace{1cm} (5)

Finally, the attenuation law for PGA suggested for the South East Sicily (ASI) by the Authors (Decanini et al., 2001), for \(h_0 = 10 \) km, is:

\[\log R_p = 0.92 (\log r_{source} - \log r_f) + 0.0003 (D_{source} - D_e) \] \hspace{1cm} (6)

These results seem to be in contrast with the physical phenomenon, often observed. For example, it has been found that the PGV and PGD (and consequently energy) attenuate differently with distance than accelerations, depending on the magnitude range and soil type.

The analysis of selected events and of a set of strong motion records, classified accordingly to magnitude intervals and soil conditions, indicates that the trend of the relative decay of AE, energy hazard parameter (Decanini and Mollasoli, 1998) is not constant. It depends on magnitude and soil type (see Tab. 2 to 6).
If we consider that the energetic parameter AE_i is a good and relatively stable indicator of the global damaging potential of ground motion, it is natural to assume that PGA and PGV cannot follow

<table>
<thead>
<tr>
<th>D_1(km)</th>
<th>M (6.5-7.1)</th>
<th>M (5.4-6.2)</th>
<th>M (4.2-5.2)</th>
<th>M (6.5-7.1)</th>
<th>M (5.4-6.2)</th>
<th>M (6.5-7.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>3.5</td>
<td>0.34</td>
<td>0.35</td>
<td>0.70</td>
<td>0.49</td>
<td>0.33</td>
<td>0.59</td>
</tr>
<tr>
<td>21</td>
<td>0.15</td>
<td>0.18</td>
<td>0.19</td>
<td>0.27</td>
<td>0.12</td>
<td>0.39</td>
</tr>
<tr>
<td>30</td>
<td>0.11</td>
<td>0.13</td>
<td>0.07</td>
<td>0.21</td>
<td>0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>30</td>
<td>0.07</td>
<td>0.13</td>
<td>0.01</td>
<td>0.13</td>
<td>0.03</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 2. Relative attenuation of AE_i as determined from the regression analysis of about 300 recordings worldwide, classified by magnitude (M) and soil type (S1, S2, S3)

<table>
<thead>
<tr>
<th>D_1(km)</th>
<th>Observ.</th>
<th>SP87</th>
<th>AMB96</th>
<th>ASI</th>
<th>Observ.</th>
<th>SP87</th>
<th>AMB96</th>
<th>ASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>15</td>
<td>0.88</td>
<td>0.46</td>
<td>0.40</td>
<td>0.62</td>
<td>0.54</td>
<td>0.37</td>
<td>0.52</td>
<td>0.72</td>
</tr>
<tr>
<td>19</td>
<td>0.54</td>
<td>0.37</td>
<td>0.33</td>
<td>0.53</td>
<td>0.34</td>
<td>0.30</td>
<td>0.29</td>
<td>0.54</td>
</tr>
<tr>
<td>24</td>
<td>0.67</td>
<td>0.30</td>
<td>0.26</td>
<td>0.44</td>
<td>0.28</td>
<td>0.24</td>
<td>0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>31.5</td>
<td>0.55</td>
<td>0.23</td>
<td>0.21</td>
<td>0.35</td>
<td>0.27</td>
<td>0.18</td>
<td>0.18</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 3. Kobe (1995 event), soft soil (S3), relative attenuation, R, of PGA, PGV and AE_i. Comparison between observed and predicted values.

<table>
<thead>
<tr>
<th>D_1(km)</th>
<th>Observ.</th>
<th>SP87</th>
<th>AMB96</th>
<th>ASI</th>
<th>Observ.</th>
<th>SP87</th>
<th>AMB96</th>
<th>ASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>27.5</td>
<td>0.18</td>
<td>0.21</td>
<td>0.15</td>
<td>0.36</td>
<td>0.18</td>
<td>0.14</td>
<td>0.13</td>
<td>0.36</td>
</tr>
<tr>
<td>34</td>
<td>0.35</td>
<td>0.17</td>
<td>0.13</td>
<td>0.30</td>
<td>0.25</td>
<td>0.11</td>
<td>0.12</td>
<td>0.35</td>
</tr>
<tr>
<td>106</td>
<td>0.17</td>
<td>0.06</td>
<td>0.05</td>
<td>0.10</td>
<td>0.17</td>
<td>0.04</td>
<td>0.05</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table 4. Kobe (1995 event), soil S2, relative attenuation, R, of PGA, PGV and AE_i. Comparison between observed and predicted values.

<table>
<thead>
<tr>
<th>D_1(km)</th>
<th>Observ.</th>
<th>SP87</th>
<th>AMB96</th>
<th>ASI</th>
<th>Observ.</th>
<th>SP87</th>
<th>AMB96</th>
<th>ASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>26.5</td>
<td>0.58</td>
<td>0.93</td>
<td>0.93</td>
<td>0.94</td>
<td>0.45</td>
<td>0.93</td>
<td>0.44</td>
<td>0.66</td>
</tr>
<tr>
<td>33</td>
<td>0.46</td>
<td>0.59</td>
<td>0.61</td>
<td>0.64</td>
<td>0.17</td>
<td>0.58</td>
<td>0.34</td>
<td>0.58</td>
</tr>
<tr>
<td>36</td>
<td>0.32</td>
<td>0.55</td>
<td>0.56</td>
<td>0.59</td>
<td>0.18</td>
<td>0.53</td>
<td>0.17</td>
<td>0.41</td>
</tr>
</tbody>
</table>

(a) The closest station is as far as 19 km, therefore these data are only indicative (far fault reference)

Table 5. Iopuna (1980 event), soil S2, relative attenuation, R, of PGA, PGV and AE_i. Comparison between observed and predicted values.
The closest station is at 0.2 km from the surface projection of the source, therefore this is a good example of near fault reference.

Table 6. Imperial Valley (1979 event), soil S2, relative attenuation, R, of PGA, PGV, and AE. Comparison between observed and predicted values.

By considering the specific cases illustrated in Tables 3 to 6, it can be seen that the predictions of the relative attenuation of PGA and PGV are generally in disagreement with the observed values and between the predicted themselves. This aspect evidences the great uncertainties deriving from the existing attenuation functional forms relative to the adopted hazard parameter.

4. Deterministic seismic zoning, hazard assessment and damaging seismic energy

While waiting for the accumulation of new strong motion data, a very useful approach to perform immediate microzonation is the development and use of modeling tools. These tools are based, on one hand, on the theoretical knowledge of the physics of the seismic source and of wave propagation and, on the other hand, exploit the rich database, already available, that can be used for the definition of the source and structural properties. Actually, the realistic modeling of ground motion requires the simultaneous knowledge of the geotechnical, lithological, geophysical parameters and topography of the medium, on one side, and tectonic, historical, paleoseismological, seismotectonic models, on the other, for the best possible definition of the probable seismic source. The initial stage for the realistic ground motion modeling is thus devoted to the collection of all available data concerning the shallow geology, and the construction of a three-dimensional structural model to be used in the numerical simulation of ground motion.

With these input data, we model the ground motion using two approaches based on the modal summation technique (Panza, 1985; Panza and Suhadolc, 1987; Florsch et al., 1991; Panza et al., 2001). The hybrid technique (e.g. Filb et al., 1993), which combines the modal-summation and the finite-difference scheme, and the mode-coupling analytical technique for laterally heterogeneous models (e.g. Vaccari et al., 1989; Romanelli et al., 1996, 1997; Panza et al., 2001).

To minimize the number of free parameters we account for source finiteness by properly weighting the double-couple point source spectrum using the scaling laws of Gusev (1983), as
reported in Aki (1987). Even if this is a rough approximation of the physical source process, when a large earthquake is considered in the calculation of synthetic seismograms at distances of the same order of the fault dimensions, the adoption of a spectral scaling law ensures to obtain reliable spectral scenarios. The adoption of a spectral scaling law corresponds to averaging on the directivity function and on the regional variations due to different tectonic regimes. This limitation is therefore much less severe if spectral or PGA amplification is the main topic of interest instead of actual time-histories, and small- to medium-magnitude events are considered.

However, also kinematics models for a spatially extended source (e.g. Panza and Subadola, 1987) can be tackled by our approach. In such case the generation of seismic waves due to an extended source is obtained by approximating the source with a rectangular plane surface corresponding to the fault plane on which the main rupture process is assumed to occur. Effects of directivity and of the energy release on the fault can be easily modeled, simulating the wide-band radiation process from a finite earthquake source/fault. The source is represented as a grid of point subsources, and their seismic moment rate time functions are generated considering each of them as realizations (sample functions) of a non-stationary random process. Specifying in a realistic way the source length and width, as well as the rupture velocity, one can obtain realistic far-field source time functions. Furthermore, assuming a realistic kinematic description of the rupture process, the stochastic structure of the accelerograms can be reproduced, including the general envelope shape and peak factors.

The methods have been applied, for the purpose of seismic microzoning, to several urban areas like Augusta (e.g. Panza et al., 2000b), Beijing (Sun et al., 1998), Benevento (e.g. Marrara and Subadola, 1998a), Bucharest (e.g. Moldoveanu et al., 2000), Catania (e.g. Romanello and Vaccaro, 1999), Mexico City (e.g. Fäh et al., 1994), Naples (e.g. Nunnari et al., 2000a,b), Rome (e.g. Fäh et al., 1993) and Thessaloniki (e.g. Marrara and Subadola, 1998b) in the framework of the UNESCO/IUGS/IAGCP project “Realistic Modelling of Seismic Input for Megacities and Large Urban Areas” (Panza et al., 1999a). For urban areas where the realistic numerical modeling has been compared with recorded data (like Beijing, Benevento, Bucharest, Mexico City, Naples, Thessaloniki), the results of such comparison is fully satisfactory for engineering purposes and no data fitting is required. For events with magnitude in the range 6.5-7.1 and distances in the range 10-30 km, these pilot studies show that, distances from the causative fault, D_0 being equal, the elastic energy spectra computed from synthetic signals are comparable with those computed from real records (e.g. see Fig. 3).

![Fig. 3. Elastic energy E_{ik} (cm2/s2) spectra. Comparison between Augusta synthetic signals and strong motion records of Irpinia 1980 (Calitri station) and Loma Prieta 1989 (Gwv Tower, Uscic and Ystad stations) earthquakes (from Decanini et al., 2001).](image-url)
Thus, where recordings are absent or very limited, the synthetic time series can be reasonably used to estimate the expected ground motion, including ground velocity and displacement time series, before the next strong earthquake will occur. These time series can be readily used for the estimation of the damaging potential in energetic terms (Fig. 3).

4.1 Umbria-Marche (Central Italy) sequence

The Umbria-Marche earthquake sequence started on September 26, 1997 and took place in a complex deforming zone, along a normal fault system in the Central Apennines. The seismic sequence left significant ground effects, which were mainly concentrated in the Colfiorito intermountain basin.

The crustal events generated extensive ground motion and caused great damage in several urban areas. The extent of macroseismic data and the abundance of recorded ground motions permits a good knowledge of the source and structural parameters to better understand the nature of the ground shaking and the resulting damage patterns.

Predicting the intensity of shaking due to an earthquake before it occurs can prevent damage. Doing this rapidly after an earthquake can be useful for emergency rescue.

These objectives all belong to the overall objective of understanding and predicting the ground motion, therefore reducing the seismic risk.

Before the seismic sequence, started on September 1997, probabilistic (Fig. 4) and deterministic maps were available for the Italian territory. The probabilistic map (Fig. 4) indicates, for the Umbria-Marche region, peak ground accelerations (PGA) not exceeding 0.4g, for 475 years return period, and 0.24g, for 100 years return period (Corsanego et al. 1997). A first-order deterministic seismic zoning of Italy (Fig. 5), obtained by the application of the method developed by Costa et al. (1993) and its extensions (Panza et al., 1996) lead to theoretical peak values (Panza et al., 1996; 1997, 1999b) well in agreement with the representative EPA (effective peak acceleration) values observed ~ 0.3g. The EPA is defined as the average spectral acceleration in the period interval from 0.1 s to 0.5 s divided by 2.5, therefore it is equivalent to the DGA calculated by Panza et al. (1996) using design response spectra.

Fig. 4. Probabilistic estimation of maximum acceleration for 475 years return period (from Corsanego et al., 1997).

Fig. 5. Deterministic design ground acceleration focused on the Umbria-Marche region (modified from Panza et al., 1996).

Fig. 6. Computed peak ground displacements, consistent with the acceleration values given in Fig. 5.

The information about ground displacement can be of great importance, but such information is difficult to be extracted from analog recordings, thus the available experimental database is very scarce. The realistic ground motion modelling we have developed represents an efficient way to
minimize the problem arising from the lack of statistically significant observations about ground displacement. In fact, the good agreement obtained between modeled and observed acceleration and velocities makes it reasonable to use the modeled displacements (Fig. 6), as boundary conditions in the design.

Fig. 7 Displacement spectra of Nocera Umbra strong motion records (rock site). 5% damping. Event of September 26, 1997, 09:40 GMT, $M_L = 5.8$, $M_w = 6.0$.

Fig. 8. a) Displacement response spectra (5% damping) computed at the grid point close to Nocera Umbra for 23 sources located in the surroundings at distances between 13 and 90 km. Thick black line corresponds to the spectrum of the signal, NS component of motion, recorded at Nocera Umbra (R1168), filtered at 1 Hz. b) Same as a) but for the EW component of motion.

The displacement response spectra (5% damping) of the observed signals are shown in Fig. 7 for the NS and EW components of motion recorded at Nocera Umbra during the main shock of the sequence. The same kind of response spectra, but obtained with the observed signals filtered with the cut off frequency used in our modeling (1 Hz), are compared (Fig. 8) with the displacement response spectra obtained from all the synthetic signals computed in the grid point (43.2°N, 12.8°E), i.e. the grid point closer to Nocera Umbra. The predictive capabilities of our modeling, made in 1996, are quite evident and indicate that future events may generate even larger seismic input.

4.2 Bovec event of Easter 1998

For Bovec, Slovenian event (12 April 1998) the only available strong motion records belong to the Rete Accelerometrica di Friuli Venezia Giulia (RAF) (minimum epicentral distance ~30 km), therefore the only relevant comparison is with the hypocentral macroseismic intensity, which has been observed equal to IX (MCS).

From the deterministic maps shown in Fig. 9 and considering the conversion tables between peak values of ground motion and macroseismic intensity (MCS), proposed by Panza et al. (1999), the hypocentral macroseismic values observed, IX (MCS), are in perfect agreement with the values predicted by our modelling.

5. Conclusions

Case studies of seismic hazard assessment techniques indicate the limits of the currently used methodologies, deeply rooted in engineering practice, based prevalently on a probabilistic approach,
and show that the related analyses are not sufficiently reliable to characterize seismic hazard. The probabilistic analysis of the seismic hazard is basically conditioned by the definition of the seismogenic zones. Within each of them the seismogenic process is assumed to be rather uniform, however the uncritical assumption of homogeneity can introduce severe errors in the estimate of the seismic hazard in a given site. Further shortcomings are connected with the choice of the other components needed for the calculation of the rate of probability of exceeding various levels of ground motion, over a specified period of time, i.e. the parameters characteristic of the damage potential of earthquake ground motion, and the attenuation relationships for the estimation of the ground motion at a site for a given earthquake.

The quantification of the critical ground motion expected at a particular site, requires the identification of the parameters that characterize the severity and the damage potential. Such critical ground motion can be identified in terms of energy and displacement demands which should be evaluated by considering the seismological, geological, and topographic factors that affect them.

In view of the limited seismological data, it seems more appropriate to resort to a scenario-based deterministic approach, as it allows us the realistic definition of hazard in scenario-like format to be accompanied by the determination of advanced hazard indicators as, for instance, damaging potential in terms of energy. Such a determination, due to the limitation of the number of strong motion records, requires to resort to broad band synthetic seismograms, that allow us to perform realistic waveform modeling for different tectonic environments, taking into account source properties (e.g. dimensions, directivity, duration, etc.), lateral heterogeneities, and path effects.

Each synthetic strong ground motion history, characterized as a function of its damage potential, constitutes a useful addition to the records database which increases our choices in selecting acceleration histories for various analyses. The growing database for near-field and soft soil strong motion signals (recorded and modeled), which can be considered as limit conditions, gives the opportunity to enhance the state of knowledge in damage potential evaluation.

The results we have reported are the outcome of a rather unusual but very fruitful close collaboration between seismologists and seismic engineers, that we consider a prerequisite for the achievement of significant step forward in the future.
Appendix: Parameters used to describe the severity of an earthquake

A fundamental need for the definition of the seismic hazard of a given site or, in general, a region, is to select a parameter descriptive of the earthquake severity. A large number of parameters has been proposed for measuring the capacity of earthquakes to damage structures. However, recently observed damage distribution and strong motion acceleration records indicate the need for a more comprehensive definition of the existing parameters and for the introduction of new ones to account for the complex characteristics of earthquake induced strong ground motions in the engineering analyses and design. The adoption of inadequate parameters can lead to the definition of unrealistic design earthquakes and consequently to the unreliable evaluation of the seismic risk for the existing built environment, or to the insufficient protection of new one.

The parameters fundamentally involved in the evaluation of the level of severity associated with strong motion are, for engineering purposes, the frequency content, the amplitude and the effective duration. Because of the complexity of the earthquake ground motions, generally more than one parameter is required to describe the most important ground motion characteristics.

In general, these parameters can be obtained either directly or with some simple calculation from the digitized and corrected records, from the parametric integration of the equation of motion of elastic and inelastic single-degree-of-freedom (SDOF) systems, and considering the energy balance equation for elastic and inelastic systems. Application of the Duhamel (convolution) integral to a linear elastic SDOF system gives the expressions for the displacement response time history $u(t)$ and allows to define a pseudo-velocity, $\dot{u} = \omega \cdot u(t)$, and a pseudo-acceleration, $a(t) = \omega^2 \cdot u(t)$ (Clough & Penzien 1993, Chopra, 1995): They get their names from the fact that they have units of velocity and acceleration, respectively, but they are not equal to instantaneous velocity, and acceleration, respectively, of the system, since earthquake time histories are far from being purely harmonic motions. In terms of peak values, one can define the displacement, pseudo-velocity and pseudo-acceleration response spectra:

$$S_d(x, \omega) = \left| \omega \right|^2 S_p(x, \omega), \quad S_v(x, \omega) = \omega S_p(x, \omega), \quad S_a(x, \omega) = \omega^2 S_p(x, \omega)$$

where ω is the natural frequency (spectral variable) of the SDOF, u is the displacement, $S_d(x, \omega)$ is the spectral displacement, $S_v(x, \omega)$ is the pseudo-spectral velocity, and $S_a(x, \omega)$ is the pseudo-spectral acceleration. Accordingly with the following equation, the pseudo-velocity $S_v(x, \omega)$ can be related to the maximum energy stored in the SDOF during the earthquake ground motions:

$$E = \frac{k S_v^2(x, \omega)}{2} = \frac{k S_p^2(x, \omega)}{2} \omega^2 = \frac{m S_a^2(x, \omega)}{2}$$

where k and m are the stiffness and the mass of the SDOF systems. Note that a SDOF system of zero natural period (infinite natural frequency) would be rigid, and its spectral acceleration would be equal to the peak ground acceleration.

PGA, PGV, PGD, EPA and EPV

The most commonly used measure of amplitude of a particular ground motion is the peak ground acceleration, PGA, which corresponds to the largest value of acceleration obtained from the recorded accelerogram. As the inertia forces depend directly on acceleration, PGA is one of the parameters widely used to describe the intensity and damage potential of an earthquake at a given site. However, PGA is a poor indicator of damage, since it has been observed that time histories with the same PGA
could be very different in frequency content, strong motion duration, and energy level, thus causing varying amounts of damage. In fact, PGA may be associated with high frequency pulses which do not produce significant damage to the buildings as most of the impulse is absorbed by the inertia of the structure with little deformation. On the other hand, a more moderate acceleration may be associated with a long-duration pulse of low-frequency (acceleration pulse) which gives rise to a significant deformation of the structure.

For example, after the 1971 Ancona earthquake ($M_s = 4.7$) a large PGA value (716 cm/s2) was recorded at the Rocca station, located at a distance of about 7 km from the surface projection of the fault rupture. This high PGA value is associated with a short duration pulse of high frequency, as indicated in Fig. A1 where the acceleration time histories is shown, and generated a limited damage. A peak ground acceleration quite close (827 cm/s2) to the above mentioned one, was recorded at the Sylmar station (Fig. A2), sited at about 2 km from the surface projection of the fault rupture, after the destructive 1994 Northridge earthquake ($M_s = 6.7$). In this case, the peak ground acceleration is associated with a long duration pulse of low frequency. The moderate difference between these two PGA values seems to disagree with the large difference between the magnitude of the two seismic events. In other words, analyses of strong motion data have shown clearly that even small earthquakes can produce high accelerations and that these accelerations are not necessarily damaging.

The peak ground velocity PGV (shown in Fig. A3) is another useful parameter for the characterization of ground motion amplitude. Since the velocity is less sensitive to the higher-frequency components of the ground motion, the PGV, more likely than the PGA, should characterize the damaging potential of ground motion.

Peak ground displacement PGD is generally associated with the lower-frequency components of an earthquake ground motion. It is, however, difficult to determine accurately PGD, due to signal processing errors in the filtering and integration of accelerograms and due to long-period noise. The situation will certainly improve with the dissemination of good quality digital instruments.

Fig. A1. 1971 Ancona earthquake ($M_s = 4.7$); acceleration time history: Rocca NS record.

Fig. A2. 1994 Northridge earthquake ($M_s = 6.7$); acceleration time history: Sylmar N360 record.
From the point of view of damage potential, the area under the largest acceleration pulse, which represents the incremental velocity (IV), makes many earthquake strong motion records particularly damaging. As indicated in Fig. A3, the maximum incremental velocity represents the distance between two consecutive peaks. The larger is the change in velocity, the larger is the acceleration pulse. In the case of the Takatori record obtained after the 1995 Kobe earthquake (Fig. 3), the PGV is equal to 127 cm/s, while the IV is equal to 227 cm/s.

![Graph showing velocity time history for Takatori record.](image)

Fig. A3 – Velocity time history. Takatori 000 record. 1995 Kobe earthquake (Mw=6.9)

Realizing the limitation of using peak instrumental values, since damage can not be related only to the peak values, but it may require the occurrence of several repeated cycles, Applied Technology Council (1978) ATC introduced the concept of effective peak acceleration, EPA. The effective peak acceleration EPA is defined as the average spectral acceleration over the period range 0.1 to 0.5 s divided by 2.5 (the standard amplification factor for a 5% damping spectrum), as follows:

\[
\text{EPA} = \frac{\bar{a}_p}{2.5}
\]

where \(\bar{a}_p\) is the mean pseudo-acceleration value. The empirical constant 2.5 is essentially an amplification factor of the response spectrum obtained from real peak value records. Thus EPA is correlated with the real peak value, but not equal to nor even proportional to it. If the ground motion consists of high frequency components, EPA will be obviously smaller than the real peak value. It represents the acceleration which is most closely related to the structural response and to the damage potential of an earthquake. The EPA values for the two records of Aconc and Sylmar stations are 205 cm/s² and 774 cm/s² respectively, and describe in a more appropriate way, than PGA values, the damage caused by the two earthquakes.

The effective peak velocity EPV is defined as the average spectral velocity at a period of 1 s divided by 2.5. The process of averaging the spectral accelerations and velocities over a range of periods minimizes the influence on the EPA and EPV of local spikes in the response spectrum. EPA and EPV can be thought of as normalizing factors for the development of smooth response spectra. Although effective peak acceleration is a conceptually sound parameter for the damage potential characterization of earthquake ground motion, at present there is no clear and standardized definition of this parameter.

Other ground motion parameters

Several observations derived from analyses of strong motion records of recent earthquakes indicate the considerable influence of the duration on the cumulative damage of the structures. For example, time histories with high amplitudes but short duration can be associated to moderate damages compared to ground motion with lowest amplitude but with longest duration. Moreover, it is
well known that the major drawback in the use of elastic response spectra, S_{ew}, is the neglecting of the duration. Different approaches have been taken to the problem of evaluating the duration of strong motion in an accelerogram. The bracketed duration (Bolt, 1973) is defined as the time between the first and the last exceedances of a threshold acceleration (usually 0.05g). Among the different duration definitions that can be found in the literature, one commonly used is that proposed by Trifunac and Brady (1975), $t_D = t_{99} - t_{95}$, where t_{95} and t_{99} are the time at which respectively the 5% and 95% of the time integral of the history of squared accelerations are reached, which corresponds to the time interval between the points at which 5% and 95% of the total energy has been recorded.

The Arias Intensity (Arias, 1969), I_A, is defined as:

$$I_A = \frac{1}{2\pi} \int_0^1 \left(\int_0^T a(t) dt \right)^2 \, dt,$$

where t_D and a_D are the total duration and ground acceleration of a ground motion record, respectively.

The Arias intensity has units of velocity. I_A represents the sum of the total energies, per unit mass, stored, at the end of the earthquake ground motion, in a population of undamped linear oscillators. Arias Intensity, which is a measure of the global energy transmitted to an elastic system, tends to overestimate the intensity of an earthquake with long duration, high acceleration and broad band frequency content. Since it is obtained by integration over the entire duration rather than over the duration of strong motion, its value is independent of the method used to define the duration of strong motion.

Housner (1952) defined a measure expressing the relative severity of earthquakes in terms of the area under the pseudo-velocity spectrum between 0.1 and 2.5 seconds. Housner's spectral intensity I_H is defined as:

$$I_H = \int_{S_{pv}}^{2.5} \left(\int_{T} \frac{S_{pv}(T, \xi)}{S_{pv}(T, \xi)} \, dT \right)^{0.5} \, dS_{pv},$$

where S_{pv} is the pseudo-velocity at the undamped natural period T and damping ratio ξ, and S_{pv} is the pseudo-acceleration at the undamped natural period T and damping ratio ξ. Thus, Housner's spectral intensity is the first moment of the area of S_{pv} (0.1<T<2.5) about the S_{pv} axis, implying that the Housner spectral intensity is larger for ground motions with a significant amount of low frequency content. The I_H parameter captures important aspects of the amplitude and frequency content in a single parameter, however, it does not provide information on the strong motion duration which is important for a structural system experiencing inelastic behaviour and yielding reversals. Housner (1956) gave also a definition of the maximum input energy of an elastic SDOF system on the basis of the pseudo-velocity spectrum S_{pv}. In fact, the pseudo-velocity spectrum S_{pv} reflects the energy demand of an elastic SDOF system as follows:

$$E_p = \frac{1}{2} m \left(\frac{S_{pv}}{\xi} \right)^2.$$

This parameter can be utilized for the estimation of earthquake damage potential from an energy perspective. The pseudo-velocity spectrum constitutes approximately the lower bound of the hysteretic energy spectrum adjusted in terms of equivalent velocity (Decanini & Mollaoi, 1998; Usagi & Bertero, 1988).

Araya & Saragoni (1984) proposed the destructiveness potential factor, P_0, that considers both the Arias intensity and the rate of zero crossings, v_4, and agrees with the observed damage better than other parameters. The destructiveness potential factor, which simultaneously considers the effect of the ground motion amplitude, strong motion duration, and frequency content on the relative destructiveness of different ground motion records, is defined as:
\[P_0 = \frac{\pi}{2g} \int_{t_0}^{t_1} \frac{a_0^2(t)}{v_0^2} dt = \frac{I_0}{v_0^2} - \frac{N_0}{v_0} \]

where \(t \) is the time, \(a_0 \) is the ground acceleration, \(v_0 = N_0a_0 \) is the number of zero crossings of the acceleration time history per unit of time (Fig. A4), \(N_0 \) is the number of the crossings with the time axis, \(t_0 \) is the total duration of the examined record (sometimes it could be a particular time-window), and \(I_0 \) is the Arias intensity.

![Diagram](image_url)

Fig. A4. Evaluation of the parameter \(v_0 \).

The amplitudes of ground motion acceleration and strong motion duration are incorporated in the Arias intensity, while \(v_0 \) [sec-1] results an average index of the frequency content of the time history. Araya and Saragoni (1984) and Saragoni et al. (1989) have shown that the horizontal earthquake destructiveness potential factor PDEH (sum of the PD values corresponding to the two horizontal components, PDEH=PDx+PDy) correlates well with the Modified Mercalli macroseismic intensity IM values. However, it is possible that two different time histories have similar destructiveness potential factors but very different values of the zero crossings rate and Arias intensity. A time history with a small zero-crossing rate would cause less damage to short period structures than a time history with a larger zero-crossing rate close to the fundamental period of the structures, although both time histories have the same destructiveness potential factor.

In designing structures to perform satisfactorily under earthquake excitations the concept of response spectrum was introduced as a practical mean of characterizing ground motions and their effects on structures. The response spectrum, a concept that has been recognized for many years in the literature (e.g., Newmark & Hall 1982), describes the maximum response of a SDOF system to a particular input motion as a function of its natural frequency (or period) and damping ratio. The response may be expressed in terms of acceleration, velocity, or displacement. The importance of the response spectra in earthquake engineering has led to the development of methods for predicting them directly as a function of soil conditions, magnitude and source-to-site conditions. Response spectra are often used to represent seismic loading in terms of design spectra, which are the result of the smoothing, averaging or enveloping of the response spectra of multiple motions.

Although the response spectrum provides the basis for the specification of design ground motions in all current design guidelines and code provisions, there is a growing recognition that the response spectrum alone does not provide an adequate characterization of the earthquake ground motion. In order to give a major conceptual improvement, methods using ground motion spectra based on EPA and EPV have been suggested.

259
Energy based parameters

Linear elastic response spectra or linear elastic design response spectra recommended by seismic codes have been proved to be inadequate by recent seismic events, as they are not directly related to structural damage. Extremely important factors such as the duration of the strong ground motion and the sequence of acceleration pulses are not taken into account adequately. Therefore response parameters based on the inelastic behaviour of a structure should be considered with the ground motion characteristics.

In current seismic regulations, the displacement ductility ratio \(\mu \) is generally used to reduce the elastic design forces to a level which implicitly considers the possibility that a certain degree of inelastic deformations could occur. To this purpose, employing numerical methods, constant ductility response spectra were derived through non-linear dynamic analyses of viscously damped SDOF systems by defining the following two parameters:

\[
C_y = \frac{R_y}{mg}
\]

\[
\eta = \frac{R_y}{mv_{g(\text{max})}} = \frac{C_y}{v_{g(\text{max})}/g}
\]

where \(R_y \) is the yielding resistance, \(m \) is the mass of the system, and \(v_{g(\text{max})} \) is the maximum ground acceleration. The parameter \(C_y \) represents the structure's yielding seismic resistance coefficient and \(\eta \) expresses a system's yield strength relative to the maximum inertia force of an infinitely rigid system and reveals the strength of the system as a fraction of its weight relative to the peak ground acceleration expressed as a fraction of gravity. Traditionally, displacement ductility was used as the main parameter to measure the degree of damage sustained by a structure.

One significant disadvantage of seismic resistance \((C_y) \) spectra is that the effect of strong motion duration is not considered. An example of constant ductility \(C_y \) spectra, corresponding to the 1986 San Salvador earthquake (CIG record) and 1985 Chile earthquake (Llolleo record) is reported in Fig. A5 a,b, respectively. By comparing these spectra it seems that the damage potential of these ground motions is quite similar, even though the CIG and Llolleo are records of two earthquakes with very different magnitude, 5.4 and 7.8, respectively.

![Fig. A5. Comparison between constant ductility \(C_y \) spectra. (a) 1986 San Salvador earthquake (CIG record); 1985 Chile earthquake (Llolleo record)](a-b)

20
In other words, the elastic and inelastic (in terms of displacement ductility) response spectra are not sufficient for the estimation of the damage potential of the earthquake ground motion because they do not give a precise description of the quantity of the energy that will be dissipated through hysteretic behaviour; in the inelastic case they give only the value of the maximum ductility requirement. To overcome this problem other ductility definitions, e.g. hysteretic or cyclic ductility, were introduced.

However, in this context, the introduction of appropriate parameters defined in terms of energy can lead to more reliable estimates, since, more than others, the concept of energy provides tools which allow to account rationally for the mechanisms of generation, transmission and destructiveness of seismic actions. Moreover, energy-based parameters could provide more insight into the ultimate cyclic seismic performance than traditional design methods do, and could be considered as effective tools for a comprehensive interpretation of the behaviour observed during recent destructive events. In fact, energy-based parameters, allowing us to characterize properly the different types of time histories (impulsive, periodic with long durations pulses, etc.) which may correspond to an earthquake, could provide more insight into the seismic performance.

Among all the different parameters proposed for defining the damage potential, perhaps the most promising is the Earthquake Input Energy (E_I) and associate parameters (the damping energy E_d and the plastic hysteretic energy E_{pl}) introduced by Uang & Bertero (1990). This parameter considers the inelastic behavior of a structural system and depends on the dynamic features of both the strong motion and the structure. The formulation of the energy parameters derives from the following balance energy equation (Uang & Bertero, 1990), $E_I = E_k + E_d + E_{pl} + E_H$, where ($E_k$) is the input energy, ($E_d$) is the kinetic energy, (E_d) is the damping energy, (E_{pl}) is the elastic strain energy, and (E_H) is the hysteretic energy.

![Graph A6](image)

Fig. A6 - Comparison between constant ductility input energy E_I spectra. (a) 1986 San Salvador earthquake (CGM record); 1985 Chile earthquake (Liolelo record)

The absolute input energy, according to the definition of Uang & Bertero (1990), which seems suitable for the estimation of the energy terms in the range of periods of interest for the majority of structures, has the advantage to point to the physical input energy. In fact, E_I represents the work done by the total base shear at the foundation displacement. The input energy can be expressed by:

$$ E_I = \int u_k du_k - \int u_k du_k $$

where m is the mass, $u_k = u + u_h$ is the absolute displacement of the mass, and u_h is the earthquake ground displacement. Usually the input energy per unit mass, i.e. E_I/m, is simply denoted as E_I.

21
Re-examining the comparison of the damage potential of the CIG and Llolleo records in terms of input energy (Fig. A6), a completely different picture is obtained. In fact, the E_i of the Llolleo record is considerably higher than that of the CIG record, both in the elastic and inelastic cases.

A similar picture is obtained using another energy-based parameter, recently introduced (Decanini et al. 1994, Decanini & Mollauoli 1998) and denoted as the seismic hazard energy factor, AE_i, which represents the area enclosed by the elastic input energy spectrum according to different intervals of periods:

$$AE_i = \int_{T_1}^{T_2} E_i(\xi = 5\%, T) dT$$

In their procedure for the evaluation of the design earthquake Decanini and Mollauoli (1998) consider the interval of periods between $T_1=0.05$ and $T_2=4.0$ seconds.

The advantage of using AE_i derives from the fact that, unlike the peak energy spectral value, which generally corresponds to a narrow band of frequencies, it takes into account the global energy structural response amount, and therefore it is the most stable parameter in energetic analysis. AE_i can be seen as the energy version of the Housner Intensity I_H, with the difference that the pseudo-velocity spectrum constitutes the lower bound of the input energy spectrum (Uang & Bertero, 1988), as illustrated in Fig. A7.

![Fig. A7 – Comparison between input energy E_i and pseudo-velocity S_p spectra. 1977 Bucharest earthquake](image)

In conclusion, for a reliable estimation of the destructiveness potential of earthquake ground motions it seems appropriate to perform a comparison of their input and hysteretic energy spectra and associated seismic hazard energy factors, taking also into account the influence of the factors that may be considered external to the structural systems (magnitude, local soil conditions, source-to-site distance, etc.).

References

Bertero, V. V., 1989, “Lesson learned from recent catastrophic earthquake and associated research” First Tohoku International Lecture, 1989 ICCET.

Marrara, P., Subadolo, P., 1998a, "Site amplifications in the city of Benevento (Italy): comparison of observed and estimated ground motion from explosive sources" J. Seism., 2, 125-143.

motions estimation (Handbook)" Seismic ground motions prediction (Engineering seismology problems; Issue 34), Moscow, Nauka, 5-94. (in Russian)

Sun, R., Vaccarini, F., Marrara, F., Panza, G.F., 1998, "The main features of the local geological conditions can explain the macroseismic intensity caused in Xiji-Langfu (Beijing) by the Mw=7.7 Tangshan 1976 earthquake" PAGEOPH, 152, 507-521.

Uang, C.M., Bertero, V.V., 1990, "Evaluation of seismic energy in structures" Earthquake Engineering and Structural Dynamics, 19, 77-90.

Uang, C. M., Bertero, V. V., 1988, "Implications of Recorded Earthquake Ground Motions on Seismic Design of Buildings Structures" Report No. UCB/ERDC-88/13, Earthquake Engineering Research Center, University of California at Berkeley.

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

GENERATION OF SYNTHETIC STRONG EARTHQUAKE GROUND MOTIONS USING A COMPOSITE SOURCE MODEL AND SYNTHETIC GREEN'S FUNCTIONS

John G. Anderson¹, Haluk Sucuoğlu¹, Yuehua Zeng², Feng Su²

Abstract

We describe a model that generates realistic synthetic records of plausible strong ground motions, specific to the fault – station geometry. We model the slip as a superposition of randomly located subevents. Since this source includes random parameters, we generate multiple realizations to investigate the uncertainties. In the context of the Representation Theorem, the motion is transferred to the site using synthetic Green's functions generated for a flat-layered Earth model. The Green's functions are generated using the regional velocity model, and can be modified with shallow layers to match the local site conditions. Source parameters are related energy and effective stress. Thus the parameters in the model are mostly constrained by either geological or geophysical observations. This paper also reviews several applications.

Introduction

Over the past years, we have focused efforts to develop and improve a numerical simulation procedure to compute synthetic strong motion seismograms using a composite source model described by Zeng et al. (1994), and first tested by Yu (1994). The method has been successful in generating realistic strong motion seismograms. The realism is demonstrated by comparing synthetic strong motions with observations from the recent California earthquakes at Landers, Loma Prieta (Su et al., 1994a,b) and Northridge (Zeng and Anderson, 1996; Anderson and Yu, 1996; Su et al., 1998), earthquakes in the eastern US (Ni et al., 1999) and earthquakes in Guerrero, Mexico (Zeng et al., 1994; Johnson, 1999), Turkey (Anderson et al., 1997, 2001; Sucuoğlu et al., 2002) and India (Khatrri et al., 1994; Zeng et al., 1995; Yu et al., 1995). Anderson and Chen (1995) suggested that the composite source model correctly models the rate of buildup of the seismograph energy for a range of earthquake sizes. We have also applied the method for earthquake engineering applications to compute the ground motion of scenario earthquakes. During the process of continuing development, we have included scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using the geotechnical engineering model. We have evaluated the numerical procedure for simulating near-fault long-period ground motions and rupture directivity, revisiting some of the Loma Prieta, Landers

² Seismological Laboratory, University of Nevada, Reno, Nevada 89557; jga@unr.edu; 775-784-4265
³ Earthquake Engineering Research Center, Middle East Technical University, 06531 Ankara, Turkey; a06074@metu.edu.tr

267
and Northridge earthquakes, and adding the 1979 Imperial Valley, California earthquake and the 1995 Kobe event (Zeng and Anderson, 2000).

Our motivation is to understand the physics of wave propagation and the earthquake source. Successful predictive models demonstrate understanding. The composite source model procedure provides a framework for improving and testing physical models for the two main problems that must be solved to predict strong earthquake ground motion: source description and wave propagation. Of course, a goal of strong-motion seismology is to generate generating synthetic strong ground motion seismograms that are sufficiently realistic that they can be used in engineering applications. Our intent is to achieve this, but only in the context of continuous improvements of the physical models of the processes that are involved, combined in a rigorous mathematical framework. We measure how closely we can model historical accelerograms so that when we change the model we can measure the consequent improvement.

In our view, adequate synthetic seismograms must satisfy several criteria:
1. They must be broadband seismograms, i.e. including energy in the entire seismic frequency range, from DC to about 30Hz.
2. They should explicitly incorporate the fault geometry and focal mechanism.
3. They should be able to model earthquakes from magnitude 0 to 8.
4. They should contain P-waves, S-waves, Love waves and Rayleigh waves.
5. They should satisfy the wave equation. This implies, among other criteria, that amplitudes on horizontal and vertical components should be realistic, that surface waves will show appropriate dispersion, and that adjacent sites will show motions with physically realistic amounts of correlation and phase lags.
6. They should have realistic envelopes in the time domain. This implies that seismic scattering must be incorporated.
7. They should have realistic amplitudes in the time domain.
8. They should have realistic spectral amplitudes in the frequency domain. Thus the source must radiate energy at appropriate levels across the entire frequency band of interest.
9. They should have a random component, and a way to obtain multiple realizations that will have a realistic amount of aleatory variability.

The purpose of this paper is to review the method that we have been using to generate the synthetic seismograms, illustrate some applications, and discuss future directions for these studies.

Method

Mathematical Framework

The mathematical framework for this, as for most ground motion simulations, is the representation theorem. After Aki and Richards (1980), one form for the representation theorem is:

\[u_n(\bar{x}, t) = \int d\Sigma \left[\int dt f(t - \bar{x}) \right] C_n \frac{\partial}{\partial \zeta \tau} \xi \cdot V \cdot \partial \Sigma \]

(1)

In this equation, \(u_n(\bar{x}, t) \) gives the \(n \)th component of the displacement of the ground at location \(\bar{x} \) and at time \(t \). The vector \(\vec{V} \) is normal to the fault. The \(\tau \) component of the discontinuity in the slip across the fault is given by \(\delta \tau(\xi, \tau) - \delta \tau(\xi, \tau) \) where \(\xi \) represents a location on the fault surface \(\Sigma \) and \(\tau \) is the time that this displacement occurs. Since the fault is represented by the surface \(\Sigma \), \(d\Sigma \) represents two spatial dimensions. The Green's function is given by \(G \).
This gives the motion in the \(n \) direction at location \(\vec{x} \) and time \(t \) caused by a point force acting in the \(p \) direction at location \(\vec{x}' \) and time \(t' \). Finally, \(c_{pq} \) gives the elastic constants of the medium. For an isotropic medium, \(c_{pq} = \lambda \delta_{pq} + \mu (\delta_{pr}\delta_{qp} + \delta_{qr}\delta_{pq}) \), where \(\lambda \) and \(\mu \) are the Lamé constants.

The constant \(\mu \) is the shear modulus. In Equation (1) summation takes place over repeated indices.

Equation (1) represents the ground motion at the site as the linear combination, through the integral over space, of the contributions from each point on the fault surface. The convolution over time incorporates the effect of the rupture at each point taking a finite amount of time. Through the representation theorem, the problem of predicting ground motions requires specification of the offset on the fault as a function of location and time, which incorporates earthquake source physics, and a specification of the Green's function, which incorporates wave propagation. Next we discuss how the composite source model handles each of these two components.

Composite Source

The composite source that we use is a kinematic model for the slip on the fault. Our models, at this time, are not consistent with dynamic models in which initial stress, rock properties, and friction laws are specified and the rupture is allowed to proceed based on only the laws of physics. While such models improve, they are limited to low frequencies and are based on highly uncertain assumptions about the input. On the other hand, the various versions of the composite source that we have developed so far are able to generate seismograms that satisfy, with measurable misfit and uncertainty, all of the criteria set forth in the introduction.

The source is a superposition of circular subevents with constant stress drop. They are taken to be a realization of a random process, controlled by a density function with a power law dependence:

\[
N(R) = \frac{p}{D} \left(R^{-D} - R_{\text{max}}^{-D} \right)
\]

where \(N \) is the number of subevents of radius \(R \) or greater, and \(p \) is a constant of proportionality. \(D \) is the fractal dimension that, according to Frankel (1991), equals twice the b-value, so is typically set at \(D=2 \). It is mandatory that \(D<3 \); for otherwise the majority of the seismic moment is released in small subevents. The maximum subevent size, \(R_{\text{max}} \), can be taken by default to have a radius of half the narrower fault dimension, although it may be smaller. The model is motivated by a model of the source proposed by Frankel (1991). The random nature of the heterogeneity on a complex fault is simulated by distributing the subevents randomly. Figure 1 shows a realization of the spatial distribution of subevents. Normally, the locations of subevents are constrained such that the outer limit of the subevent does not overlap the boundary of the fault.

Final slip on each subevent is given by Eschenby's (1957) static solution for the shear offset of a circular crack in the presence of a shear stress:

\[
u(r) = \frac{24}{7\pi} \left(\frac{\Delta \sigma}{\mu} \right) \left(r^2 - r^\prime \right)^{\frac{3}{2}}
\]

Equation (3) introduces a stress drop parameter, \(\Delta \sigma \), which is the static stress drop of the individual subevents. The seismic moment of each subevent is given by:

\[
M_s(R) = \frac{16}{7} \pi \Delta \sigma R^3
\]

After selecting a subevent stress drop, integrating the number of subevents (Equation 2) and their moments determines the parameter \(p \):
\[p = \frac{7M_s^p}{16\Delta\sigma} \left(\frac{R_{\text{max}}^D}{R_{\text{max}}^D - R_{\text{min}}^D} \right)^{3-D} \]

where \(M_s^p \) is the seismic moment of the earthquake. In the numerical realizations of the model, \(R_{\text{min}} \) can be taken to be small enough that it has no significance. The heterogeneous nature of the composite earthquake faulting is thus characterized by the maximum subevent size and the subevent stress drop. It is uncommon for a particular realization to have a subevent with radius more than about 0.75 \(R_{\text{max}} \). Figure 2 gives a perspective view of some realizations of the slip for a magnitude 6 earthquake on a 6 km x 10 km fault, where each subevent is represented with the slip of an Escherichia (1957) crack. The top shows two realizations with a subevent stress drop of 100 bars. The bottom shows the effect of changing the subevent stress drop. A smaller subevent stress drop results in more subevents which, in their accumulated effect, tend to cause the slip function to be smoother, and the associated high-frequency radiation to be reduced in amplitude. The subevent stress drop can also be constrained by other independent geophysical data. Anderson (1997) concludes that the subevent stress drop is proportional to the radiated energy, the effective dynamic stress, and the apparent stress.

To represent the kinematic behavior (the time history of the slip) a hypocenter is chosen at some location on the fault, typically near the bottom. Rupture propagates from the hypocenter at a constant rupture velocity, \(v_r \), typically taken to be between 2.5 km/s and 3.0 km/s, as given by inverse studies of past earthquakes. Each subevent initiates its radiation when the rupture front reaches its center.

As part of our continuing efforts to increase the realism, we have used four different models for the displacement pulse radiated from each subevent. At first, we modeled it as a Brune (1970) pulse (Zeng et al., 1994; Yu, 1994). The time function for this case for a subevent with moment \(M_s \) is:

\[\Omega(t) = \left(2\pi f_s \right)^3 M_s \exp \left(-2\pi f_s t \right) \]

The corner frequency was taken after Brune to be \(f_c = 2.34 \beta / 2\pi R \) in which \(\beta \) is the shear velocity. While this time function is sufficient to generate realistic seismograms in most cases, it fails some characteristics that are believed to be true of dynamic ruptures, such as the initial motion beginning proportional to \(t^2 \). To make the results somewhat more physical, Zeng and Anderson (1996) modified the source time function to be the radiation, given by Sato and Hirasaawa (1973), from a growing circular crack, where the crack at all times has the shape of the Escherichia's (1957) solution. This time function introduces another parameter, \(v_r \), which is the expansion rate of the subevent. A higher subevent rupture expansion rate results in a shorter subevent rupture time and thus a higher corner frequency. This replaces the fixed relationship between the corner frequency and the subevent radius (Eqn. 6). We normally set \(v_r = v \), but for some earthquakes, that does not work.

While the Brune (1970) and Sato and Hirasaawa (1973) models were mostly satisfactory for stations relatively far from the fault, additional modification is necessary to match accelerograms from very near to the fault. Thus, Zeng (2002) introduced two asymmetric circular rupture models to improve the subevent source radiation. The first is an asymmetric circular rupture that again matches the Escherichia's (1957) static solution at every successive instant of rupture, where the center moves at a given velocity \(v_r \) that must be less than \(v \), the velocity at which the crack expands. As a result, the rupture velocity at any point on the crack depends on the azimuth angle from the rupture nucleation to the point. When \(v_r = 0 \), we have Sato and Hirasaawa's model. When the velocity is equal to the growing crack velocity, we have Dong and Papageorgiou's (2002) model. The second modification has the crack rupture velocity accelerating during the rupture. This procedure gives about the right amount of rupture directivity on both the fault normal and fault parallel components, at least in the sense that it approximately agrees with the near-fault directivity model of Somerville et al. (1997).
Green's Functions

This method uses synthetic Green's functions, which characterize wave propagation in a flat-layered medium, in the representation theorem (Equation 1). They are calculated as described by Luco and Apsel (1982). The effect of attenuation (Q) is efficiently incorporated into this model. The synthetic Green's function has been modified to consider the effect of the random lateral heterogeneity of the earth by adding scattered waves into the Green's function (Zeng, 1995; Zeng et al., 1995). The solution is also convolved with a plane wave propagation function through a near surface 1-D velocity layering as complex as that suggested by sonic well logs. Recognizing that the radiation pattern at high frequencies does not represent a double-couple mechanism, presumably due to scattering near the source, we introduce a correction for that effect. Thus the complex high-frequency waveform is generated from a combination of a heterogeneous source, wave reverberation in a stratified crustal structure and scattering from lateral inhomogeneity. Figure 3 is designed to represent major elements of the composite source model. Frames show the effects of the source complexity (upper left), the layered medium (upper right), random scattering (lower left), scattering destroying the radiation pattern (lower middle), and directivity in the pulses radiated from the subevents (lower right).

Representative Results

This section selects figures from some of our papers showing applications of the composite source model. Figure 4, from Zeng et al. (1994), shows a comparison of synthetic and actual seismograms for the 19 September, 1985 Michoacan, Mexico earthquake. This result shows that the synthetics are capable of matching the statistical characteristics of actual seismograms over the entire frequency band of interest to strong motion seismology.

Figures 5-7 are from the Anderson and Yu (1996) modeling of the 1994 Northridge, California, earthquake. This was a "semi-blind" experiment, as we generated the synthetic seismograms at 14 sites after the earthquake had occurred, with knowledge of the fault location, focal mechanism, and velocity model, but nothing was modified to improve the fit to the seismograms after we established the parameters that we would use. Figure 5 shows seismograms and Fourier spectra for the station nearest the epicenter. Figure 6 shows the misfit as a function of distance for peak acceleration, velocity and displacement. Figure 7 shows the misfit as a function of distance for the Fourier amplitude spectrum. The misfit was obtained by finding, for instance, the peak acceleration at a station based on 50 synthetic realizations of the source model. Anderson and Yu (1996) concluded that in this form, the model is capable of performing nearly as well as regression models. Subsequent tests, extending to stations nearer the fault and farther from the fault, and computing the seismograms to higher frequencies, demonstrated the need to continue to improve the model.

Zeng and Anderson (1996) found a specific composite source model that fits the accelerograms at low frequencies for the Northridge earthquake (Figs. 8, 9). They used a genetic algorithm inversion to obtain the specific composite source model. Figure 8 shows the slip function, and Figure 9 shows the match to the seismograms. We consider this an important conclusion, since it shows that the low-frequency ground motion from actual earthquake slip functions is within the space spanned by the composite source models. This supports the idea that the composite source model has enough realism to be used to develop scenario accelerograms for future earthquakes.

Anderson et al. (2001) and Suanoglu et al. (2002) studied the M=6.2 Dinar, Turkey, earthquake of October 1, 1995. This earthquake had a normal-faulting focal mechanism. Figure 10 shows the location of Dinar, and Figure 11 shows the locations of the nearby strong motions stations. Figure 12 shows the slip function, determined using the genetic algorithm of Zeng and Anderson (1996), and Figure 13 shows the low-frequency match between synthetic and observed seismograms. The composite source model was used to extrapolate the ground motions to additional sites within Dinar.
Figure 14 (left) shows Dinar relative to the fault rupture. Figure 15 from Sucuoglu et al (2002) shows the broadband fit between the composite source model seismograms and the data from the Dinar accelerograph. Figure 14 (right) shows the locations of the stations used by Sucuoglu et al to generate synthetic broadband seismograms utilizing near surface geological information. Figure 16 shows a selection of the seismograms. Sucuoglu et al compiled damage data from Dinar according to the city boroughs shown in Figure 14. Figure 17 shows profiles of the damage parameter and various measures of the strength of the ground motions from the synthetics, showing that they have a common form. Figure 18 is one of several figures from Sucuoglu et al (2002) correlating damage parameters with a ground motion parameter (in this case, the spectral energy between 0 and 1 Hz) within a zone of common surficial geology. The positive correlation, which is as good as could be hoped for considering uncertainties, indicates that the composite source model has added information on the nature of ground motions even within the small lateral dimensions of the city of Dinar.

Conclusions and Future Directions

The composite source model seems to be an adequate model for engineering applications. However, our overall goal is to make it more consistent with the physics of earthquake rupture and wave propagation. At low frequencies, future steps could involve merging the computations based on the layered models with finite difference computations of the response of a basin.

Since the model uses exact Green's functions for a layered half space, the seismograms for nearby locations reflect strain in the Earth model, when the random scattering is not used. The correlation of adjacent points is something that can be adjusted to match observations through calibration of the random scattering component of the Green's functions. Thus a future application is to study strains or input motions at separated bridge piers, for instance.

At high frequencies, the physics that generate the high frequency radiation are not well understood (Anderson et al, 2002). More study is needed, for instance, to explain why peak accelerations were unexpectedly low in the 1999 Turkey and Taiwan earthquakes, and then to incorporate these results into the calibration of the model.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. 0000033 and 0000050. This research was also supported by the Southern California Earthquake Center. SCEC is funded by NSF Cooperative Agreement EAR-8920136 and USGS Cooperative Agreements 14-08-0001-A0899 and 1434-HQ-97AG01718. The SCEC contribution number for this paper is 760.

References

Figure 1. Larger subevents for a realization of a composite source model.

Figure 2. Five realizations of a composite source for the same target moment. Top: two realizations with the same 150 bar stress drop. Bottom: variation of stress drop to 25 and 400 bars.

Figure 3. Major elements of the composite source model, as explained in the text.

Figure 4. Match of CSM with data from the McLeodstock, Montana, earthquake, Sept. 10, 1984, ML 4. Data is on the left, and the solid line is the spectrum (from Zeng et al., 1994).

Figure 5. Comparisons of imagnograms, Fourier spectra, and response spectra at the Van Noa stations from the "semi-blend" test of the composite source model by Aubertin and Yu (1994).

Figure 6. Ratio of observed to model predictions for 14 stations that recorded the Northridge earthquake, from Aubertin and Yu (1994). Model predictions are based on the average of 50 realizations of the composite source.
Figure 7: Magnitudes of
Figure 8: Specific
empirical results for
coarse source model
assumed for
model for the
Northridge
earthquake
earthquake. Data
results have
from Zeng
predictor error
and Aki (1986)
computational
errors using other
approaches come out with
better slip models.

Figure 9: Comparison
Figure 10: Simplified source map of the eastern Mediterranean region, from Anderson et al. (2001). Data are from the
of data and synthetic
earthquake, showing the area
spectra from the
spectra obtained
for the Northridge
earthquake. Data are
same earthquake.
Franz (2001) and
from Zeng
and
Anderson
and

Figure 11: Map of the San Francisco
Figure 12: Source model, illustrating location of slip used to
region, showing active tectonic and active seismotectonic sites
produce the synthetic seismograms in Figure 11. In this figure the
top left, and the south end (right) are at the
northeast shears across the San Francisco Bay, with the shear
location is shown in the box in the top
area. Arrows on the right
top right. Dotted circles show the location of
show stress changes.

Figure 13: Source model, illustrating location of slip used to
produce the synthetic seismograms in Figure 11. In this figure the
northeast shears across the San Francisco Bay, with the shear
area. Arrows on the right
top right. Dotted circles show the location of
show stress changes.
Figure 14. Left: Fault trace (heavy line) and locations of the Dixie (accelerograph; Anderson et al., 2001). The light lines show possible interface projections of the dipping fault. Aftermath with black symbols occurred October 2, medium gray October 3, and pale gray October 4. Right: Damage index and locations of sites where synthetic ground motions were computed for comparison with damage (Sciciliano et al., 2002).

Figure 15. Observed (left) and synthetic broadband accelerograms and Fourier spectra at the Dixie accelerograph, from Sciciliano et al. (2002).

Figure 16. Synthetic accelerograms across profile 4 (Figure 14) using the composite source model that gave the match to the Dixie record seen in Figure 15.

Figure 17. Profile 1 across Dixie (see Figure 14) showing a damage index and the magnitude of four ground motion parameters that might be correlated with the damage (from Sciciliano et al., 2002).

Figure 18. Relationship between the Damage Index and a pseudo-motion parameter S_{DE} for sites on common set conditions in Dixie (from Sciciliano et al., 2002).

276
INVERSION OF STOCHASTIC EARTHQUAKE MODEL PARAMETERS IN KOREA USING THE MODIFIED LEVENBERG-MARQUARDT'S METHOD

Kwan-Hee Yun\(^1\), Walter Silva\(^2\), Jong-Rim Lee\(^1\)
1) Korea Electric Power Research Institute, Korea 2) Pacific Engineering and Analysis, USA

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

Parameters of stochastic point-source ground motion model were inverted based on extensive digital records from dense seismic networks for small-to-moderate earthquakes in and around the Korea. Modified Levenberg-Marquardt's nonlinear inversion method was employed for stable inversion which considers the second derivatives of the Hessian matrix. After trying various cases with regard to seismic source types, frequency dependency of crustal attenuation, and crustal amplification, the best estimates for earthquake simulation are determined to be \(348f^{0.53}\) for crustal attenuation, 20–30 bars for stress drop, 0.02 for site anelastic attenuation (\(\kappa\)), and 50 km for crossover distance. In addition, detailed features of crustal attenuation such as anisotropy and localized \(Q\) were evaluated, which contributes to providing scientific bases for developing site-specific ground motion attenuation relations and interpreting the geological and geophysical characteristics of the Korean Peninsula.

Introduction

In the region where strong ground motion data are scarce such as in Korea, it becomes engineering practice to employ well-founded, validated, and simple stochastic point-source ground motion earthquake model to predict strong ground motion. The parameters for stochastic point-source ground motion model are stress drop for sources, frequency dependent quality factor (\(Q\)) for crustal attenuation, and kappa (\(\kappa\)) for site effects.

In this study, these model parameters were inverted based on extensive earthquake dataset at the first step and more detailed features of crustal attenuation were investigated at the second step. For stable inversion of these parameters under various cases, conventional Levenberg-Marquardt's nonlinear inversion method is simply modified by taking into account the second derivatives of the Hessian matrix.

As a result of the first step, it turned out that crustal attenuation with frequency dependent model, \(348f^{0.53}\) (\(f\) means frequency) is calculated to be the best estimate for simulating almost all of the earthquake records in and around the South Korea with amplification ratio of 1.67 at high frequencies (> 5Hz) for crustal amplification and stress drop ranging from 20 to 30 bars. However by analyzing the fitting results from the inversion, it seems that some misfit can not be fully accounted for by site characteristics only, which suggests that the crustal attenuation is different over the region. Also unsatisfactorily the inverted \(Q\) is significantly higher than the previous crustal attenuation values determined by using the S coda wave for a specific region ((2,3,4,5,6,7)). This would have serious implication in developing site-specific ground motion attenuation relations. In addition if the lateral variation of crustal attenuation is fully identified, this would contribute to reducing the uncertainties inherent in developing ground motion attenuation relations. Especially considering the fact that earthquakes with moderate size and above could occur far from the seismic observation networks, it is necessary to take into account the lateral variation of crustal attenuation to accurately estimate the
source characteristics. Also the study on crustal attenuation provides the scientific data to help interpret the earth interior beneath the Korean Peninsula, since the Q is known to be well correlated with interfaces and discontinuities within the crust, material composition, thickness and heat flow ([8]). Regional differences of Q have been suggested by previous researches but without quantification and systematic approach and mainly focused on the southeastern part of Korea. Recently a study concluded that the Lg Q values do not have same distribution throughout the region based on the Q study by using Reversed Two Station Method ([3]). There were other studies abroad on mapping of lateral variation of Lg wave ([8,9]).

So at the second step, unlike the previous study solely focused on mapping of lateral Q structure, characteristics of quality factor such as anisotropy and lateral variation are comprehensively studied in the aspect of simulating strong ground motion using earthquake data from the Korean seismic networks which are unique in the world and in perfect condition for Q tomographic inversion in that high dynamic range seismic stations are densely populated over the nation.

Theory

The stochastic point-source ground motion model has proven remarkably effective in correlating with a wide range of ground motion observations. The model employed in this study uses an \(\omega \)-square source model with a single corner frequency and a constant stress parameter ([10]). Random vibration theory is used to relate RMS (root-mean-square) values to peak values of acceleration, and oscillator response computed from the power spectra to expected peak time domain values.

The shape of the acceleration spectral density, \(s(f) \), is given by

\[
s(f) = C \frac{f^2}{1+(\frac{f}{f_c})^2} M_0 G(R) P(f) A(f) e^{-\frac{R}{R_0}}
\]

where

- \(M_0 \) = seismic moment,
- \(R \) = hypocentral distance,
- \(\beta_0 \) = shear wave velocity at the source,
- \(Q(f) \) = frequency dependent quality factor (\(Q_0 f^\eta \)),
- \(A(f) \) = near-surface amplification factors,
- \(P(f) \) = high-frequency truncation filter,
- \(f_c \) = source corner frequency,
- \(C = \beta_0 \left(\frac{1}{\rho_0 \beta_0} \right)^2 (2) \cdot (0.63) \cdot \left(\frac{1}{\sqrt{2}} \right) \cdot \pi \)
- \(G(R) = R^{-1} \) for \(R \leq R_0 \), \(\sqrt{R_0 R} \) for \(R \geq R_0 \)

\(C \) is a constant which contains source region density (\(\rho_0 \)) and shear-wave velocity terms and accounts for the free-surface effect (factor of 2), the source radiation pattern averaged over a sphere (0.63), and the partition of energy into two horizontal components (1/\(\sqrt{2} \)). Source scaling is provided by specifying two independent parameters, the seismic moment (\(M_0 \)) and the high-frequency stress parameter or stress drop (\(\Delta \sigma \)). The seismic moment is related to magnitude through the definition of moment magnitude \(M \) by the relation

\[
\log M_0 = 1.5 M + 16.1 ([11])
\]

278
The stress parameter ($\Delta \sigma$) is taken to be independent of magnitude throughout the world and relates the corner frequency f_c to M_o through the relation

$$f_c = \beta (\Delta \sigma / 8.44M_o)^{1/3} \quad (3)$$

The spectral shape of the single-corner-frequency ω-square source model is then described by the two free parameters M_o and $\Delta \sigma$. The P(f) filter is an attempt to model the observation that acceleration spectral density appears to fall off rapidly beyond some region-dependent maximum frequency. The κ adopted here for P(f) is attributed to attenuation in the very shallow crust directly below the site ([12]). The intrinsic attenuation along this part of the path is not considered to be frequency dependent and is modelled as a frequency independent, but site dependent, constant value of kappa. Geometrical attenuation (G(R)) is divided into two types depending on whether hypocentral distance exceeds the crossover distance, R_0 or not.

![Diagram](Image)

Figure 1. Schematic diagram to illustrate the physical model for Q anisotropy

Characteristics of Q anisotropy is modeled in terms of anisotropy ratio, ε with respect to reference strikes by constructing physical model that anelastic crustal attenuation along a ray path can be constructed by linear combination of directional attenuations along two mutually orthogonal paths with weights determined by a function of angle, which leads to following formula (Figure 1).

$$\frac{R_p}{Q_o} = \frac{R_p}{Q_o} + \frac{R_p}{Q_o} = \frac{R \cdot \cos^2 \theta}{Q_o} + \frac{R \cdot \sin^2 \theta}{\varepsilon Q_o} \quad (4)$$

where R_p is the length of path intersecting a block deviating a reference strike with angle θ. R_p and R_p is the projection of R_p into the parallel and orthogonal direction relative to the given strike with the constraint that R_p equals to the sum of R_p and R_p for all deviation angles. Q_o and Q_o represent the Q_o values for the paths parallel and orthogonal to the given strike. Q anisotropy ratio ε is defined here as Q_o / Q_o.

In addition, if localized Q_o for i-th block is used for Q tomographic inversion instead of regional Q_o, the exponent term of equation (1) can be replaced as follows.
\[
\frac{\pi f R}{\beta_0 Q(f)} = \frac{\pi f R}{\beta_0 Q_0 f^\eta} = \frac{\pi f}{\beta_0 f^\eta} \sum_{i=1}^{N} \frac{R_i}{Q_i}
\]

(5)

where \(N \) is the total number of discretized blocks crossing the ray path from hypocenter to the sites and \(R_i \) is the length of ray path intersecting i-th block. In this study, depth of ray path intersecting blocks and width of a ray were not explicitly considered. Since the shear wave velocity and \(\eta \) are not so sensitive to local geological features, these values are rightly assumed to be the same for whole region. Even though the localized \(Q \) can be modeled using non-parametric form for multiple frequencies, we use a functional form of power-law frequency dependence for quality factor to minimize the site effect expected in high frequencies when using non-parametric forms.

If we denote the natural log of \(s(f) \) in equation (1) as \(y(x; \vec{a}) \) where \(\vec{a} \) is a vector of parameters and \(x \) is a variable for frequency values, best estimates of model parameters \(\vec{a} \) can be found by minimizing the following merit function ([13]).

\[
\chi^2(\vec{a}) = \sum_{i=1}^{N} (y_i - y(x_i; \vec{a}))^2
\]

(6)

where \(y_i \) is observed value at \(x_i \) and components of model parameters of \(\vec{a} \) depends on the problems to be solved, i.e. in case of inversion for regional parameters

\[
\vec{a} = (Q_0, \eta, R_0, M_1, ..., M_{N_{eop}}, \ln(f_{c1}), ..., \ln(f_{cN_{eop}}), \kappa_1, ..., \kappa_{N_{sta}})
\]

(7)

\(N_{eop} = \) total number of earthquake events, \(N_{sta} = \) total number of seismic stations.

For inversion of anisotropy in equation (4), additional parameters \(Q_0, \eta, \) and \(\varepsilon \) for local regions will be included in model parameters. For Q tomographic inversion, \(\ln(Q_0) \) in equation (5) will be added. The first and second derivatives of equation (6) with respect to \(a_k \), a component of \(\vec{a} \) can be written as equation (8) and (9).

\[
\frac{\partial \chi^2(\vec{a})}{\partial a_k} = -2 \sum_{i=1}^{N} (y_i - y(x_i; \vec{a}))(\frac{\partial y(x_i; \vec{a})}{\partial a_k})
\]

(8)

\[
\frac{\partial \chi^2(\vec{a})}{\partial a_k \partial a_l} = 2 \sum_{i=1}^{N} \left[\frac{\partial y(x_i; \vec{a})}{\partial a_k} \frac{\partial y(x_i; \vec{a})}{\partial a_l} - r \cdot \left(y_i - y(x_i; \vec{a}) \right) \frac{\partial^2 y(x_i; \vec{a})}{\partial a_k \partial a_l} \right]_{r=1}
\]

(9)

\(r \) in equation (9) is an inserted variable to assign the weight of second derivative terms which has the value between 0 and 1. If we redefine left side of equation (8) and (9) as in equation (10), the increment values of model parameters \(\delta a_i \) for each step of any nonlinear iterative inversion methods can be calculated by matrix inversion of equation (11).

\[
\alpha_{kl} = \frac{1}{2} \frac{\partial \chi^2(\vec{a})}{\partial a_k \partial a_l}, \quad \beta_k = -\frac{1}{2} \frac{\partial \chi^2(\vec{a})}{\partial a_k}
\]

(10)
\[\sum_{i=1}^{N} \alpha_{ik} \delta \alpha_i = \beta_k \]

(11)

In conventional Levenberg-Marquardt’s (LM) method, the components of Hessian matrix of equation (9) is approximated only in terms of first derivatives \(r = 0 \) in equation (9). There is another point in LM method, in which instead of solving equation (11), a fudge factor \(\lambda \) is involved to stabilize the matrix inversion (see equation (12)). \(\lambda \), the initial value of which is usually 0.001, is multiplied or divided by 10 according to whether the error in equation (6) increase or decrease, respectively.

\[\sum_{i=1}^{N} \alpha'_{ij} \delta \alpha_i = \beta_k , \quad \alpha^{'j} = \alpha^{'j} (1 + \lambda) , \quad \alpha^{'j} = \alpha^{'j} (j \neq k) \]

(12)

Intrigued by the property of \(\lambda \), we propose here modified LM method that takes into account the second derivatives of the Hessian matrix so as to give robust inversion results. The weight of the second derivative term \(r \) in equation (9) is determined by the value of \(\lambda \) in Levenberg-Marquardt’s method (13).

\[r(\lambda) = A + B \times \log_{10}(\lambda) \]

(13)

In equation (13), constant \(A \) and \(B \) are determined by putting \(r = 0 \) at \(\lambda_0 \) and \(r = 1 \) at \(\lambda_1 \) where \(\lambda_0 \) and \(\lambda_1 \) are the maximum and minimum values of proper range of \(\lambda \). \(r \) is set to 0 for \(\lambda \) greater than \(\lambda_0 \) and \(r \) is set to 1 for \(\lambda \) lower than \(\lambda_1 \). As a proper range of \(\lambda \), \(\lambda_0 \) and \(\lambda_1 \) are given in this study \(10^{-3} \) and \(10^{11} \), respectively. The essence of the modified LM is to give more weight to the second derivatives of Hessian matrix when the iterative step gets closer to the solution of equation (6).

The modified LM method is applied to the extensive dataset to estimate model parameters which include the moment magnitudes and corner frequencies for the sources, \(Q_0 \), \(R_0 \), and \(\eta \) for regional crustal attenuation, \(\kappa^{'} \)'s for each site, and \(Q \) anisotropy ratio for major tectonic regions. Especially the southern part of the Korean Peninsula is discretized into many sub blocks and \(Q_0 \)s for each block introduced in equation (5) are inverted with \(\eta \) and \(R_0 \) assumed to be the same for the entire region. Also some basic model parameters such as \(\beta_0 \), and \(\rho_0 \) are fixed to 3.4km/sec and 2.74g/cm\(^3\) respectively and assumed to be the same for the whole region. At the same time, hypocentral distances for all the seismic records are calculated in preparation stage and fixed through the inversion process.

Seismic Data and Processing

There are several seismic networks available for digital earthquake data within and outskirts of the Korean Peninsula. Major seismic networks are operated by Korea Meteorological Agency, Korea Institute of Geology and Mining, Korea Electric Power Research Institute, and Korea Institute of Nuclear Safety. U.S. Air Force also operates array network (KSRS) near the city of Wonju and local universities the others. One IRIS station is located in Incheon and one station in Daegon (moved from Pohang) has been operated by Tokyo University. There are two useful seismic stations in Tsushima of Japan, an island near the southeastern coast of the Korean Peninsula. Some seismic stations in North Korea and northeastern China are temporarily deployed. Most of these seismic stations are equipped with high dynamic range recording systems capable of recording high quality ground motion at the
distant station even for microearthquakes.

The earthquake dataset used until now comprises 190 earthquakes with 3,400 seismograms mostly since 1996 starting from 1992 and is being updated for renewal of inversion each time earthquake occurs. Most of the data come from the earthquakes of magnitude less than 4.0. The ray paths of the dataset cover entire region of the southern part of the Korean Peninsula. Because the amplitude of Fourier spectrum was concerned the most, quality control of the seismic data was given foremost priority and took most of the time and effort in this study. Since the hypocentral distance is required to be fixed as inputs and critical for the inversion, all of the local public reports of earthquake source parameters are carefully examined. Among these, epicenters and focal depths announced by KIGAM are given the most preference followed by KMA and ISC information resources in the following order. Calibration status of all the seismic stations was checked by all the possible means ([14]). Instrumental correction was rigorously performed in the time domain to enlarge the available frequency band. Mainly acceleration data are used for spectrum calculation, low frequency spectrum supplemented by using velocity data.

The data segment for spectrum evaluation was selected by a time window of varying span depending on the epicenter with the onset time manually picked to include main wave energy packets. The length of the window is designed based upon the crustal velocity structure by S.K. Kim ([14]) to exclude Rayleigh wave components. Fourier spectra for two horizontal components were calculated after cosine tapering with 5% at each end, vector summed and smoothed by averaging the spectrum of 0.4 octave frequency band. Spectrum values are used of frequency range with more than three to four S/N ratio. Since most of the seismic data are recorded with 100 sampling per second after downsampling sharply by a FIR filter, the highest frequency used goes up to 40 Hz which is favorable for detailed Q tomography if site effects are efficiently removed.

Inversions of regional parameters for stochastic point-source ground model are implemented and evaluated under a few case of conditions such as types of source model, frequency dependence of crustal attenuation, and consideration of crustal amplification. Crustal amplification for Korean Peninsula is evaluated based on the crustal model suggested by S.K. Kim ([15]) and by using the program RASCAL ([16]). The crustal amplification is obtained by smoothing the transfer function calculated from the seismic source located at 10km depth to the ground surface with a layer on top of 20m in thickness having shear wave velocity of 1,500m/sec. The resultant crustal amplification gives 1.67 at high frequencies above 5 Hz which is a little higher than the one in central and eastern U.S.A. ([17]). The types of source model considered are omega-square and omega models. Omega model is tried according to a study ([18]) that supported omega model for small earthquakes.

For Q anisotropy evaluation, two-step approach was adopted to save time for inversion runs. First, all the ray paths are divided into the ray paths, one passing the region of interest and the rest of the path. By fixing the regional model parameter for the outside region using the estimates obtained for regional area, the model parameters for the region of interest are inverted by floating the anisotropy ratio introduced in equation (4) for strike angles varying from 0 to 90 degree. The strike direction with the lowest fitting error, most of the time corresponding to the largest or lowest anisotropy ratio epsilon, is determined to be the principal strike. Once the principal strike is found out for every single block, anisotropy ratios for all the blocks are simultaneously inverted for the predetermined principal strikes.

To perform Q tomographic inversion, three phases of inversion were performed (see Figure 2). First, except the ocean, the inland is discretized into evenly spaced grids and inversion is performed to obtain Q tomographic structure. Second, besides the region around the southern part of the Korean
Peninsula is divided into six large blocks, the region in the inland is treated as one major block. This time, the delineation of blocks off the coast are chosen roughly by extrapolating the boundaries identified in the inland based on the preliminary results of the first phase. Inversion is performed for seven major blocks (Figure 2(b)). Lastly while the blocks off the coast remains unchanged, the inland area is divided again into grids and properties for all the grids are simultaneously inverted. But as the final phase of inversion is expected to be unstable, one physical constraint is assigned to Q_{0k} values that the summation of crustal attenuations by many discretized blocks should be the same as the one calculated for the whole area covering the same discretized region in phase two as in equation (14). No other constraints such as spatial smoothness on Q_{0k} values are supposed.

$$\frac{R_{\text{cum}}}{Q_0} = \sum_{i=1}^{N_{\text{block}}} \frac{R_{i,\text{cum}}}{Q_{0i}}$$

(14)

In equation (14) R_{cum} and $R_{i,\text{cum}}$ represent the total length of ray path intersecting the whole block and i-th discretized block respectively, both of which are cumulatively summed for all the seismic records. N_{block} is the total number of floated Q_{0i}s.

Regardless of the type of inversion, ray crossing block number, deviation angle relative to a reference angle, and fractional lengths of ray paths crossing the blocks were calculated beforehand for all the seismic records.

![Diagram](image)

(a) phase 1 (b) phase 2 (c) phase 3

Figure 2. Three phases to stably perform Q tomographic inversion

Results

Regional parameters

Inversion results of regional parameters for stochastic point-source ground motion model are obtained for various cases of conditions by using modified Levenberg-Marquardt's as listed in Table 1. It is to be noted in the Table that different results were obtained for various cases with small differences in the fitting error. However case 1 is determined to be the best results based on the

283
following reasons.

1) Past studies on crustal attenuation (Q) by using coda waves show strong frequency dependence of Q

2) Similar results of Q(f) and R₀ as case 1 is obtained in another study ([19])

3) Inversion results using ω source model show large standard deviation of Δσ and undesirable strong correlation (correlation coefficient > 0.9) between Q₀ and η

<table>
<thead>
<tr>
<th>case</th>
<th>Median of Δσ</th>
<th>Q₀</th>
<th>η</th>
<th>R₀</th>
<th>κ</th>
<th>STD of κ</th>
<th>Crustal Amp.</th>
<th>γ mean/median</th>
<th>χ²</th>
<th>etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.7</td>
<td>348</td>
<td>0.53</td>
<td>50</td>
<td>0.019</td>
<td>1.18</td>
<td>1.67</td>
<td>2</td>
<td>1.30</td>
<td>14569 Best estimates</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>400</td>
<td>0.47</td>
<td>51</td>
<td>0.017</td>
<td>1.56</td>
<td>1.00</td>
<td>2</td>
<td>1.30</td>
<td>14600</td>
</tr>
<tr>
<td>3</td>
<td>14.6</td>
<td>1436</td>
<td>0</td>
<td>80</td>
<td>0.043</td>
<td>7.7</td>
<td>1.67</td>
<td>2</td>
<td>1.33</td>
<td>15545</td>
</tr>
<tr>
<td>4</td>
<td>large</td>
<td>743</td>
<td>0.2</td>
<td>54.9</td>
<td>0.024</td>
<td>1.15</td>
<td>1.00</td>
<td>1</td>
<td>1.30</td>
<td>14614 Large STD</td>
</tr>
<tr>
<td>5</td>
<td>20.4</td>
<td>1465</td>
<td>0</td>
<td>73</td>
<td>0.02</td>
<td>1.18</td>
<td>1.67</td>
<td>1</td>
<td>1.30</td>
<td>14455</td>
</tr>
<tr>
<td>6</td>
<td>36.3</td>
<td>1417</td>
<td>0</td>
<td>70.8</td>
<td>0.018</td>
<td>1.39</td>
<td>1.00</td>
<td>1</td>
<td>1.31</td>
<td>14742</td>
</tr>
<tr>
<td>7</td>
<td>large</td>
<td>613</td>
<td>0.29</td>
<td>56</td>
<td>0.028</td>
<td>1.08</td>
<td>1.67</td>
<td>1</td>
<td>1.3</td>
<td>14223 Large STD</td>
</tr>
</tbody>
</table>

* Shaded area: fixed values for inversions
* STD: standard deviation,
* γ: seismic source model; 1 (ω), 2 (ω -square)

Among the model parameters, η is very difficult to determine because it is the value of double exponent in equation (1). Also it has very strong correlation with Q₀. So to determine the best estimate of η, various initial values of η are assumed and by finding the lowest error, the η is selected. Figure 3 shows error distribution in frequency and epicentral distance. From the figure, observed and calculated Fourier spectra have good agreement (about 0.3 lognormal standard deviation) in broad range of frequencies with no bias. Comparison of median levels of observed and simulated data shows no bias, too and good fitting result over the whole epicentral distance range. The distribution of stress drops is shown in Figure 4. The mean level of stress drop is about 20-30bars with about 1.0 lognormal standard deviation. The variation of stress drop is high compared to the values of 0.7 reported in central and eastern North America ([20]). The estimated values of stress drop are based on small-to-moderate earthquakes but have similar level of calculated stress drop (in Figure 4) based on teleseismic seismic records from large earthquakes around the Korean Peninsula ([21]).
stochastic point-source ground motion model

Model parameters R_0 and η, which are assumed to be the same for the whole region, were inverted to give the stable values between 50 to 60 km and 0.53 respectively regardless of the inversion runs. The value of R_0 known to be at least twice the crustal thickness ([22]) seems to be reasonable considering the reported Moho depth of about 30-40 km. Since the iterative non-linear inversion method is used, the initial solution should be close enough to the global solution so as not to get diverged or trapped in local minimum. In this sense, the regional values of model parameters were used as initial values throughout the following inversions.

The inversion adopted here involves a simultaneous inversion of M_0 and δ, for source terms which are known to be correlated each other and converting these to moment magnitude and $\Delta \sigma$ by using equation (2) and (3). So as a way of indirectly checking the accuracy of the inversion, the relationship between moment magnitudes obtained by the inversion and the local magnitudes reported by KIGAM was compared with the one in eastern North America ([23]) which has similar crustal attenuation characteristic as Korea. Figure 5 shows a comparison result revealing close match between the two relations even though the range of earthquake magnitude is limited to less than 5.0. This fact implies that the moment magnitude obtained by the inversion is valid. This result also supports the applicability of moment-to-local magnitude converting relation of the eastern North America to the Korean Peninsula for the Probabilistic Seismic Hazard Analysis which requires ground motion attenuation relation with local magnitudes.

Since the localized Q_0 is assumed to be present, it directly interacts with the definition of kappa. The calculated kappa values in Q tomographic inversion were comparable with the one in case where single regional Q value is inverted. But the standard deviation of log of kappa values tends to be lower by about 10%. The localized Q_0 is more of attenuation characteristic below a depth, above which the effect of kappa dominates. The values of kappa are reported to have large differences even for the localized area. However the localized Q_0 defined here has the same value within a designated block. The fitting results for some sites are still poor with the observed spectrum lower than the estimated, which is attributed to low crustal amplification factor for this site or bad calibration of the respective seismic stations.

Figure 4. Distribution of stress drops for local earthquakes

Figure 5. Moment-local magnitude relation
Q Anisotropy

Q anisotropy is evaluated for four major tectonic provinces in the southern part of the Korean Peninsula that are named Gyeonggi Massif, Oscheon Folded Belt, Sobaegsan Massif, and Gyeongsang Basin (Figure 6). Table 2 shows how Q anisotropy ratio and error decreasing rate are changing according to the reference strike. From the Table 2, there is a reference strike called principal strike (50°) at which Q anisotropy ratio is maximum (or minimum) and the error is minimum. Following the same procedure exemplified in Table 2, the principal strike and the corresponding Q anisotropy values are sought for giving the result of Table 3 for four tectonic provinces. The result shows that Sobaegsan Massif has very high anisotropy with Q along ENE-WSW direction having almost two times larger than the other orthogonal direction. The other tectonic provinces have no distinct Q anisotropy except Geongsang Basin. It is to be noticed that the principal orientation of Q anisotropy of Geongsan basin (NW-SE) is quite different to the others and also contradict the previous results ([2,6]) that revealed that the quality factor of P wave measured along the ray paths perpendicular to the strike direction NNE-SSW of the major faults appeared to be lower than the one parallel to the fault direction. Even though yet to be fully identified, plausible causes of the strong Q anisotropy are attributed to the heterogeneous Q structure described below, the directional property of the stratified dipping layer in Geongsan basin, the folded belt or the tectonic stress regime. Even though the possibility that the Q anisotropy is a result of assuming the same β_0 is ruled out due to no report of velocity anisotropy as high as 1.4 along different direction, this can be a candidate reason in part. However, overall NE-SW directional property of strong wave propagation is well explained by phenomenal fact observed when modest earthquake at Yeongwol shook the nationwide in 1996.

Table 2. Example results of inversion of anisorropy ratio for Gyeongsang Basin

<table>
<thead>
<tr>
<th>Reference Strike (in degree)</th>
<th>Anisotropy Ratio</th>
<th>Error Decreasing Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9668</td>
<td>0.26%</td>
</tr>
<tr>
<td>10</td>
<td>1.0372</td>
<td>0.26%</td>
</tr>
<tr>
<td>20</td>
<td>1.1299</td>
<td>0.29%</td>
</tr>
<tr>
<td>30</td>
<td>1.2412</td>
<td>0.35%</td>
</tr>
<tr>
<td>40</td>
<td>1.3321</td>
<td>0.40%</td>
</tr>
<tr>
<td>50</td>
<td>1.3343</td>
<td>0.41%</td>
</tr>
<tr>
<td>60</td>
<td>1.2639</td>
<td>0.38%</td>
</tr>
<tr>
<td>70</td>
<td>1.1787</td>
<td>0.33%</td>
</tr>
<tr>
<td>80</td>
<td>1.1046</td>
<td>0.29%</td>
</tr>
</tbody>
</table>
Table 3. Q anisotropy ratio and principal strike for major tectonic regions

<table>
<thead>
<tr>
<th>Tectonic Province</th>
<th>Q_0 (η = 0.53)</th>
<th>Principal Strike (in degree)</th>
<th>Anisotropy ratio (Q_1/Q_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyeonggi Massif</td>
<td>350</td>
<td>0</td>
<td>0.91</td>
</tr>
<tr>
<td>Gyeonggi Folded Belt</td>
<td>415</td>
<td>50</td>
<td>0.76</td>
</tr>
<tr>
<td>Sobaegsan Massif</td>
<td>659</td>
<td>70</td>
<td>0.57</td>
</tr>
<tr>
<td>Gyeongsang Basin</td>
<td>254</td>
<td>50</td>
<td>1.33</td>
</tr>
<tr>
<td>South Korea as a whole</td>
<td>348</td>
<td>30</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Q_0 Tomography

Cumulative length of ray path per a block for tomographic inversion is found to be at least 1,200 km, showing spatially inhomogeneous and nonuniform distribution around the Korea almost proportional to the concentration of seismic stations (Figure 7(b)). The site effect is believed to be insignificant because the direction of ray path is uniform for all angles in the effect of on average canceling site effect on the paths of two opposite direction. But for regions lying just beside the coastline Q_0 values are suspicious of being contaminated by site effects or bad calibration status of seismic stations because the direction is limited toward the inland. Setting the grid, the distribution of the stations is considered. Also the grid size is selected to be as small as possible as long as the inversion is stable. If the grid size decrease, the site effect might more severely interact with the crustal attenuation. The final grid size capable of producing stable inversion result is 0.4 x 0.4 degree.

(a) Q_0 image map (b) cumulative block intersecting ray path
Figure 7. Q_0 tomographic inversion result

The resultant fitting error produced by Q tomography is significantly lower than the one from assuming the single regional Q parameters. Even though the ray path coverage off the coast are not concentrated enough to give detailed Q structure, the concentration and quality of seismic networks in the inland of Korean Peninsula were good enough to provide detailed lateral variation of Q structure as a result of inversion (Figure 7(a)). It is found that Q values varies over the regions off the coast as well
as in inland, suggesting that seismic source parameters cannot be precisely determined by using single set of model parameters. Since the image in Figure 7(a) is hard to interpret, another image of Q structure was obtained by interpolating the grid values of Q₀ by Kriging method, which is thought to be reasonable considering the smooth variation of Q₀ over the space. The interpolated image of localized Q structure revealed very complicated shape of Q distribution in the southern part of the Korean Peninsula. Belt of high Q value encompassing the Gyungsan Basin is found. The Q₀ value for the Gyungsan Basin is consistent with the coda Q value determined by other authors. The results of image also agree well with the Lg Q value ([3]). The inverted Q values can be said to be representative value of Q structure above the earthquake prone depth. Also considering most of the epicenters are distributed above R₀, the resultant Q tomographic image is likely to much resemble Lg Q structure.

The interpretation of heterogeneous Q value can be linked to the Q anisotropy. Q tomographic image seems to be strongly correlated with the geological map as well as geophysical maps such as geomagnetic anomaly map and geothermal gradient map with less degree. The most remarkable fact is that the location of earthquake is largely limited to the transitional zone of Q₀ value. Uncertainty of Q, which is important in capturing uncertainties in strong ground motion simulation, is found to be about 0.4 lognormal standard deviation, which is very close to the EPRI result ([20]).

Discussion

Conventional Levenberg-Marquardt's nonlinear inversion method is simply modified by taking into account the second derivatives of the Hessian matrix so as to give robust inversion results. The weight of the second derivative terms is determined by the value of so-called λ in Levenberg-Marquardt's method. The proposed inversion method is applied to observed data from small-to-moderate earthquakes to simultaneously evaluate the regional model parameters of the stochastic point-source ground motion model in and around the Korean Peninsula. Best estimates of the regional stochastic model parameters are obtained along with their statistics. However after reviewing the result of crustal attenuation (Q), there is a need for more detailed study on the characteristics of Q.

Therefore, two features of crustal attenuation which are anisotropy and lateral variation were additionally evaluated based on earthquake data recorded in and around the Korean Peninsula. Strong Q anisotropy characteristics, defined here as the ratio of Q₀s between two mutually orthogonal direction, for Sobaesan Massif and Gyeongsang Basin were revealed. Different Q₀ values were obtained for several blocks off the coast area around the Korean Peninsula and localized Q₀ values for the inland were obtained for evenly spaced grids the size of which is unprecedentedly as small as 0.5 degree by exploiting the high quality and densely deployed seismic recording system. Previously reported Q value matched well the inverted values. The other parameters related to regional, source, and site effect were found to have little change compared to the previous studies regardless of the inversion types. The use of 0.4 lognormal standard deviation for Q₀ is justified for the whole region of the South Korea in simulating strong ground motion and smaller value of lognormal standard deviation of Q₀ is recommended for site-specific strong ground motion prediction.

As a result of this study, the characteristics of crustal attenuation are identified providing scientific bases for developing site specific ground motion. It is believed that more reasonable ground motion attenuation relation can be developed for probabilistic seismic hazards with less variability. Furthermore, it looks promising that as the large amount of earthquake data are accumulating rapidly, we will be able to identify more detailed Q structure of the Korean Peninsula in the near future for the region particularly where seismic networks are densely deployed and crustal attenuation is severe. However for these purposes, several issues should be resolved in advance, some of which are full separation of site effects and crustal attenuation and more precise calibration of seismic sensors. Also
it still remains to validate the inversion results by using numerical modeling, review the limitation of the inversion and its conditions, and perform systematic error and resolution analysis. More in-depth study of geological and geophysical implication of the result may contribute to validating the result. Separation of intrinsic and scattering parts of Q may help to more delicately interpret the geological setting of Korean Peninsula. Comparison with the distribution of felt area of historical earthquakes is another way, helping properly interpret the historical records. Other method capable of imaging lateral variation of Q value can also be conducted and compared, too. Some model parameters assumed to be the same for the entire region such as R_0, η, and β_0 can be floated to improve the inversion result.

Finally, particular attenuation should be paid to more qualified use of the earthquake data more than anything else. This might include discarding the data from poorly determined hypocenters and calibrated recording systems.

References

STUDY ON THREE-DIMENSIONAL STRONG GROUND MOTIONS

Kelichi OHTANI, Bunho KOJIKA
National Research Institute for Earth Science and Disaster Prevention, Japan

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

Analysis of three-dimensional strong ground motions along principal axes was carried out based on K-NET records. By applying moving window technique to ground motion records, the time-dependent characteristics of ground motions along principal axes were examined. It is observed that the three rotation angles between conventional coordinates and principal axes are the function of time and the angles keep stable for a short time period after the arrivals of P and S waves, respectively, based on theory and that based on observation data were compared.

We initiated the new research project, which objects are to arrange the database of strong ground motions for using the input waves of E-Defense experiment. The research program is included 3 themes; (1) Prediction of strong ground motions by the statistic method, (2) Prediction of strong ground motions by semi-empirical method and (3) Construction of 3-D strong ground motion database.
Introduction

Shaking table test provides a powerful means to investigate the complicated mechanism of the failure of structures under three-dimensional earthquake loads. However, the ground motion records with large magnitude and short focal distance, which are often required as the input of shaking table, are very limited. As the first step to estimate the three-dimensional ground motion input for shaking table test, the characteristics of the three-dimensional ground motions along principal axes and their relationships with the source mechanism, direction from site to source were examined in this paper.

Table 1 The list of selected earthquakes

<table>
<thead>
<tr>
<th>No.</th>
<th>Original time</th>
<th>M(JMA)</th>
<th>Depth</th>
<th>Lat., Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1996/05/23 18:36</td>
<td>5.0</td>
<td>39 km</td>
<td>38.7°, 142.3°</td>
</tr>
<tr>
<td>2</td>
<td>1996/08/11 03:12</td>
<td>5.9</td>
<td>10 km</td>
<td>38.9°, 140.6°</td>
</tr>
<tr>
<td>3</td>
<td>1996/09/09 13:34</td>
<td>5.7</td>
<td>20 km</td>
<td>30.5°, 130.9°</td>
</tr>
<tr>
<td>4</td>
<td>1996/10/19 23:44</td>
<td>6.6</td>
<td>39 km</td>
<td>31.8°, 132.0°</td>
</tr>
<tr>
<td>5</td>
<td>1996/12/21 10:29</td>
<td>5.4</td>
<td>53 km</td>
<td>36.1°, 139.9°</td>
</tr>
<tr>
<td>6</td>
<td>1997/02/20 05:22</td>
<td>5.4</td>
<td>90 km</td>
<td>37.4°, 141.2°</td>
</tr>
<tr>
<td>7</td>
<td>1997/02/20 16:55</td>
<td>5.6</td>
<td>50 km</td>
<td>41.8°, 142.9°</td>
</tr>
<tr>
<td>8</td>
<td>1997/03/03 23:09</td>
<td>5.0</td>
<td>3 km</td>
<td>35.0°, 139.2°</td>
</tr>
<tr>
<td>9</td>
<td>1997/03/04 12:51</td>
<td>5.7</td>
<td>2 km</td>
<td>35.0°, 139.2°</td>
</tr>
<tr>
<td>10</td>
<td>1997/03/16 14:51</td>
<td>5.8</td>
<td>39 km</td>
<td>34.9°, 137.5°</td>
</tr>
<tr>
<td>11</td>
<td>1997/03/26 17:31</td>
<td>6.3</td>
<td>8 km</td>
<td>32.0°, 130.4°</td>
</tr>
<tr>
<td>12</td>
<td>1997/04/03 04:33</td>
<td>5.5</td>
<td>9 km</td>
<td>32.0°, 130.3°</td>
</tr>
<tr>
<td>13</td>
<td>1997/05/12 07:59</td>
<td>5.5</td>
<td>54 km</td>
<td>37.0°, 141.3°</td>
</tr>
<tr>
<td>14</td>
<td>1997/05/13 14:38</td>
<td>6.2</td>
<td>8 km</td>
<td>32.0°, 130.3°</td>
</tr>
<tr>
<td>15</td>
<td>1997/05/18 06:25</td>
<td>5.0</td>
<td>10 km</td>
<td>32.4°, 130.6°</td>
</tr>
<tr>
<td>16</td>
<td>1997/06/15 13:54</td>
<td>5.1</td>
<td>100 km</td>
<td>43.0°, 144.2°</td>
</tr>
<tr>
<td>17</td>
<td>1997/06/25 18:50</td>
<td>6.1</td>
<td>12 km</td>
<td>34.5°, 131.7°</td>
</tr>
<tr>
<td>18</td>
<td>1997/09/04 05:16</td>
<td>5.2</td>
<td>6 km</td>
<td>35.3°, 133.4°</td>
</tr>
<tr>
<td>19</td>
<td>1997/10/11 14:44</td>
<td>5.0</td>
<td>30 km</td>
<td>34.4°, 138.2°</td>
</tr>
<tr>
<td>20</td>
<td>1997/11/15 16:05</td>
<td>6.1</td>
<td>153 km</td>
<td>43.7°, 145.1°</td>
</tr>
<tr>
<td>21</td>
<td>1997/12/07 12:50</td>
<td>5.3</td>
<td>83 km</td>
<td>37.7°, 141.8°</td>
</tr>
<tr>
<td>22</td>
<td>1998/01/03 03:20</td>
<td>5.3</td>
<td>50 km</td>
<td>42.9°, 145.5°</td>
</tr>
<tr>
<td>23</td>
<td>1998/02/21 09:55</td>
<td>5.0</td>
<td>21 km</td>
<td>37.3°, 138.8°</td>
</tr>
<tr>
<td>24</td>
<td>1998/04/09 17:45</td>
<td>5.4</td>
<td>93 km</td>
<td>36.9°, 141.0°</td>
</tr>
<tr>
<td>25</td>
<td>1998/04/22 20:32</td>
<td>5.4</td>
<td>10 km</td>
<td>35.2°, 136.6°</td>
</tr>
<tr>
<td>26</td>
<td>1998/05/03 11:09</td>
<td>5.7</td>
<td>3 km</td>
<td>35.0°, 139.2°</td>
</tr>
<tr>
<td>27</td>
<td>1998/05/21 06:54</td>
<td>5.0</td>
<td>84 km</td>
<td>38.6°, 142.1°</td>
</tr>
<tr>
<td>28</td>
<td>1998/05/23 04:49</td>
<td>5.3</td>
<td>85 km</td>
<td>33.7°, 131.9°</td>
</tr>
<tr>
<td>29</td>
<td>1998/08/16 03:31</td>
<td>5.4</td>
<td>5 km</td>
<td>36.3°, 137.6°</td>
</tr>
<tr>
<td>30</td>
<td>1998/08/29 08:46</td>
<td>5.1</td>
<td>67 km</td>
<td>35.6°, 140.1°</td>
</tr>
<tr>
<td>31</td>
<td>1998/09/03 16:58</td>
<td>6.1</td>
<td>10 km</td>
<td>39.8°, 140.9°</td>
</tr>
<tr>
<td>32</td>
<td>1998/09/15 16:24</td>
<td>5.0</td>
<td>13 km</td>
<td>38.3°, 140.8°</td>
</tr>
<tr>
<td>33</td>
<td>1998/11/24 04:48</td>
<td>5.1</td>
<td>82 km</td>
<td>38.0°, 141.6°</td>
</tr>
<tr>
<td>34</td>
<td>1999/01/24 09:37</td>
<td>5.9</td>
<td>50 km</td>
<td>30.6°, 131.3°</td>
</tr>
<tr>
<td>35</td>
<td>1999/02/26 14:18</td>
<td>5.1</td>
<td>19 km</td>
<td>39.2°, 139.9°</td>
</tr>
<tr>
<td>36</td>
<td>1999/03/11 20:06</td>
<td>5.0</td>
<td>40 km</td>
<td>39.6°, 141.9°</td>
</tr>
<tr>
<td>37</td>
<td>1999/03/16 16:43</td>
<td>5.1</td>
<td>10 km</td>
<td>35.3°, 135.9°</td>
</tr>
<tr>
<td>38</td>
<td>1999/03/26 08:31</td>
<td>5.1</td>
<td>50 km</td>
<td>36.5°, 140.6°</td>
</tr>
<tr>
<td>39</td>
<td>1999/04/25 21:27</td>
<td>5.2</td>
<td>50 km</td>
<td>36.5°, 140.5°</td>
</tr>
<tr>
<td>40</td>
<td>1999/05/13 02:59</td>
<td>6.1</td>
<td>100 km</td>
<td>43.0°, 143.9°</td>
</tr>
</tbody>
</table>
According to the recent studies from the strong ground motions of large earthquakes such as 1994 Northridge earthquake and 1995 Kobe earthquake, it becomes clear that the correlation of three-dimensional ground motions have a considerable influence on the failure of structures. The purpose of this paper is to elucidate the correlation between the three-dimensional ground motions through an analysis of strong motion records. The strong ground motions recorded by K-NET (a strong ground motion observation network in Japan with an distance of about 25 km between stations), which can be accessed over Internet, were used here. Forty earthquakes whose magnitude is larger than 5.0 and the maximum acceleration exceeds 100 gal were selected from the K-NET database. The parameters of selected earthquakes are shown in Table 1. For each selected earthquake, at least several tens of observation records are available.

Analysis Method

The three components of ground motion records represent, in general, the accelerations measured along the instrument axes. If ground motions are assumed to be Gaussian stochastic process with zero mean values, the three-dimensional ground motion process can be completely characterized in a probabilistic sense through the covariance matrix

\[
\mathbf{c}(t, \tau) = \begin{bmatrix}
 c_{xx} & c_{xy} & c_{xz} \\
 c_{yx} & c_{yy} & c_{yz} \\
 c_{zx} & c_{zy} & c_{zz}
\end{bmatrix}
\]

(1)

where

\[
c_{ij} = c_{ji}(t, \tau) = E[a_i(t)a_j(t + \tau)] \quad i, j = x, y, z
\]

(2)

and \(E\) denotes the ensemble average. In this case, the influence of coordinate directions in the covariance functions in Equation (1) can be investigated through the approximate relations [Kubo and Penzien, 1979]

\[
c_{ij}(t, 0) = E[a_i(t)a_j(t)] \quad i, j = x, y, z
\]

(3)

The components of motion along orthogonal axes \(x', y', z'\) can be simply transformed to components along another orthogonal axes \(x, y, z\) by

\[
\begin{bmatrix}
 a_x(t) \\
 a_y(t) \\
 a_z(t)
\end{bmatrix} = A
\begin{bmatrix}
 a_{x'}(t) \\
 a_{y'}(t) \\
 a_{z'}(t)
\end{bmatrix}
\]

(4)

where \(A\) is a transformation matrix satisfying the condition

\[
A^T A = I \quad \text{(Identity matrix)}
\]

(5)

Then the covariance matrix for axes \(x', y', z'\) is

\[
c'(t) = A^{-1} c(t) (A^{-1})^T
\]

\[= A^T c(t) A
\]

(6)

293
This transformation of three-dimensional ground motion is identical to that of three-dimensional state of stress. Therefore, a set of principal axes exists along which the components of ground motion have maximum, minimum and intermediate values of variance and have zero values of covariance. It can be easily shown that the directions of the principal axes are the eigenvectors derived through the use of the covariance matrix defined be Equation (1) and the principal variances are the corresponding eigen-values, i.e.

\[c_p(t) = P^T c(t) P \]

or

\[c_p(t) = \begin{bmatrix} c_{11}(t) & 0 & 0 \\ 0 & c_{22}(t) & 0 \\ 0 & 0 & c_{33}(t) \end{bmatrix} \]

(7)

where \(P \) is an orthogonal matrix which designates the principal transformation matrix.

Since the off-diagonal terms in a covariance matrix indicate quantitatively the correlation between the corresponding components, the components along the principal axes are fully uncorrelated with respect to each other. For Gaussian stochastic processes, they are statistically independent of each other if they are uncorrelated with each other. Therefore, the components directed along principal axes are independent of each other in a statistical sense.

In practical application, the desired properties of stochastic processes can often be estimated by examining individual members from the processes if assuming the process is an ergodic process.

Characteristics of Ground Motions along Principal Axes

Because ground motions are non-stationary, a moving window technique was applied in order to see the time-varying characteristics. The principal axes of ground motion are defined by the three rotation angles of \(r_x, r_y \) and \(r_z \) to satisfy equation (7). \(r_x, r_y \) and \(r_z \) are the rotation angles with respect to \(x, y \) and \(z \) axes, respectively.

From principal axis analysis, some of which are shown in Figures 1 and 2, the findings are summarized as follows:

1. The three rotation angles of \(r_x, r_y \) and \(r_z \) are time dependent, but they are stable for a short time period after the arrival time (\(T_P \) and \(T_S \)) of P and S waves, respectively. This indicates that the direct P and S waves have their respective specific input directions.

2. The rotation angles \(r_x \) and \(r_y \) are nearly zero after S wave arrives. This means the principal axes vary only in horizontal plane after S wave arrives. This can also be shown by comparing it with the rotation angle \(r_z \), which is the transformation function from X and Y coordinates to principal axes in horizontal plane.

3. The directions of the two principal axes in horizontal plane were examined by the mean rotation angles of the stable time period after the arrival of S wave for all of the observation stations. A close relationship between the directions of principal axes and the direction of source was not found.

4. From the spatial distribution of the maximum and intermediate principal axes, their correlation with radiation pattern of SH and SV waves was not found, either.
Figure 1: Rotation angles of principal axes and the square root of principal variances.
(M5.4, Depth93km, 1998/04/09 17:45)
Figure 2: Distribution of principal axes of direct S wave and radiation pattern of SH and SV waves. (M5.4, Depth 93km, 1998/04/09 17:45)
Influence of Source Mechanism

When the source mechanism of an earthquake is known, the SH wave and SV wave can be theoretically calculated. The SH and SV waves have the same source spectrum and the same path from source to site. The only difference between them is their radiation pattern. In this regard, SH wave and SV wave should be resemblance to each other and there exists a predominant axis for SH and SV waves. S wave vibrates in the shaft direction of the predominant axis only. The vibration amplitude is zero in the plumb direction. The predominant direction can be determined by the equation

\[c_{m,m_1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_{m_1}(\omega)F_{m_2}(\omega) d\omega = 0 \] (8)

with coordinates transformation.

\[m_1 = SV \cdot \cos \theta_m + SH \cdot \sin \theta_m \]

\[m_2 = -SV \cdot \sin \theta_m + SH \cdot \cos \theta_m \] (9)

and

\[F_{SV}(\omega) = R_{SV} \cdot S_{source}(\omega) \cdot P_{path}(\omega) \]

\[F_{SH}(\omega) = R_{SH} \cdot S_{source}(\omega) \cdot P_{path}(\omega) \] (10)

where \(S_{source}(\omega) \) is source spectrum of S wave, \(P_{path}(\omega) \) is path effects and \(R_{SV} \) and \(R_{SH} \) are radiation patterns of SV and SH waves, respectively. Substitute Equations (9) and (10) into Equation (5), the rotation angle \(\theta_m \), from which the predominant axis is determined, can be derived.

\[\theta_m = \frac{1}{2} \tan^{-1} \left(\frac{2R_{SV}R_{SH}}{R_{SV}^2 - R_{SH}^2} \right) \] (11)

The principal axes and amplitudes of S wave from the observed ground motions, the amplitudes of SH and SV waves of the theoretical solution from the source mechanism, and the predominant axis of SH and SV waves are compared in Figure 3. When the difference of the directions of principal axes and predominant axis for a site is less than 10 degrees, it is marked with a red circle. The red-marked sites are about 20% of the total observation sites.

From the theoretical solution of source mechanism, SH wave and SV wave are completely correlated and they can be composed to a vector in the predominant axis. On the other hand, it is found that the vibration along the maximum principal axis is not so larger than that along the minimum principal axis from ground motion records. The principal axis analysis of ground motions in short period range cannot explain the theoretical solutions of SH and SV waves.
Figure 3: Comparison of the direction and amplitude of principal axes, SH and SV waves, and the predominant axis of SH and SV wave. (M5.4, Depth93km, 1998/04/09 17:45)
Results of Calculation

The principal axes of ground motions were calculated by zeroing the all covariance values of the covariance matrix of the three components of ground motion records. The principal axes are time varying in general, but after arrivals of P and S waves, a respective stable time period of several seconds is observed. This means that the direct P wave and the direct S wave have their respective specific input directions. The principal axes for direct S wave was compared with the theoretical solution of SH and SV waves from source mechanism, the correlation between them is not found.

For theoretical solution, because SH and SV waves share a common source spectrum and have the same path, the different radiation pattern between them results in that SH and SV waves are completely correlated and they can be composed to a vector in ground surface. The S wave of ground motion cannot be composed to a vector in horizontal plane. There are about 20% sites where the difference between the directions of the vector and the principal axes is within 10 degrees. The theoretical solution of SH and SV waves, which is obtained by the horizontal layer assumption, cannot explain the principal axes analysis results of the short period ground motions.

Research Program

Ministry of Education, Culture, Sports, Science and Technology (MEXT), Government of Japan was established the 5 year special project on Seismic Hazard Mitigation in Mega-Cities in the fall of 2002. This project covers wide areas of seismology and earthquake engineering, which are including (1) Survey of crustal structures in the mega-cities, (2) Upgrading the seismic performance of structures based on the shaking table tests, (3) Strategic study of hazard responses and (4) Unification study of seismic hazard mitigation countermeasures. The second theme is directly related to Project "E-Defense (3-D Full-Scale Earthquake testing Facility)".

Within the above mentioned project, we initiated the research programs related the three dimensional strong ground motions. This research program is covered following three items;

1) Prediction of strong ground motion by the statistic approach (PI: Dr. Masayoshi Sato and Bunho Kojika, National Research Institute of Earth Science and Disaster Prevention)
 Based on the records of strong ground motion, characteristics of ground motions, such as maximum acceleration value, amplitude and phase spectrum and so on, are obtained by the statistical approach. The calculation method of the 3-D artificial earthquakes will be developed by the statistic results. And, we will also develop the prediction method of future strong ground motions.

2) Prediction of strong ground motions by the semi-empirical method (PI: Prof. Kojiro Irikura, Disaster Prevention Research Institute, Kyoto University)
 We will develop the prediction method of the 3-D artificial earthquakes by the semi-empirical method, which is the wave composition by using Green function.

3) Construction of 3 dimensional strong ground motion databases (PI: Prof. Kazuyoshi Kudo, Earthquake Research Institute, University of Tokyo)
 Based on the consideration of the database framework on strong ground motions, which is included the characteristics of strong motion observation site and strong motion records from world-wide, we will collect and arrange the installed strong motion records.

Conclusion

In nowadays, the necessity of information on three-dimensional strong ground motions is increasing, because of increasing of 3-dimensional shaking tables and utilization of 3-component analytical calculation mode of structures. Analysis of 3-dimensional strong ground motions was carried out based on K-NET records.
By applying moving window technique to ground motion records, the time-dependent characteristics of ground motions along principal axes were examined. It is observed that the three rotation angles between conventional coordinates and principal axes are the function of time and the angles keep stable for a short time period after the arrivals of P and S waves, respectively. This indicates that the directly arrived P and S waves have their respective specific input directions. The rotation angle around vertical axis is almost zero after S wave arrives, which means that the principal axes vary only in horizontal plane after S wave arrives. Making use of the mean rotation angle and the maximum variance along principal axes of all observation stations, the spatial distribution characteristics of principal axes was investigated. A clear relationship between the two horizontal principal directions and the direction of source was not found.

On the other hand, although the radiation patterns of SH and SV waves have a simple form of sin(2θ) and cos(2θ), respectively, in the moment release plane, they become very complicated in horizontal plane for general source mechanism. With the source mechanism of earthquakes, the theoretical solutions of SH and SV waves were obtained. Under the assumption of horizontal layer structure, the vibration directions of SH and SV waves are transverse and radial with respect to source direction, respectively. Because SH and SV waves exists and the principal axes of SH and SV waves can be obtained theoretically.

We initiated the new research programs related to the three dimensional strong ground motions in this fall. We hope that this research programs will be obtained further results and reported in the near future occasion.

References

300
ON A TEST TO RESOLVE ISSUES RELATED TO EARTHQUAKE RESPONSE OF NUCLEAR STRUCTURES AND THE GROUND MOTIONS USED FOR THE TEST

KITADA Yoshio
NUPEC (Nuclear Power Engineering Corporation), Japan

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

This paper describes new test methodology to obtain the data available to evaluate ultimate seismic behavior of Nuclear Power Plant (NPP) structures. The paper firstly reviews the existing test data of Soil Structure Interaction (SSI). Secondary, the paper points out the issues in the existing data regarding their applicability to the evaluation of behavior of NPP structures when a big earthquake ground motion strikes them. Then the paper proposes new test methodology to evaluate ultimate behavior of NPP structures against a strong earthquake ground motion. The proposed methodology employs ground motions generated in a surface coalmine that has a large acceleration up to 2g. The simulation analysis is carried out by applying an observed large ground motion at the coalmine to a scaled NPP building model. The results are promising and encourage the application of the methodologies to evaluate ultimate earthquake response behavior of the NPP structures.

Introduction

Major Nuclear Power Plant (NPP) structures in Japan have been designed and constructed carefully because Japan is an earthquake prone country and some damage of NPP structures due to an earthquake might cause an accident involving release of radioactive materials. Nevertheless, after the 1995 Hyogoken Nanbu earthquake (Kobe Earthquake), there are many opinions requiring the evaluation of seismic design margins of NPPs in the case that an unexpectedly big earthquake ground motion, exceeding the design levels, strikes an NPP site [1].

The items which governing the earthquake response of an NPP structures during a big earthquake are generally recognized, firstly the magnitude and characteristics of earthquake ground motions at a site, secondly soil-structure interaction (SSI) of the structures at the site, and thirdly nonlinear response of the reinforced concrete (RC) structures during earthquakes. The present status of seismic technologies indicates that the difficulties in handling the items are in the reverse of the above order.

From structural engineering point of view, the most difficult issue of the above, the input motion, is considered as a given design condition, thus the SSI becomes the most difficult issue for predicting structural behavior. In order to accomplish such a difficult evaluation, some extrapolations from the existing data are indispensable. However, the extrapolation itself is a hypothesis, and its adequacy should be confirmed by some test data obtained by applying a large as possible earthquake-like load.

In the following, we describe new test methodologies, which may supply some test data to supplement the extrapolation. The seismic performance of the buildings of an NPP had been proven by various tests. However, these test data are not necessarily directly applicable to evaluating ultimate structural strength as well as seismic margins of structures against earthquakes. The reason is explained that although the ultimate strength of reinforced concrete (RC) structures are gradually unveiled, Soil-Structure Interaction (SSI) under a strong earthquake ground motion remains a difficult issue to evaluate properly.

Nuclear Power Engineering Corporation (NUPEC) planned and performed a feasibility study to improve seismic test methodologies for NPP structures. As the result of the study, the concept of new test methodology has been extracted. The test methodology applies a blasting power in a field of a coalmine. In this test, the ground shaking generated by blasting for mining coal is regarded as artificial
earthquake motion. If an NPP building model is constructed closely to the blasting area, huge artificial earthquake ground motion will be applied to the model. This test will supply us an important field test data of the SSI under severe earthquake ground motion. In the paper, prototypical test for structures by applying newly proposed methodology is presented.

Existing Experimental SSI Data

Here existing experimental SSI data of NPP structures are briefly reviewed, paying attention to evaluating their ultimate strength against earthquake ground motions equivalent and/or exceeding design levels. Seismic tests performed for NPP structures are categorized roughly into the RC structure test and the SSI tests.

The RC structure test has been carried out to study non-linear behavior of an RC structure during large earthquake ground motion.

The test includes static and dynamic tests. The static tests had been carried out by applying static load to an RC structure specimen, using oil-jacks etc., to establish the evaluation methodology of nonlinear characteristics of the RC shear walls up to failure. The dynamic tests had been carried out in general using a shaking table apparatus to confirm whether or not the evaluation methodology of nonlinear characteristics of RC columns and/or RC shear walls obtained by the static test is applicable to that under the dynamic loading condition. Figure 1 shows a typical test example of the dynamic test, the shaking table test of BWR reactor building model. However, the loading capacity and the size of the shaking table are limited, a 1/12 scale is the maximum scale for the whole building model even if the world's largest Tadotsu Shaking Table is used [2].

In this test, a simulated earthquake ground motion having maximum acceleration of 2.36g was applied to the model. The test brought many fruitful results, however, the phenomena of basement uplift and rocking motion of the building model were excluded because the test model was fixed to the shaking table.

The SSI test has been carried out to confirm a composite soil-structure system response behavior to earthquake motions as it is described in the theoretical solutions. The test includes field and laboratory tests. The laboratory test applying artificial soil model made of rubber and a building model made of metal i.e., aluminum etc. The test is carried out placing the soil-structure model on a shaking table and applying simulated earthquake ground motions.

The test is handy because the whole scale of the model is small, i.e., less than 1/250 so that the test is suitable for detailed investigation. However, the limited scale of the soil model generates some unexpected vibration mode caused by the finite boundary of the soil model, which is not observed in an actual building at actual field where the soil stretches infinitely. Furthermore, in general, the soil model tends to respond linearly even to a large acceleration input motion. Therefore the laboratory test is limited for its application to nonlinear SSI test. The field test categorized into two types. One is vibration test of an actual NPP reactor.
building using unbalanced-mass rotating shaker, which is performed as an item of pre-operation tests of NPPs [3].

Also, in some of actual NPPs, earthquake observation is carrying out in their safety related important structures. The other is a model test, which is carried out using scaled structure models constructed on a field representing a typical NPP site. Figure 2 shows a SSI field test example of this kind, "Model Test on Dynamic Cross Interaction Effects of Adjacent Structures". The test was carried out by NUPEC to investigate the effect of buildings adjacent to a reactor building on the earthquake response of the reactor building [4]. In the test, vibration tests using a shaker and earthquake observation in the building models were conducted. However, applicable vibration energy is limited in the vibration test, furthermore, observed earthquake motions are also limited in their maximum acceleration, i.e., in general 10-20Gal. and 170Gal. at most. Under those limitations, the SSI phenomena are considered to be within a linear response category.

Figure 3 summarizes seismic test, earthquake experiences and seismic design analyses of NPP structures in Japan. The figure shows the state of arts of the relationship between seismic design analyses and test data as well as the applicability of the data of the seismic tests and earthquake experiences to the evaluation of nonlinear earthquake response and seismic margins of NPP structures. As shown in Fig.3, seismic design analyses have been performed for design earthquakes ranging from 180 to 600Gal. Linear Seismic design analyses have been carried out for the maximum design earthquake. However, nonlinear design response analyses have been introduced for the ultimate design earthquakes. In these nonlinear analyses, nonlinear stress-strain characteristics of RC shear wall and basemat uplift phenomenon have been introduced. Although, a rich data-base of nonlinear behavior of RC shear wall supports the nonlinear analyses, almost no test data supports the basemat uplift analyses.

The situation is mainly caused by the difficulties of catching big earthquake ground motion at the SSI test site and/or NPP plant sites. Our experience of earthquake observation is very limited with regard to the maximum acceleration of earthquake ground motions at free field in SSI test sites and NPP plant sites, a 170Gal. is the maximum for SSI test sites and a 68 Gal. for NPP plant sites. Also there is the difficulty in generating artificial earthquake ground motion resembling actual earthquakes for use in the SSI test. So the analyses had been carried out based on theoretical hypotheses. It is also pointed out that there might be some nonlinear SSI behavior even a rock site for a strong earthquake ground motion. There is information that SSI related natural frequencies tend to decrease with the increment of acceleration magnitude of earthquake ground motion [5]. Because the information is based on the observed acceleration earthquake ground motion of 170Gal. at most, much nonlinear behavior related to of SSI is anticipated for big earthquake ground motion over the design earthquake ground motion.
Thus some SSI-related field test data are needed for big earthquake ground motion equivalent and/or exceeding the acceleration level of typical design earthquake ground motion to confirm adequacy of the current seismic design methodology and to evaluate ultimate seismic strength of NPP structures.

Proposal of New Type Tests

Test Method

Two types of issues are pointed out relating to evaluating the ultimate strength of NPP structures. These are; i) nonlinear characteristics of SSI phenomenon [6], and, ii) nonlinear behavior of an RC structure under three-dimensional loading condition [7]. Naturally, the later issue can be resolved by a shaking table test of structure.

It is pointed out that handling of the scale effect of the specimen on the ultimate strength evaluation of the actual structure is another essential issue for the scaled model test [8]. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost.

With this motivation, the test methodology which applying blasting power as for a big earthquake ground motion has been investigated. The information from a coalmine company in the U.S. indicates that the works performed in the surface coalmine to blast a rock layer covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can applied artificial motions generated by the work if we construct a building model at a closed point to the blasting work area.

Vibration Source

Figure 4 shows a picture of the coal mining site. As it can be seen in the figure, sand-rock, coal and mud-rock form strata, and a sand-rock stratum 25-30meters thick covers the coal stratum, so that the sand-rock stratum is removed to mine the coal. The blasting power has been applied to remove the stratum as well as to loosen the coal stratum before mining coal.

A typical blast is being conducted using an underground explosive array (typically, width is a 100meters, length is 1,000meters, and total amount of explosives is 3,000tons). In order to study the ground motions induced by blasting, the ground motion was observed around the underground explosive array area.
Figure 5 shows an outline of the observation arrays of ground motions.

Figure 6 shows acceleration ground motion examples (radial and vertical directional motions) observed at a point 100 meters away from the area of explosive array, and their acceleration response spectra of 5% damping. The ground motion induced by the blast has a maximum acceleration of 2.0g and an effective duration of 6.0 seconds.

Although the dominant frequency band of the motion are somewhat higher than those of typical design earthquake ground motion, the potential of the motion for future application is promising. If we constructed a building model near the explosive array area, a big ground motion could be applied to the model. In that case, the model should compensate by being scale down for the high frequency dominant characteristics of the ground motion.

Fig. 6: Observed Acceleration of The Artificial Earthquake Ground Motion and Their Acceleration Response Spectra of 5% Damping.

Fig. 5: Ground Motion Observation Array for Artificial Earthquake Motion by Blasting in A Coal Mine in The U.S.
Figure 7 shows acceleration attenuation characteristics of radial and vertical ground motions. From the figures (Fig.6 and Fig.7), the motion equivalent to design earthquake motion in acceleration magnitude can be observed even from a distance of 300 meters from the explosive array area except that the motion has a larger maximum acceleration in the vertical component than the horizontal component.

Response Analysis of Test Model

A simulation analysis of the test was carried out to investigate the applicability of the motion to a seismic test of an NPP structure, which evaluates the ultimate response behavior of the structure, were a big earthquake that exceeds design level to strike an NPP site. The input motion used for the analysis was the ground motion observed at the point of 100 meters distant from the explosive array area. In the analysis, the building model was scaled down to 1/5 to compensation for the difference between the motion generated by blasting and a typical design earthquake ground motion. Figure 8 shows an outline of the simulation model used.

The model represents a typical reactor building of an Advanced Boiling Water Reactor (ABWR) [3]. The model is scaled down by 1/5 in length, 1/25 in shear wall thickness, and 1/\(\sqrt{5}\) in time scale. Meanwhile, the natural frequency of the model becomes \(\sqrt{5}\) time larger as compared with the actual building. The other important parameters, i.e., gravity, response acceleration, and generated stress, are kept actual scale.
Figure 9 shows a typical soil profile of the test site. Table 1 shows soil properties used for the simulation analysis. The analytical model includes nonlinear characteristics of base-mat uplift and hysteresis loop of RC shear wall.

The results of the simulation analysis are shown in Fig.10. Figure 10 (a) shows maximum response acceleration and (b) shows maximum response shear strain. It is said from the figure that we can obtain large structural response data by the field test up to ultimatum degree together with SSI data under strong earthquake-like ground motion.

<table>
<thead>
<tr>
<th>Table 1: Soil Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>S-Wave Velocity : (V_s)</td>
</tr>
<tr>
<td>P-Wave Velocity: (V_p)</td>
</tr>
<tr>
<td>Poisson's (\mu) ratio: (\nu)</td>
</tr>
<tr>
<td>Density : (\rho)</td>
</tr>
<tr>
<td>Damping Ratio : (h)</td>
</tr>
</tbody>
</table>

Fig.9: Typical Soil Profile of the Test Site Used for Simulation of the Field Test using Blasting Power.

Design of Proposal Test Model

The building model is designed based on the simulation results for the field test as shown in Fig.11. Some details of the model are shown in Table2. The model is 12.7m in height and 12m square in cross section. Total weight of the model is about 1,600tons including the added mass weight of 653tons, which is used to adjust the natural frequencies of the model to the design values. Thickness of shear walls of the building model is determined as 6.0cm for the lower part and 4.0cm for the upper part and that of the RCCV is determined to be 8cm. The thickness of base-mat is determined to be 110cm and that of each floor slab was designed to be 30cm to support the added mass. The added masses are manufactured of steel or lead. The model is embedded by 2.6 meters (two stories) with regard to actual Japanese NPP building construction condition. Figure 12 shows a schematic of the field test. We construct the model beside an explosive array area taking into account the actual coal-mining plan and waited for the major blasting conducted for mining. We are planning to expose the model to artificial earthquake ground motions by mining blasts at least four times, each of which has maximum acceleration ranging from one to five times of that of a typical design earthquake ground motion.

Fig.10: Results of A Simulation Analysis of the Field Test using Blasting Power.
Fig. 11: The Designed Building Model Based on The Simulation Results for The Field Test.

to artificial earthquake ground motions by mining blasts at least four times, each of which has maximum acceleration ranging from one to five times of that of a typical design earthquake ground motion.

Figure 12: Scheme of Field Test Using Blasting Power of A Coalmine in The U.S.

Purposes of Proposal Test

The major purposes of the field test are to understand (a) basic earthquake response characteristics of an NPP reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In order to achieve these purposes, the following items should be studied;
to study whether or not the natural frequencies related to SSI change with the increment of the magnitude of input motions (and if it changes, to evaluate the degree),

to evaluate the relationship between soil shear stiffness reduction and the soil strain increase due to increase of the magnitude of input motions, (to compare the field test results with the conventional soil sampling test results)

to evaluate rocking motion of the building model with regard to increase of input motion magnitude,

to study how decrease the foundation-ground contact ratio of the building model with increment of input motion magnitude (to comprehend the change of the vertical motion induced by the rocking motions),

to study vibration amplification characteristics of the building model and its nonlinear behavior,

to study three dimensional earthquake response behavior of the building model together with its nonlinear characteristics under severe earthquake ground motion exceeding the design earthquake ground motion level.

Concluding Remarks

The test methodology to comprehend ultimate seismic performance of NPP structures against earthquakes was studied to evaluate their seismic safety margin, fragility, and other factors. In the study, we first reviewed the seismic tests of NPP structures and extracted the issues related to our purpose. Then, the need to test large-scale specimens was discovered. In the test, we actuated the specimen together with the surrounding ground with big acceleration motions from deep stratum to confirm the SSI phenomenon under big earthquake conditions. Artificial ground motion generated by the large-scale blasting in a surface coalmine in the U.S. was a promising input motion for the test. Such artificial motion tends to have high frequency band characteristics so that test specimen has to be scaled down to be 1/5 at the maximum. Thus the field test methodology was investigated, which applies the artificial ground motion to a 1/5-scale ABWR reactor building model.

As the results of the study, promising test methodology was proposed for NPP structures, which enables evaluation of their ultimate seismic strength.

Acknowledgment

The study presented herein is commissioned by the Ministry of Economy, Trade and Industry (METI) of Japan. The technical issues herein have been discussed in the “Advisory committee on evaluating NPP seismic design margins”, chaired by Prof. T.KUBO, which aims at development of methodologies to evaluate comprehensively ultimate seismic strength of NPPs. The author would like to express his sincere thanks and appreciation to the members of the advisory committee.

References

Session 5 – Prof. J. Anderson
(Seismological Laboratory, University of Nevada, United States)

Topic 1 Damaging capacity of seismic motions
&
Topic 3 Regulatory aspects
OECD-NEA Workshop on the relations between seismological data and seismic engineering analysis, Istanbul, 17th and 18th October 2002

SEISMIC BEHAVIOUR OF MASONRY INFILLED FRAMES
LOCAL AND GLOBAL MODELLING FOR THE SEISMIC ASSESSMENT OF EXISTING STRUCTURES
D. Combescure(1), F. Vita(2), P. Sollogoub(2)

(1) ENSM Laboratory, DEN/DMS/SEMT, CEA Saclay, F-91191 Gif-Sur-Yvette, France
Tel: +33 1 69 08 66 55, Fax: +33 1 69 08 83 31, e-mail: didier.combescure@ceas.fr
(2) Università degli studi di Roma La Sapienza, Facolta di Ingegneria, Via Eudossiana 18, I-00184 Roma, Italy

ABSTRACT
The present paper aims at presenting an overview about the effects of the unreinforced masonry infills on the in-plane seismic behaviour of reinforced concrete frames and the global and local non linear models available for the seismic assessment of such type of structures.

INTRODUCTION
In several European countries, the building structures are commonly made by reinforced-concrete frames infilled with unreinforced masonry panels. The infill panels, usually considered as non-structural elements, have a significant effect on the global seismic linear and non-linear responses of R/C frame structure. On one side, they can increase the stiffness and the strength of the frame in a very significant way, for example, by changing the torsional behaviour of the structure or creating a soft storey mechanism. On the other side, they reduce supplementary shear or normal forces in the surrounding frame which may lead to a brittle failure of the reinforced concrete members. This is particularly true for the existing reinforced concrete structures poorly or not designed for a modern seismic action. Furthermore, the design codes penalize such type of structure because of their random behaviour.

The present paper aims at presenting an overview about the effects of the unreinforced masonry infills on the in-plane seismic behaviour of reinforced concrete frames and the non linear models available for the seismic assessment of such type of structures.

Two levels of non linear modelling are used for the analysis of the infilled structures under in-plane loading. At the local level, each constituent has its own constitutive law and geometric finite element support. The main phenomena such as cracking and crushing of concrete and masonry could be reproduced by using the continuous damage and plasticity theories or semi-global models: 2D plasticity model for masonry, joint elements for the interface between masonry and RC frame, non linear fibre type model for the RC frames... Once the constitutive laws validated on elementary tests, this level of modelling allows one to perform predictive calculations on structures with various geometries and material characteristics. The effect of the openings can also be estimated. However the cost of the computation does not allow extensive or dynamic studies and thus the global level -where equivalent diagonal struts and global beam elements with constitutive laws based on empirical rules reproduce respectively the behaviour of the masonry infills and the RC frames- represents the unique strategy for the analysis of complete civil engineering structures under extreme seismic loading. Such a modelling approach has already been validated on experimental results on one bay one storey infilled frames tested under static cyclic loading at LNEC in Lisbon and multi-storey structures tested in JRC Ispra [Combescure, 1996 and 2000a]. The paper presents also the results of an extensive parametrical study performed with the refined non linear finite element models in order to identify the main properties of the equivalent diagonal struts -stiffness and strength- and to assess the shear forces induced by the masonry infill in the RC frame. The results of these parametrical studies have been summarized in simple analytical formulae and compared to several classical formulae available in the literature.
GENERAL OVERVIEW

Influence of the masonry infills on the seismic behaviour of buildings

The observations of the damage in the building structures after the past earthquakes have contributed significantly to clarify the impact of the masonry infills on the seismic behaviour of the buildings and the characterization of the damages of the structures. Although they are usually classified as non structural elements, infills - which can be made of masonry bricks, concrete blocks or prefabricated panels — may, on one hand, increase significantly the global stiffness, the global strength and the capacity of energy dissipation of the structures and, on the other hand, create local or global brittle failure mechanisms. The interactions between the RC bearing structure and the infills can also be at the origin of supplementary damage.

The following examples give an idea about the negative impact of the infills on the seismic behaviour of the buildings:

- Soft storey in the lowest storeys of the building due to an irregular vertical arrangement of masonry infills and tendency to concentrate deformation;
- Torsion due to an irregular horizontal arrangement of the infills (Figure 1);
- Localized and brittle failure of the bearing elements (columns) due to irregular openings in the infills and lack of anchorage of the panel to the frame;
- Yielding of the column in tension or shear failure due to the forces induced by the masonry infills;
- Loss of serviceability of strategic buildings such as hospitals because of the damage in the infills;
- Out-of-plane failure of the prefabricated panels or the masonry infills due to the insufficient connections with the structure.

Infills can also contribute in a positive way to the seismic behaviour of buildings. Figure 2 shows an example in the area of Sant'Angelo dei Lombardi in Italy (Lipoma event) where the good quality of the materials and the homogeneous configuration of the building make the building which was not designed for earthquake loading exhibit no cracking after the Lipoma event.

The modelling of the masonry infill represents then a major interest for the assessment of existing buildings under dynamic loading.
Figure 1: Torsional failure to irregular plan arrangement of infill

Figure 2: Buildings without seismic design and detailing showing no sign of damage after the Irpinia earthquake

Effects on the Code provisions
The recent code takes into account the effect of the masonry infills on the seismic response of the buildings. Let take the example of the Italian code provisions for masonry infills (D.M. 16/1/1996 [Ministero dei lavori pubblici, 1997]) In Part 2 of this document which deals with the interactions between frames and masonry infills, the provisions suggest the use of numerical models of infills made of 2 diagonal struts resisting only in compression. The domain of validity of the model is defined by:

a) The frame is made by reinforced concrete or steel elements well connected between them and in contact with the masonry infills,
b) The ratio of the length to the height of the panel has to vary between 0.5 and 2,
c) The out-of-plane aspect ratio (height divided by thickness) must be lower by 20 m in order to have sufficient out-of-plane strength;
d) The infill panel must be without large opening except some openings with surrounding RC,
e) The mechanical characteristics have to be sufficient to sustain the in-plane forces, for example, masonry with brick with a void ratio higher than 45% can not be considered in the analysis.

The equivalent strut must have the physical thickness of the wall and its width is taken equal to 10% of its length. The strut is connected to the nodes common to the beam and the column. The stiffness of the infill is estimated with this section which means the axial stiffness of the strut is equal to

\[E_{st} b_e h_e / d_e = 0.10 E_{st} t_e \]

The values of Young modulus and masonry strength are determined according the Italian code for structural masonry D.M. 20/11/1987 or by doing experimental material tests performed on masonry wallsets.

Part 2 of the code provisions gives also the failure mechanisms of the infilled frames (Fig. 3):
- Shear sliding along an horizontal bed joint
- Diagonal tensile failure
- Crushing at the diagonal struts

The verifications have to be performed for the 3 failure mechanisms. The horizontal component of the axial force in the strut is compared to the following formulas:

For shear sliding, \[F_v = \pi_s \sigma_{cr} \frac{L_e}{\phi} \] with \[\pi = f_{st} b \sqrt{\frac{E_s}{E_t}} \]

\[\frac{F_v}{F_e} \geq 0.8 \frac{h_e}{0.2} \frac{1.5 f_{st}}{1.5 f_{st}} \]

315
OECD-NEA Workshop on the relations between seismological data and seismic engineering analysis, Turin, 17th and 18th October 2002

For crushing, \(F_c = 0.8 \frac{f_{cu} L_{bf} h_b l_0}{\phi} \sqrt{E_c / E_m} \)

For traction, \(F_t = f_{tc} l_0 / 0.68 \)

where \(f_{cu} \) is the characteristic shear strength of the masonry without vertical load, \(f_{tc} \) the characteristic compressive strength, \(E_c \) the masonry Young modulus, \(L_{bf} \) the mull thickness, \(h_b \) the mull height, \(E_c \) the concrete Young modulus and \(l_0 \) the column inertia. The factor \(\phi \) is a factor equal to 1 or 2.

The structural members of the surrounding frame have to be checked:

a) the axial force in the column is computed with the diagonal strut model,

b) the columns reinforcement is designed in order to avoid a premature shear failure,

c) the supplementary shear force \(F_a \) and bending moment \(M_a \) in the column (induced by the masonry infill) are functions of the horizontal components of the forces transmitted by the masonry infill:

\[V_a \pm 0.6 F_a \] and \[M_a \pm 0.1 h_b F_a \]

Figure 3: Infills failure mechanisms considered by the Italian design code

THE LOCAL TO GLOBAL MODELLING APPROACH

Definition of the local and global modelling levels

Two modelling approaches, global and local, are classically used to analyse the milled frame structures under horizontal seismic loading. In the global approach, each masonry panel is often replaced by two trusses with an unusual behaviour law [Klingner et al., 1976]. The complexity of the behaviour depends on the various phenomena taken into account by the model (pinching due to crack closure, crushing of masonry at the corners, decrease of stiffness due to cracking, etc...). The frame is modelled by beam and column elements with moment-curvature relationships or fibre type model.

This approach allows to perform a large number of computations with dynamic or cyclic loading but the identification of the true parameters is often based on empirical rules. In case of a modification in the panel characteristics, the limit of validity of the formulae may be reached.

To overcome this difficulty, it is proposed to use the refined material models not only to identify the parameters of the panel element but also to highlight the limitation of such a global model by studying, for example, the interaction between different mulls in a multi-storey structure [Combescoure 1996]. In the local approach, each part (the frame and the mull panels) is discretized.

Both materials -masonry and RC concrete- are considered as homogeneous media with an elastic or a non-linear, isotropic or anisotropic behaviour law. In this local modelling, the hypothesis made for the contact between the frame and the mull panels becomes important since the global stiffness is highly dependent on the presence of cracks at this interface. All the computations presented here have been
OECD-NEA Workshop on the relations between seismological data and seismic engineering analysis,
Istanbul, 17th and 18th October 2002

performed with the Finite Element code CASTEM 2000 developed by CEA-Foran. Within such an
environment, the user can easily compare the two levels of modelling and use them in a
complementary way and it becomes easy to identify the parameters of the global models using refined
modelling.

Local modelling

R/C frame

2D Timoshenko beam elements supporting a fibre type model have been used for the frame [Guedes,
1997]. Each column has been discretized by 10 elements with 6 concrete fiber and 2 or 3 steel fibers,
each fiber having 2 Gauss points. Simplified uniaxial laws have been considered for both concrete and
steel: parabolic curve with a perfectly plastic plateau in compression and no strength in tension for
concrete (similar to the concrete law of the French BAEL concrete code) and a plastic model with
kinematic hardening for steel. Shear behaviour is assumed elastic. Note that such a modelling allows
to know the shear forces and the axial forces in the frame and thus to quantify the effect of the
presence of the masonry infill onto the surrounding frame.

A masonry plasticity based model

The experimental results and some previous studies have shown that the specimen failure is reached
when masonry crushes [Freu, 1993]. [Combescure, 1996]. Furthermore, the ultimate strength depends
on the number of cycles applied to the specimen. In order to cope with the former property, a
plasticity-based model with two yield surfaces and softening behaviour in compression and traction
has been developed. Details about this model and its numerical implementation are available in
[Combescure, 1996 and 2000a]. As for the classical plasticity-based models, unilateral phenomena due
to cracking is not considered. This fact has a minor importance also under cyclic loading since the
main cracking is assumed localized at the interface between frame and infill and is modelled by a
joint/interface element.

The Young modulus is identified with the results of diagonal test (E=4 G for γ=0.2 if G is calculated
with the RILEM rules) whereas the compressive strength of the isotropic model of masonry is directly
given by the compression tests on wallelts perpendicular to the holes. Note that the identification of
the masonry parameters must be realized with tests performed on complete masonry wallelts since
masonry has a very complex behaviour due to the difference of Poisson ratio between bricks and
mortar.

Contact modelling

The modelling of the interface has a major influence on the failure pattern, the tensile stiffness and the
global strength. A plasticity-type joint model with a Coulomb yield surface is used [Stoyman et al.
1991]. While the sliding behaviour is governed by plasticity rules, the unilateral phenomenon is
reproduced in tension: the joint opens without creating plastic strain. Associated or non associated
plastic flow and dilatancy phenomenon can be considered. In our case, the dilatancy angle is assumed
equal to zero. The considered tensile strength of the joint is equal to 10 percent of the masonry
compressive strength. A classical value of 40 degrees taken from the results of the tests described by
[Melnab et al., 1995] on mortar-brick interfaces is used for defining the Coulomb failure surface.

Global modelling

Simplified modelling of the RC frames

The mesh of the surrounding frame is reduced for the global computation: each column is discretized
with one linear Bernoulli beam element with a reduced elastic stiffness (2/3 of the elastic stiffness)
placed between two Timoshenko elements supporting the non linear fibre model. A constant length
equal to the column width has been considered for the plastic hinges.

A global model for infill panels

Since the work performed by [Klingner et al., 1976], the non-linear analysis of infilled frames have
been usually performed by replacing each individual panel by two -or three- diagonal struts with a
uniaxial compressive law. The model introduced in CASTEM 2000 is also supported by a truss
element and the behaviour law (Fig. 4) is able to reproduce the classical models by choosing the
appropriate parameters. The phenomena reproduced are the stiffness degradation due to cracking -
mainly at the interface between the frame and the panel, the development of plastic strain and the softening due to crushing, the strength degradation under cyclic loading and the pinching associated with sliding. The strut has no tensile strength and the stress-strain curve under monotonic compressive loading is multilinear and may be identified by using the results given by refined modelling. Special attention must be brought to the phenomena of compressive strength degradation under cyclic loading which characterizes the masonry components. This effect is not easy to quantify but is taken into account by multiplying the force F_{pl} associated with the plastic strain δ_{pl}, by a factor which is a function of the cumulated cyclic plastic displacement (the cumulated cyclic plastic strain is defined as the sum of the increments of plastic strain). A decreasing exponential function is considered. For a constant plastic strain, the force can decrease down to the residual stress $F_{res} = 0.9F_{pl}$.

Figure 4: Local and global models of a one bay one storey infilled frame

Figure 5: Global axial force-axial strain used for the global model of infill

DESCRIPTION OF THE REFERENCE EXPERIMENTAL RESULTS

A series of 9 one-bay RC frames has been tested under cyclic loading in the framework of the SERMIR research program supported by the European Commission. The geometric characteristics and the reinforcement details of the models, as well as the applied loads, tried to simulate the real conditions of a reinforced concrete frame located in the ground floor of an ordinary building (Fig. 6). The models had an height of 1.80 m and a length of 2.40 m. The columns and the beams cross sections have, respectively, 0.15 m x 0.15 m and 0.15 m x 0.20 m. The columns were reinforced with 8Ø12 longitudinal bars and 6Ø0.04 hoops. The beams were reinforced with 6Ø longitudal bars and 6Ø0.05 struts. The infill walls were built with 0.30 m x 0.20 m x 0.15 m horizontally hollow blocks, usual in Portugal, bedded using mortars with the proportions 1:4 in volume (cement: river sand). The materials used in the construction of the frames were a C20/25 concrete and a S400 steel. The models were built on reinforced concrete blocks with a 3.24 m x 0.74 m x 0.35 m volume. These concrete blocks were used to fasten the model to the shaking table. The models were tested in the platform of a shaking table. The tests consisted basically in the application of a relative horizontal displacement history between the base and the top of the models. A vertical force of 100 kN was applied at the top of the columns. This force was kept approximately constant during the entire tests. Each stage of the tests consisted in the application of 2 complete sine waves of relative horizontal displacement between the base and the top of the models. The maximum
amplitude of the imposed displacement increased from stage to stage of the tests (0.6 mm, 25 mm, 50 mm, 75 mm and 100 mm). The experimental set-up and the main test results are described in details in [LNEC, 1998] and [Pires et al, 1998].

Table 1 shows the maximum strength of the 9 specimens and the increase of initial stiffness due to the presence of the infill panel. Note the great influence of the infill panel for these frames. All the uniformly infilled frames had similar failure patterns: cracking occurs at the interface between the frame and the masonry panel, crushing of masonry in the corners of the wall and some cracking of masonry in the wall itself (Fig. 8). The force-displacement relationship are characterized by softening and important pinching after the beginning of masonry crushing (Fig 7). Strength degradation under cyclic loading is also visible on the global force-displacement curves: after one cycle, the specimens do not find again the initial strength but a reduced strength.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Bare frame</th>
<th>Uniformly infilled frame</th>
<th>Infill frame with window</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I3</td>
<td>I4</td>
<td>I5</td>
</tr>
<tr>
<td>Max. shear strength</td>
<td>60 kN</td>
<td>64 kN</td>
<td>190 kN</td>
</tr>
<tr>
<td>Initial stiffness (kN/mm)</td>
<td>4.8</td>
<td>4.99</td>
<td>206</td>
</tr>
<tr>
<td>Increase of initial stiffness due to infill *</td>
<td>/</td>
<td>/</td>
<td>x42.9</td>
</tr>
</tbody>
</table>

*compare to the initial stiffness of the I3 specimen

Table 1: Increase of strength and stiffness due to the masonry infill panel

Figure 6: Experimental Set-up

Figure 7: Shear force – top displacement curve (experimental results)
REFINED ANALYSIS OF ONE-BAY INFILLED FRAMES

Study of the reference specimen

In the present study, the Young modulus and the compressive strength of masonry has been taken equal to 4000 MPa and 2.2 MPa respectively which correspond to the characteristics determined using compression tests on masonry wallets. The bricks were horizontally perforated with a void ratio of 60\% and have an average compressive strength perpendicular to the holes equal to 4.8 MPa. Let remind the masonry panel has the same thickness than the RC column (15 cm).

The analysis has been conducted under monotonic loading. The calculation gives the global force-displacement curve of the infilled frame (Fig 9). The curve of the masonry infill is determined by doing the difference between the masonry infilled frame and the bare frame curves. The failure pattern observed during the tests is well captured by the refined modelling: an equivalent diagonal appears between two opposite corners and the maximum strength is reached when masonry begins to crush in the corners (Fig 10). Failure is also characterized by the motion of the diagonal strut down to the base of the windward column.

During past earthquakes, failure of RC frames with limited damage in the mull was observed for example in case of short columns. It is thus very interesting to know the interaction between the frame and the mull in the refined modelling. For this purpose, the distribution on the height of shear and axial forces and the evolution of their maximum in function of top displacement has been analysed.

Fig 11 shows the distribution of shear force for the uniform infilled frame. Note the increase of shear in the parts of the columns at the extremities of the diagonal strut. The maximum values of shear force and axial force are given in Table 2. In the present case, the computed values of shear stress are very high but the columns had sufficient struts to avoid brittle shear failure. For axial force, compression is taken as positive. Thus the maximum value is given for the right column which is in compression and the minimum value for the left column which is in tension. These values include the axial force corresponding to the vertical load which is 80.5kN per column.
OECD-NEA Workshop on the relations between seismological data and seismic engineering analysis, Istanbul, 17th and 18th October 2002

Figure 9: Force-displacement curve for the infilled frame

Figure 10: Resulting forces on the masonry

Figure 11: Shear forces distribution in the columns corresponding to the maximum value of shear

<table>
<thead>
<tr>
<th></th>
<th>Uniform infill Shear force</th>
<th>Uniform infill Axial force</th>
<th>Infill with window Shear force</th>
<th>Infill with window Axial force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left column</td>
<td>112 kN (4.98 MPa)</td>
<td>39 kN</td>
<td>78.2 kN (3.47 MPa)</td>
<td>41.3 kN</td>
</tr>
<tr>
<td>Right column</td>
<td>123 kN (5.47 MPa)</td>
<td>192 kN</td>
<td>28.2 kN (1.25 MPa)</td>
<td>134.9 kN</td>
</tr>
</tbody>
</table>

Table 2: Maximum values of shear force and axial force in the columns
Parametrical studies

One of the main interests of the non-linear model is to allow extensive parametrical studies in order to draw general conclusions and formulate for the identification of the mechanical characteristics of masonry infill with different mechanical and geometrical characteristics.

Due to the large number of parameters of each non-linear constitutive law, the present analysis focuses only on a couple of parameters which are the compressive strength f_c and the Young modulus E_y. The ratio C between the Young modulus E_y and strength f_c has been taken, in a first stage, equal to the value of the reference model ($C=1818$) and, in a second stage, equal to 1000 which is a value widely used for masonry. The parameters are both proportional to the same coefficient n:

$$E_y = n \times 4000 \text{ MPa}$$

$$f_c = 2.2 \text{ MPa or } n \times 4 \text{ MPa}$$

n is equal to $n = 1/3, 2/3, 1, 1.5, 2, 2.5$ or 3.

A variation of the parameter n can also be representative of a variation of other parameters. For example, the variation of Young modulus E_y and of the compression strength f_c maintaining constant the ratio between them is equivalent to the variation of the infill thickness t. Other parameters such as the relative stiffness between the masonry infill and the frame (E_y/E_n) depend also directly on n.

The parametrical analyses have two objectives:

- Predict the characteristics of the equivalent strut whose values can be compared to some reference formulae. The uncapped stiffness and the maximum strength are the two characteristics investigated in the present study.
- Assess the shear force induced by the masonry infill in the columns which can be expressed in percentage of the horizontal component of the diagonal compression in the strut (called additional shear force rate).

The force-displacement curve converted to an axial force-axial strain curve is used for the determination of the elastic stiffness, the cracked stiffness and the ultimate strength of the mull. The elastic stiffness is the result of the difference of the results of the elastic calculations on the milled and the bare frames. The ultimate strength of the global model is defined as 95% of the maximum strength given by the refined model and is reached for an axial strain for which the axial force given by the refined model is equal to 90% of the maximum strength. This point defines also the cracked stiffness. The elastic stiffness and the ultimate strength can be expressed in terms of diagonal width if the mull thickness, the Young modulus and compressive strength of masonry are considered.

The diagonal width is given in percentage of the diagonal length D and is noted $\% D$. One may notice the diagonal widths for cracked stiffness and ultimate strength are identical. Table 3 gives an example of determination of the strut characteristics in the case of a linear frame model.

The parametrical study has been conducted with 2 different models for the RC frame which are the non-linear model of the frames tested in Lisbon and a linear elastic frame with a reduced Young modulus in order to take into account cracking (2/3 of the elastic Young modulus of the non-linear model). Note that the stiffness and the strength of the masonry infill can strongly depend on the characteristics of the frame as illustrated within the following section.

<table>
<thead>
<tr>
<th>Relative displacement d [mm]</th>
<th>Base shear force F_s [kN]</th>
<th>Axial strain in the strut ε [%]</th>
<th>Axial force in the strut N [kN]</th>
<th>Strut width $% D$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracking</td>
<td>0.09</td>
<td>18.9</td>
<td>0.003%</td>
<td>23.8</td>
</tr>
<tr>
<td>Crushing</td>
<td>7.17</td>
<td>179.2</td>
<td>0.20%</td>
<td>225.8</td>
</tr>
<tr>
<td>Softening</td>
<td>28.25</td>
<td>179.2</td>
<td>0.19%</td>
<td>225.8</td>
</tr>
<tr>
<td>Ultimate stage</td>
<td>53.59</td>
<td>0</td>
<td>1.50%</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 3: Identification of the parameters of the global model using the model with linear frame
Uncracked stiffness

Fig 13 shows the width of the uncracked diagonal strut versus the masonry Young modulus for the 2 models of frame. These numerical results show a very good agreement with the values given by the formulae of Smith [Smith, 1966] and Dawe and Seah [Dawe et al., 1989]. These 2 analytical formulae underestimate only slightly the value of width found by the present parametrical study specially for the lower values of Young modulus Em. In these formulae, the diagonal width w is function of the contact length between the masonry panel and the surrounding frame and so is directly function of the stiffness of the frame.

The classical formulae of Smith is:

\[w = \frac{F_c \cos \Theta \cdot \sin \Theta}{2E_p} \]

Smith, 1966

with \(E_p = \frac{E_n (1 + 2 \cdot \sin \Theta)}{4E_{m} \cdot l_m} \) and \(\lambda_n = \frac{E_n - E_m}{4E_{m} \cdot l_m} \)

with \(E_m \), the Young modulus and the thickness of the masonry infill, \(E_n, l_n \) the Young modulus and the inertia of the beam, \(E_l, l_l \) the Young modulus and the inertia of the column, \(H \) and \(L \) the height and length of the masonry infill and \(\Theta \) the inclination of the diagonal strut.

Dawe and Seah give a very similar expression:

\[w = \frac{F_c \cos \Theta \cdot \sin \Theta}{1.5E_p} \]

Dawe et al., 1989

Ultimate strength

Fig 13, 14 and 15 show the width of the cracked diagonal strut versus the masonry compressive strength \(f_c \), or the Young modulus \(E_c \), for the 2 models of frame. At the opposite of the elastic stiffness, the diagonal width depends strongly on the model of frame (linear or non linear). The numerical results have been compared to the values given by the formulae of Mainstone [Mainstone, 1971] and Dunn and Luo [Dunn et al., 1994] which are respectively:

\[w = 0.17 \gamma \left(\frac{H}{H + L} \right)^{1.1} \]

Mainstone, 1971

\[w = \gamma \tan \frac{1}{2} \left(\frac{H}{H + L} \right) \]

Dunn et al., 1994

with \(\gamma = 0.32 \sqrt{2 \gamma} \left(\frac{H}{m \cdot E_{m} \cdot l_{m} \cdot H} \right)^{1.1} \) and \(m = \frac{6E_{m} \cdot l_{m} \cdot H}{\pi E_{m} \cdot l_{m} \cdot L} \)

These 2 formulae give very different estimation of width. The Dunn and Luo formulae which has been calibrated on finite element models gives results similar to the results of the parametrical analysis but the Mainstone formulae seems to underestimate strongly the width and so the strength of the diagonal strut.

Analytical formulae for the non linear and the linear frames

The results of the parametrical studies have been resumed in simple analytical formulae which can be used directly for the identification of the diagonal struts of the non linear global model.
The maximum axial force found with the non linear model for the RC frame has 2 properties:

a) for the high values of masonry strength, the axial strength tends to an horizontal asymptote: the maximum strength of the masonry infilled frame is limited by the strength of the frame and the yielding of the column in tension. The corresponding value of axial force is equal to:

\[N_{\text{ax}} = \frac{f_y}{\tan \theta} \]

with \(f_y \) the steel yield stress and \(A_c \) the total section of steel bars in the column section

b) for the low value of masonry strength, the width of the diagonal strut tends to 30% of its length. The following formula fulfills these 2 conditions:

\[N_{\text{ax}}(f) = N_{\text{ax}}(1 - (b/f_{c+1})^2) \]

with \(b = \frac{0.3 \tan(2\theta)D_{mc}}{a N_{\text{ax}}} \) and \(a = 2.22 \)

The value of \(a \) has been determined to minimize the difference between the analytical and the numerical results.

For a linear model for the frame, the infill strength is not anymore limited by the capacity of the surrounding frame. On Fig. 15, the section of the cracked diagonal strut \(S_{mc} \) seems independent on the coefficient \(C \). The strut compression strength \(N_{\text{ax}} \) becomes:

\[N_{\text{ax}}(E_{mc}) = \frac{E_{mc}}{C} S_{mc}(E_{mc}) \]

In a first approximation, the diagonal width can be taken equal to a value between 20% and 30% of the diagonal length. For the present case, it has been chosen the following analytical formula:

\[N_{\text{ax}}(E_{mc}) = \frac{E_{mc}}{C} \left((b/E_{mc+1})^2 - 1 \right) \]

with \(b = \frac{0.3 \tan(2\theta)D_{mc}}{a d} \)

The error minimization gives \(a = 0.7 \) and \(d = 355 \text{ MN} \).

The application of the 2 analytical formulae to the infilled frames considered in the present study shows a very good agreement with the results of the parametrical analysis (Fig 14 and 15).

Shear forces induced in the RC frames

The global model based on 2 diagonal struts is not able to catch the additional shear forces induced in the infill by the masonry infill since the struts are fixed directly to the nodes common to the beam and the columns. The refined calculations give the total shear force on the column for both the infilled frame and the bare frame. The additional shear force has been computed by doing the difference with the values found on the bare frame. The additional shear force has been computed to the horizontal projection of the axial force in the strut \(N \text{cos} \theta \). In order to generalize the results of the present study, a dimensionless ratio named additional shear rate has been introduced:

\[\rho = \frac{\Omega_{\text{infill}}}{\text{cos} \theta N_{\text{ax}}} \]

So one may find the shear induced by the masonry infill in the column to be added to the shear directly given in the column by the calculation performed with the global model:

\[\Omega_{\text{total}} = \Omega_{\text{column}} + \Omega_{\text{infill}} \]

A remarkable result has been evidenced by the parametrical studies: for this particular geometry of masonry panel, the additional shear rate does not depend on the masonry characteristics and is equal to 64% (Fig 16). This rate is also almost independent of the modelling of the frame (linear or non linear).

CONCLUSIONS

The present paper has presented some generalities about the influence of the masonry infills on the seismic behaviour of RC frames. They can have a major impact - positive or negative - on the seismic response specially in the case of existing buildings with few or no seismic detailing and design. An extensive parametrical analysis has been performed on one-bay one-storey infilled frames with two levels of modelling: the non linear FEM model allows to understand the failure pattern under monotonic loading, to estimate the forces created by the infill panel in the surrounding frame and to identify the properties of the global model of infill while the global model is used for the analysis of complete structures under simplified static loading or dynamic loading. Simple rules are also given for the identification of the diagonal properties and the shear forces into the surrounding RC frame. The
dispersion of the results given by the formulae available in the literature which can be used to characterize both the uncracked and the cracked diagonal struts must be highlighted. The values of diagonal width depend also strongly on the characteristics available for masonry (bricks, mortar or masonry). These results can be directly used for the assessment of existing structures which requires efficient procedure of calibration of the model parameters. The present paper is limited to the behaviour of mulls under m-plane loading which means the out-of-plane behaviour has been checked.
OECD-NEA Workshop on the relations between seismological data and seismic engineering analysis,
Istanbul, 17th and 18th October 2002

Figure 13: Widths of the uncracked and cracked sections versus the masonry Young modulus and compressive strength

Figure 14: Strut compression strength and width of the cracked diagonal strut versus masonry compression strength (non linear frame)

Figure 15: Strut compression strength and width of the cracked diagonal strut versus masonry Young modulus (linear frame)

Figure 16: Additional shear force rate versus compressive strength ξ

14
OECD-NEA Workshop on the relations between seismological data and seismic engineering analysis, Istanbul, 17th and 18th October 2002

REFERENCES

Combescurc D., Pego P. [2000b], "Application of the local to global approach to the study of infilled frame structures under seismic loading", 12th World Conference on Earthquake Engineering, Auckland, New Zealand.

Klingner R.E., Bertero V.V. [1976], "Infilled frames in earthquake resistant construction", Report 76-32, University of California, Berkeley, USA.

THE USE OF SIMPLIFIED MULTI-STORY MODELS IN CHARACTERIZING DAMAGE POTENTIAL OF EARTHQUAKE GROUND MOTIONS

Luís D. Decanini, Fabrizio Mollaioli, Andrea Mura
Dipartimento di Ingegneria Strutturale e Geotecnica - Università di Roma "La Sapienza", Italy
luis.decanini@uniroma1.it, fabrizio.mollaioli@uniroma1.it, andrea.mura@uniroma1.it

Abstract

The characterization of effective damage potential of the earthquakes implies the identification of structural response parameters which reliably represent the most significant features in development of damage in the real structures. For this purpose, models that adequately describe the seismic response of structures must be adopted. As widely recognized, some significant parameters characterizing the cyclic histories of the seismic response can be selected to represent the damaging process of the structures. Obviously, the effects of structural damage reflect also on damaging non-structural elements and technical devices.

The seismic response of multi-story structural systems subjected to severe ground motions should be studied at both global and local levels, as it could be characterized by high demands for inelastic displacement and energy dissipation, often causing concentration of damage in limited zones of the structure. These local effects depend on the type of signal and on the structural characteristics and cannot be predicted by means of SDOF systems. In this research simplified procedures have been adopted for the investigation on the seismic response of multi-story frame structures: inelastic equivalent SDOF systems for the global response of the frame and inelastic equivalent shear-type model for the prediction of local seismic demand in terms of displacements and energy. The results have been also used in estimating the damage imparted to the structures by means of available damage models.

Introduction

The analysis of the seismic behavior of multi-story structural systems subjected to severe ground motions requires the study of the response at global and local levels, as it can be characterized by high demands for inelastic displacement and energy dissipation, often causing concentration of damage in limited zones of the structure, as weak or soft stories. The way these local effects occur depends on the type of ground motions and on the structural characteristics and cannot be completely described by means of SDOF systems, in which the structural response is globally defined, and deformation shape is a simple work hypothesis formulated to obtain response results. Such means of analysis cannot provide any information on the real distribution of drift demand, especially if strong local demand is expected.

In this research two simplified procedures have been adopted for the investigation on the seismic response of multi-story frame structures. The first one consists on the assumption of assigned time-independent global deflection shapes for the lateral displacements of the frame. This simplification allows both the reduction of the response of MDOF systems to the response of equivalent angle-degree-of-freedom systems (ESDOF) and an approximate extension of the calculation of parameters characterizing the seismic response, easily obtainable for SDOF systems, to multi-story frame systems. If the significant modes of vibration of the structure are adopted and an approximate modal superposition is executed, this procedure can provide also reliable results for local damage information. The second procedure is based
on an equivalent shear-type system, whose lateral stiffness, inertial and strength characteristics approximate those of the frame structure and can vary along the height. With this model, the contribution of all the vibration modes of the structure can be implicitly considered for the evaluation of the elastic response, and the distribution of displacement and energy dissipation on the height of the structure can be adequately described. Hysteretic models typical of frame force/displacement behaviour have been assumed for the local elastic cyclic response of the system. In order to understand how the response is affected by the characteristics of ground motion, several signals that differ for duration, amplitude and frequency content have been used.

The above mentioned simplified models have been applied in order to quantify the deformation and energy demand parameters that characterize the seismic response of a multi-story frame structure, as dissipated energy and inter-story drift demands. The results have been also used in estimating the damage imparted to the structures by means of available damage functions.

The proposed damage indices can be classified in two different models: in the first one, the level of damage is quantified as a function of maximum deformation and energy dissipation demands, while in the second the number and the amplitude of elastic cycles are considered, according to low-cycle fatigue hypothesis. Both methods have been adapted to the simplified models analyzed in this research. Damage indices calculated for local level have been used also in the evaluation of global damage and in comparison of results obtained for different hypotheses of behavior.

Equivalent SDOF system

As mentioned in the introduction, the conceptual link between the analysis results obtained or available on SDOF systems, usually resumed in the form of response spectra, and expected response parameters values for MDOF systems, can be identified with the formulation of a calculation procedure in which the MDOF structure is reduced to an equivalent SDOF system (ESDOF). It is useful recalling briefly this concept, because it gives an important means for interpretation of results of MDOF models. The formulation of this simplification is very similar to the first step of a modal analysis for frame structures. In fact a time-independent global deflection shape is assumed for the lateral displacements of the building storey:

\[
\begin{equation}
\mathbf{w}(t) = \mathbf{\Phi} \cdot \mathbf{\alpha}(t)
\end{equation}
\]

where \(\mathbf{\Phi}\) is the vector that defines the deflection shape and \(\mathbf{\alpha}(t)\) expresses the time-dependent amplitude of motion. This assumption allows to reduce the classic MDOF equations of motion for a frame subjected to a ground acceleration history \(\mathbf{H}_g(t)\)

\[
\begin{equation}
\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{C}\dot{\mathbf{u}}(t) + \mathbf{R}\mathbf{u}(t) = -\mathbf{M}_g \cdot \mathbf{H}_g(t)
\end{equation}
\]

to the ESDOF equation

\[
\begin{equation}
\mathbf{M}_e \ddot{\mathbf{x}}(t) + \mathbf{C}_e \dot{\mathbf{x}}(t) + \mathbf{R}_e \mathbf{x}(t) = -\mathbf{L}_{eq} \cdot \ddot{\mathbf{H}}_g(t)
\end{equation}
\]

where

\[
\begin{align}
\mathbf{M}_e &= \mathbf{\Phi}^T \mathbf{M} \mathbf{\Phi} \\
\mathbf{C}_e &= \mathbf{\Phi}^T \mathbf{C} \mathbf{\Phi} \\
\mathbf{R}_e &= \mathbf{\Phi}^T \mathbf{R} \\
\mathbf{L}_{eq} &= \mathbf{\Phi}^T \mathbf{M}_e
\end{align}
\]

The quantity

\[
\begin{equation}
\Gamma = \frac{L_{eq}}{M_e}
\end{equation}
\]

can be interpreted as a "modal" participation factor, and the assumed displacement shape \(\mathbf{\Phi}\) is seen as a dominant first mode of vibration. The solution \(\mathbf{x}(t)\) of equation (3) can be derived from the solution \(x_e(t)\) of an SDOF motion by means of the relationship

\[
\begin{equation}
\mathbf{x}(t) = \Gamma \cdot x_e(t)
\end{equation}
\]
If a target ductility response analysis is required, one can determine the seismic strength coefficient C_s for the SDOF system and the demanded yielding base shear for the frame structure:

$$V_p = \frac{L^2}{2} C_s g = M_{eq} C_s g$$

(7)

where M_{eq} is the effective mass associated with the assigned "modal" shape and g is gravity acceleration.

The energy balance equation for the MDOF system can be written in the usual form

$$E_i(t) = E_i(0) + E_p(t) + E_s(t) + E_d(t)$$

(8)

where the energy quantities (associated with unit mass) are respectively absolute input energy, absolute kinetic energy, elastic strain energy, hysteretic energy, and damping energy. By means of the ESDOF procedure above described, the energy quantities for the MDOF systems can be evaluated multiplying the corresponding SDOF quantities by a factor equal to I^2, as can be easily shown introducing the relations (1) and (6) into the MDOF energy expressions, in particular for input energy, hysteretic plus elastic strain energy and damping energy (1):

$$E_i(t) = \sum m_i \ddot{u}_i(t)dt ; \quad E_p(t) + E_s(t) = \int h(t)dt ; \quad E_d(t) = \int u^2 C du$$

(9)

where $\ddot{u}_i(t)$ is the total (absolute) acceleration of the mass m_i and the time integration is extended to the duration of ground motion. For the input energy the maximum value during the ground motion is considered in this research. In terms of global energy quantities correlated with the seismic response of a multi-story frame, the above mentioned proportionality relationship means that each of the energy amounts per unit mass of the associated SDOF system must be multiplied by the effective mass (Eq. 7).

In the interpretation of the real response of the MDOF system, if it is admitted to speak in terms of modal contributions also for inelastic behavior, each modal energy per unit mass should be multiplied by a modal effective mass before the ideal operation of modal superposition. The direct relation between the energy parameters of a MDOF structure and the corresponding quantities per unit mass of the SDOF system associated to the fundamental period of vibration of the structure can be empirically maintained by assuming the total mass as an approximate effective mass that includes the contributions of all the modes of vibration.

An analysis based on the equivalent SDOF system can be assumed as a step of seismic design procedure, combined with a pushover analysis that provides local quantities of seismic displacement demand, story drifts and rotations [2, 3]. The ESDOF method can be used also in the calculation of damage indices for multi-story structures subjected to strong ground motions [4].

Simplified nonlinear dynamic analysis for multi-story frames by means of discrete shear-type model

The choice of using an equivalent shear-type model (ESTM) allows a relatively simple procedure in the integration of the equations of motion: if a shear deformation is assumed to describe the lateral deflection of the frame structure, only translational degrees of freedom are included in the calculation. This simplification can provide a good approximation of the numerical solution if an equivalent lateral shear stiffness is given to the model. In other words, the shear drifts of the stories of the equivalent system may take into account the influence of the flexural deformations of members although the rotational degrees of freedom do not explicitly appear in the dynamic analysis of the structure. The great advantage of this kind of approach is the evaluation of damaging scenarios that is not possible by means of more refined structural modeling. The simplified description of the structural model is ideal in estimation of damage potential of ground motions records on wide classes of multi-story structures.
Bertero, R. and Bertero V V [5, 6] have used two uniform models, one defined as an elastic shear beam and the other as an elastic flexural beam, in order to evaluate the maximum drift demand for preliminary design of frame structures of tall buildings. The inelastic behavior has been considered by means of corrective coefficients, estimated in order to predict also inelastic concentration of displacement demand.

Miranda [7] has considered both shear and flexural deformation in an analytical elastic model, used also to find statistical relations between top displacements and inter-story drifts. The same statistical approach has made possible the correlation between inelastic and elastic displacement parameters, by means of empirical coefficients.

Iwan [8] has studied the inter-story drift demand in multi-story buildings by means of an analytical uniform elastic shear-beam model. The approximate code relation between fundamental periods and height of the structure, for steel frame buildings, has allowed the construction of base-level drift spectra, that show a strong divergence from SDOF prediction in the long periods range.

Decanini, Mollaoili and Saragoni [9] have studied a continuous shear beam to investigate the response of multi-story frame systems. The inelastic behavior of the structure has been modeled by means of an elastic perfectly plastic model. The global results of the analysis have been compared with the corresponding parameters obtained by means of an equivalent SDOF system. The analysis has shown an approximately parabolic relation between energy and displacements. The shape of the parabola, given by the constant of square proportionality, has shown to be strongly influenced by the type of the signals.

Decanini, Mollaoili and Muss [10] have used the same discrete shear-type model presented in the present paper for a comparison with the results of a push-over analysis. The results have revealed the limitation of the exact pushover analysis, especially in the prediction of interstory drift and story hysteretic energy demands, when the influence of higher modes is significant. Also in this comparison of results, the tendency to neglect the inelastic concentration effects is shown in the general overestimation of top-displacement given by the push-over analysis for high ductilities.

Iwan, Huang and Guvader [11] have related the response of the SDOF system corresponding to the frame structure to capacity spectra affected by equivalent viscous damping; this technique has proved to be not conservative, especially when the maximum response is not caused by structural resonance, but induced by long duration acceleration pulses, as in near-fault ground motions. In order to assess the local deformation parameters values, a push-over analysis with load pattern resembling the first mode shape of the structure has been done, and the results have been compared with those obtained by means of nonlinear analysis of shear-building models characterized by a bilinear story hysteretic model. The Authors have found that local response in terms of story drifts can be much larger than the displacement response obtained by an equivalent static pushover analysis.

The ESTM model considered in this paper first requires a static condensation of the degrees of freedom of an elastic multi-story frame system, made possible by the rellevance of rotational inertial contributions of the masses to the seismic response of this kind of structure. Once executed the condensation, the equation of motion for the elastic MDOF system subjected to a ground acceleration history $\ddot{u}(t)$ assume the form:

$$\ddot{u}(t) + \ddot{C} \ddot{u}(t) + \ddot{K} \ddot{u}(t) = -\ddot{M} \mathbf{1} \dot{u}(t)$$

where \ddot{M}, \ddot{C} and \ddot{K} are the translational mass matrix, the damping matrix and the elastic condensed stiffness matrix respectively, $\mathbf{1}$ is a unity vector and $\ddot{u}(t)$ is the vector of the lateral displacements of the stories. It is useful to choose the damping matrix \ddot{C} according to Rayleigh's formulation, i.e. through a linear combination of the matrices \ddot{M} and \ddot{K}. This choice allows to obtain reasonable damping effects in all the significant modes of vibration with a relatively simple computational work, e.g. giving the required
nominal damping values to the first two modes. The tridiagonal form assumed by the matrix \(\tilde{C} \) contributes to the computational simplification.

The following step is the individualization of an equivalent shear stiffness matrix, \(K_s \), defined as the tridiagonal stiffness matrix that produces the same lateral displacements allowed by the stiffness properties of the structure under the action of a prefixed lateral distribution of static forces. Although this definition is conditioned by the choice of the lateral force pattern, slight differences in the terms of the matrix \(K_s \) can be found if different reasonable distributions are assumed. In this study an inverted-triangular static force pattern has been used. Adopting this procedure the structural system is completely described by the stiffness and mass properties of the stories.

For the prediction of the inelastic response of a frame structure subjected to a ground motion, a further approximation can be introduced in order to describe the hysteretic behavior of the system by means of simple rules. For inelastic response, the same above described approximate formulation is adopted for initial stiffness. As for the story stiffness, also a story yielding resistance can be roughly defined. This implies to neglect some information on local inelastic deformations and hysteretic dissipations, as plastic curvature and dissipated energy in portions of members, i.e. it means to have limited data for the frame elements damage. The main local displacement response that can be directly obtained by the above described method is the inter-story drift, that can provide some information on the damage of top and bottom ends of the columns of each story but could give only indirect and rough information on damage of joints and beams. This loss of local information is the main limit of the suggested procedure. On the other hand, this great simplification allows to conduct a wide investigation into the inelastic seismic response of multi-story buildings, because the resistance properties of the frames can be described by means of few data and all the constructive details are not directly required. It is useful to remember that also for the strength evaluation a shear-beam model cannot take into account the effects of variations of axial forces in columns, like tensile yielding or compression failure.

![Graphs showing input energy per unit mass correlation between spectral SDOF and actual MDOF values.](image)

Fig. 1 Input Energy per unit mass. Correlation between spectral SDOF and actual MDOF values. \(\mu_{\text{in}} = 2 \) and \(\mu_{\text{in}} = 4 \). a) Kobe JMA; b) Northridge Sylmar 360.

The proposed model is useful in the evaluation of both displacements and energy dissipation demand for generic multi-story frames. Some results of the analysis of ten different R/C two bay-frames is shown in Figures 1 and 2. Ten different numbers of stories have been chosen, in order to assume information on
the seismic response of a wide range of current buildings. For each selected number of stories various different stiffness patterns can be assumed. In this research two different stiffness patterns have been considered: a realistic approximately parabolic distribution (indicated by "a" letter) and a reference uniform pattern (named "u"). The same fundamental period has been selected for the two patterns for each number of stories. The case of stiff foundation structures has been considered by assigning full restraints to the joints at the base of the columns. By means of the ISDOF reduction in terms of yield base strength, global target ductility values have been assigned to the frames when varying the signal. In Figure 1 a comparison between SDOF and MDOF input energy values is shown.

![Figure 2](image_url)

Fig. 2 Maximum inter-story drift spectra. Stiffness patterns "a" and "u", target ductilities 1 (elast.), 2, 4, 6.

a) Kobe JMA, b) Northridge Sylmar 360.

![Figure 3](image_url)

Fig. 3 Correlations between inter-story drift demand and a) Incremental Velocity; b) Housner Intensity.
Fig. 4 Correlations between inter-story drift demand and a) Peak Ground Velocity; b) $AE_{30,0}$

By means of the analysis of the twenty frames modeled by the ESTM, it has been possible to obtain demand spectra of inter-story drift, that has proved to be a very significant measure of failure likelihood for frame structures. In Figure 2 two examples such spectra are presented. The maximum inter-story drift index (ID_{max}) is the maximum drift demand normalized by story height. The shapes of drift spectra are strongly correlated to the energy demand. This general trend is evident in Figures 1 and 2 for Kobe JMA and Sylmar 360 spectra. The correlation of the spectral shapes is better than the analogue one between energy and SDOF spectral displacement.

In Figures 3 and 4 the good direct correlations between inter-story drift and some meaningful ground motion velocity-based parameters are shown. The $AE_{30,0}$ is the area under input energy spectra in the period range between 0 and 4 s, and represents significant global information on the energy demand potential of the signal.

Damage indices for the characterization of the seismic response

Generally, available damage indices can be mainly classified in two different classes: the first one, the level of damage is quantified as a combination of maximum deformation and energy dissipation demands, while in the second the number and the amplitude of inelastic cycles are considered, according to low-cycle fatigue hypothesis.

One of the most widely used damage indices belonging to the first class is the Park and Ang index, also modified according to different criteria. The original version of the index, as well known, is

$$D_{PA} = \frac{\delta_{um}}{\delta_{um,0}} + \beta \frac{E_{II}}{\delta_{um,0}}$$

(10)

The mean value of parameter β, that gives the weight of energy dissipation in damage evaluation, has usually proved to be close to 0.15. In the expression of the index modified by Kunnath et al. [12], in the first term the only plastic component of the deformation is considered, in order to not computing damage value greater than zero for elastic deformation, while Chai and Rommead [13] have modified the energy term, in order to assign the condition of unity value for the index for failure caused by a monotonic loading history. In this case a modified value β^* should be considered. The deformation and energy

...
dissipation terms can be associated to both global and local effects.

The two indices D_1 and D_2 recently introduced by Bozorgnia and Bertero [14],

$$D_1 = \frac{(1 - \alpha_0)(\mu - 1)}{\mu_{u,\alpha_n} - 1} + \alpha_1 \frac{E_H}{E_{H,\alpha_n}}$$

$$D_2 = \left(1 - \alpha_0 \frac{\mu - 1}{\mu_{u,\alpha_n} - 1} + \alpha_2 \frac{E_H}{E_{H,\alpha_n}}\right)^{0.5}$$

belong to the same type of damage model. For relatively high ductility levels, the authors have found a good correlation with Park and Ang index for α_0 ranging between 0.25 and 0.3 and α_2 close to 0.3.

For all the formulations above mentioned, the right calibration of weighting coefficients is the fundamental choice, that usually appears strongly influenced by the characteristics of the accelerometric records. The main limitation of this damage indices is in neglecting the effective distribution of energy dissipation in cycles of different amplitude, and so also cycles with small damaging effects are included in the calculation of the damage cumulative process.

The damage indices linked to the concept of low-cycle fatigue are based on Miner's hypothesis rules,

$$D_{HI} = \sum_{i=1}^{N_{cycles}} \frac{n_i}{N_i}$$ \hspace{1cm} (13)

N_i represents the number of cycles that for every cyclic amplitude value would cause failure. It has been correlated to displacement or cyclic ductility of the cycles [15, 16]. The advantage of this model is the simplicity. The effectiveness of cycles in damaging the structure is weighted by means of the normalization of the actual number of cycles by the number N_i causing failure for each cyclic ductility demand μ_i. However, it neglects every effect of the actual time distribution in the sequence of the different cyclic amplitudes reached during the structural response.

![Graph](image)

Fig. 5 Sequence of Kocaeli 17/08/99 Dome E-W and 12/11/99 Dome E-W records sequence. Maximum story damage indices according to different damage models

Both classes of damage indices can be used for local story damage evaluation, and adapted to simplified models for multi-story frames. The results of damage indices for all the stores can provide also a global evaluation of damage by means of arithmetical or hysteric energy-weighted averages. Tanri-Olugbile & Avila [16] show that, in comparison with the low-cycle damage model, the Park & Ang
criterion tends to underestimate the strength demand of SDOF systems with T approaching the predominant period of the excitation on soft soil conditions. However, it was found that the use of D_{H} may lead to a realistic assessment of the damage level also in structures located on soft soil, with the exception of very peculiar cases. For this reason, the discussion of the results will be herein after limited to the case of Park & Ang-based damage functional. In Figure 5 the maximum story damage indices spectra are shown for the E-W component of the sequence of Kocaeli August 17, 1999 (site of Duze) and Duze November 12, 1999 records (D_{H1} and D_{H2} are the various indices introduced by Kunnath et al. and Chan and Romstad, respectively). In Figure 6 the hysteretic energy-weighted average D_{H} spectrum, calculated for an estimation of global damage, is shown for the two records separately and for the sequence.

![Graph showing energy-weighted average D_{H} spectrum](image)

Fig 6 17/08/99 Kocaeli Duze E-W and 12/11/99 Duze E-W records and sequence of the two records. Energy-weighted average D_{H} damage index spectra.

Conclusions

The seismic response of multi-story frame buildings can be usefully studied by means of approximate models, as the discrete shear-type model presented in this study, which provides a simplified approach to prediction of the seismic demand for multi-story frame structures, both for the global response parameters, expressed by energy and displacement quantities, and for the story local response. The model can be used in non-linear time-history analysis or in static pushover procedure, in order to determine global and local energy and inter-story drift demand spectra. While for the global seismic demand, including maximum drift, both analyses lead to reliable results, the study of local effects of the ground shaking on multi-story buildings should be preferably conducted by means of nonlinear dynamic analysis, which can be usefully performed on a simplified equivalent shear-type model. The adoption of this methodology seems necessary when different ground motions are considered due to the large variability of their characteristics (presence of long duration pulses due to directivity effects or basin effects, sequence of the pulses, frequency content, etc.). The simplified method used in this research highlights a great influence of the seismic input energy on the maximum local deformation demand, expressed for the simplified model presented in this paper by means of the inter-story drift. This relationship appears stronger than the analogous one between energy and top displacement. A significant role is assumed by the higher vibration modes of the structure, especially for high ductility levels. The multi-story frame structures, almost insensitive to the internal stiffness distribution, but influenced only by the fundamental periods for top
displacement response, reveal for inter-story drift a strong dependence on the stiffness pattern when inelastic behavior is considered.

References

1. Uang, C.M. & Bertero, V.V. 1988. Use of energy as a design criterion in earthquake resistant design. Report no. UCB/EEERC-88/18, Earthquake Engineering Research Center, University of California at Berkeley.
NOTES ON GROUND MOTIONS DEFINED BY EUROCODES

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Tito Sanò
ANPA, Via Brancati 48, 00144 Roma
sano@anpa.it

ABSTRACT

In this paper the seismic input of the last version of Eurocode 8 (EC8) is briefly described and is compared with the previous version. The paper outlines the strong difference between the ground motion in the last version with literature data valid for high seismic zones. Then it highlights some important features related to soil stability. Numerical analyses, with usual methodologies, show that soft soils type D and some of C and E soils are unstable in an Italian first seismic category under the defined seismic actions. This is consequence of the inelastic shear deformation induced by a strong earthquake. Moreover results show that the ground motions given by the EC8 on soft soils are compatible with that on rigid soil, type A, only in low seismic zones.

1. Introduction

In 1997 four Project Teams have been setting up by CEN/TC250 for conversion of ENV1998 to a final version. The Project Team N. 1 (PT1), charged for modification of seismic actions contained in Part 1 of the code, is supposed to finish his work on June 2002. Modifications on the last version (Draft No 4, 2001) are substantial and refer essentially on a new categorization of soils and on a greater number and new shapes of spectra, specific for each soil type and for two level of seismicity. This report summarizes the main modifications and outlines a few aspects related to the seismic stability of soft soils. As matter of fact, last draft of part 4 of EC8, which regards the foundations, retaining structures and geotechnical aspects, requires that all the analyses should refer to the seismic actions described in Part 1 of the same code. As a consequence the ground motion used as action on the upper structure should be compatible with that in the lower soil. This seems not to be the case of the defined spectra on soft soil in high seismic zones. Spectral shapes, specially those defined on very soft soil, show a great amplification also at high frequencies and are different from both those of the old version of EC8 and those shown in literature (Seed et al., 1946). In order to highlight the evident discrepancy between the new and old shapes and to check the validity of the proposed spectral shapes, a few analyses has been performed with simple computer codes. The case of a first seismic zone in Italy has been taken into consideration also if results can be valid in all seismic countries in the Mediterranean area. Numerical analyses show that the assigned seismic motion on the surface produces high shear deformation in soft soils in a high seismic zone. This means that in many cases the soil itself cannot transmit the assigned motion and the corresponding computed motion on the outcropping rock is not compatible with the spectrum on stiff soil, type A. On the contrary a good compatibility exists in case of low seismicity. This suggests that, in spite of the large number of soil condition and spectra considered by the code, the use of site-specific spectra on soft soil, compatible with that one on rigid soil (subsoil type A), could be explicitly allowed in high seismic zones.
2. Comparison between new and original versions of EC8.

The proposed main changes to EC8 are the following:

1. Seven subsoil classes are described instead of three. The new subsoil classification scheme is introduced as a table (see below) that includes both the stratigraphic descriptions and the ranges of geotechnical parameters. This has been done in order to make the classification as easy as possible and to avoid placing some of this information in an Informative Annex.

The soil classes are characterized not only by shear wave velocity \(V_{s,30} \), average value within a dept of 30 m, but also by the blowcount NSPT and the undrained shear strength, cu.

The subclasses S1 and S2 refer to special soft soil, which requires special studies for definition of seismic actions.

<table>
<thead>
<tr>
<th>Subsoil class</th>
<th>Description of stratigraphic profile</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface</td>
<td>(V_{s,30}) (m/s)</td>
</tr>
<tr>
<td></td>
<td>> 800</td>
<td>–</td>
</tr>
<tr>
<td>B</td>
<td>Deposits of very dense sand, gravel, or very stiff clay, at least several tens of m in thickness, characterised by a gradual increase of mechanical properties with depth</td>
<td>360 – 800</td>
</tr>
<tr>
<td>C</td>
<td>Deep deposits of dense or medium-dense sand, gravel or stiff clay with thickness from several tens to many hundreds of m</td>
<td>180 – 360</td>
</tr>
<tr>
<td>D</td>
<td>Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil</td>
<td>< 180</td>
</tr>
<tr>
<td>E</td>
<td>A soil profile consisting of a surface alluvium layer with (V_{s,30}) values of class C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with (V_{s,30} > 800) m/s</td>
<td>(V_{s,30}) (m/s)</td>
</tr>
<tr>
<td>S₁</td>
<td>Deposits consisting – or containing a layer at least 10 m thick – of soft clays/silts with high plasticity index (PI > 40) and high water content</td>
<td>< 100 indicatively</td>
</tr>
<tr>
<td>S₂</td>
<td>Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in classes A –E or S₁</td>
<td>–</td>
</tr>
</tbody>
</table>

2. Five response spectra are defined instead of three, one for each classes A to E.

In Fig 1 the spectra of the previous version, while in fig. 2 the new proposal are shown. The curves, shown in fig.1 are also similar to the spectra of the Italian code for isolated structures, issued by the Ministry of Public Works (LL.PP.,1998). Spectra are normalized in respect to the peak ground acceleration in a soil type A, \(a_g \). The definition of the design ground acceleration \(a_g \), as the effective peak ground acceleration has been changed to be simply the peak ground acceleration (PGA) and the adjective “effective” has been removed. This change is proposed for two reasons, the first being that there is not universally accepted definition for effective peak acceleration.
(EPA). The second reason for this change is that by definition the acceleration response spectrum anchors at the value of PGA for zero period. The shape of spectra is characterized by four parameters.

![Fig. 1 EC8 spectra in the old version](image)

![Fig. 2 Proposed spectra](image)

The first is the soil parameter S, which has to be multiplied by a_g to define the zero period acceleration (ZPA). The shapes of spectra change because the width and level of the constant acceleration part (plateau), which always is 2.5 time larger than the ZPA. The plateau is defined by two parameters, the period values T_b and T_c. A forth parameter is the T_d period, that defines the period in the spectrum over which the response corresponds to a constant displacement response and it is identified in the figure where the shape changes at high periods. In Table II the over mentioned parameters for high seismic areas are shown.

<table>
<thead>
<tr>
<th>Soil classes</th>
<th>S</th>
<th>T_b</th>
<th>T_c</th>
<th>T_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0</td>
<td>0.15</td>
<td>0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>B</td>
<td>1.2</td>
<td>0.15</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>C</td>
<td>1.15</td>
<td>0.20</td>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>1.35</td>
<td>0.20</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>E</td>
<td>1.4</td>
<td>0.15</td>
<td>0.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

341
An importance factor γ_1 is introduced which refers to important structures for civil protection or for their social roles, like hospitals. It is related, as in the Italian Guidelines for isolated structures, to the return period, that is the exceedence probability of the seismic event during the structure time life.

3. Type 2 spectra are also defined for low seismic zones. A second spectral shape (Type 2 Spectrum) is introduced, which has a narrower and higher constant acceleration plateau, for regions only affected by smaller magnitude earthquakes. That will reduce the conservatism that results from using a constant spectral shape. The National Authority must decide which elastic response spectrum, Type 1 or Type 2, to adopt for their national territory or part thereof. The criterion for selecting the Type 1 or Type 2 spectrum is only based on the expected earthquake magnitude, since the spectral shape is comparatively insensitive to distance.

In selecting the appropriate spectrum, consideration should be given to the magnitude of earthquakes that affect the national territory or part thereof. If the largest earthquake that is expected within the national territory has a surface-wave magnitude M_s not greater than $5\frac{1}{2}$, then it is recommended that the Type 2 spectrum should be adopted.

![Fig. 3 Type 2 spectra](image)

4. Elastic displacement response spectra are introduced in order to allow the analysis of long period structures.

The elastic displacement response spectrum, $SD_e(T)$, can be obtained by direct transformation of the elastic acceleration spectrum, $S_a(T)$, using the following expression:

$$SD_e(T) = S_a(T) \left(\frac{T}{2\pi} \right)^2$$

This equation shall normally be applied for vibration periods not exceeding 3.0 seconds. For structures with vibration periods greater than 3.0 seconds, a more complete definition of the Type 1 elastic spectrum is presented in an Annex A, derived by the displacement response spectrum.
Fig. 4. Elastic displacement response spectrum.

\[T_E \leq T \leq T_F \]

\[SD_e(T) = a_g \cdot S_r \cdot T \cdot T_D \left[0.4\eta + \left(\frac{T}{T_F} - T_E \right) \left(0.025 - 0.4\eta \right) \right] \]

\[T \geq T_F \]

\[SD_e(T) = d_g \]

5. New vertical response spectra, one for each response type, are described instead of using modification factors.

6. A new damping correction factor \(\eta \) has been determined:

\[\eta = \sqrt{10/(5 + \xi)} \geq 0.55 \]

instead of \[\eta = \sqrt{7/(2 + \xi)} \geq 0.7 \]

that is a more conservative formulation, but a greater damping is accepted. The use of elastic displacement spectra in conjunction with a substitute structure to represent the inelastically deformed structure requires equivalent damping values much higher than the 12% of critical permitted in the original EC8. The new, lower limit on \(\eta \) allows response spectra for damping values up to 30% of critical to be constructed.

7. The duration of the stationary part of artificial accelerograms is not more depending on the maximum ground acceleration, but it should be not less than 10 sec.

8. The \(kd1 \) and \(kd2 \) coefficient of the exponential decay for long periods of design response spectra are taken equal to those of elastic response spectra. In the previous version they were equal respectively to 2/3 and 5/3, while in the proposed version they are equal to 1 and 2.

It is important to remark that the code is based on a prescriptive approach, with very detailed rules, with no description and explanation of the their rationale. It doesn't accept any alternative definition of the input motion by the designer. It is generally written that a possible variation to the input motion is possible if it is supported by special site classification studies foreseen in the National Annexes.

3. A few notes on ground motion on soft soils in high seismic zones.

The aim is to highlight the difference between spectra on soft soil in the previous and the new version of EC8, particularly on soil type C, which approximately corresponds to the old B, and soil type D,
which corresponds to the old C. In the old version the plateaus were less or equal to that of rigid soil, type A, but larger. In the new version, also if widths are larger in about the same way, the plateaus are higher than that of the rigid soil, type A. This is very different from what it is supposed to be and from what we found in literature on statistics on recorded accelerograms. Seed et al. (1946), who has been referenced in many books, produced results of a statistics on recorded earthquakes and they are shown in diagrams, fig.5.

![Diagram showing mean response spectra on different soil types](image)

Fig. 5 Mean response spectra on different soil types

The spectra, on fig. 5, are the result of a statistics on Earthquakes magnitude 7.5 at distance of 35 miles or 6.5 at distance of 20 miles. The last case just regards the high seismic zones in Italy. We notice that on soft soils the spectrum become flatter and wider with respect to the rigid one. This corresponds to a physical phenomenon because, in high seismic areas, soil can behave in non-elastic way. High shear deformation causes an increase of the damping, which reduces the response, and a reduction of the stiffness, which can be such that the period range of maximum amplification can drastically change.

4. Stability of soft soils in a first seismic zone of Italy.

In a first seismic zone in Italy, is reasonable to assume a peak ground acceleration equal to 0.35 g. That value has been recorded in the last great earthquakes (Friuli, 1976 and Irpinia, 1980) and has been quoted in the Italian Guidelines for isolated structures (1998). Taking into account the soil parameter S in the new EC8, the zero period acceleration (ZPA) for soft soil is:

<table>
<thead>
<tr>
<th>Soil</th>
<th>ZPA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.40</td>
</tr>
<tr>
<td>D</td>
<td>0.47</td>
</tr>
<tr>
<td>E</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table III

These values should be multiplied by the importance factor, which in Italy can range between 1 and 1.4, so in the last case, the ZPA’s are respectively 0.56, 0.66 and 0.69 g. Taking into account such values, analyses were performed with the scope to demonstrate that the ground motions compatible with spectra defined in EC8 Part 1 on soft and very soft soils could cause a soil instability in many high seismic areas in Italy.

At first simple liquefaction analyses then investigations on the level of shear deformation of soft soils were performed.
4.1 Liquefaction analysis.

The procedure of ANNEX B of EC8 part 4 (Nov. 2001) was applied, but results are general and do not depend on a particular used analysis methodology. The main parameters governing the phenomenon, given the appropriate physical characteristics of the soil, like grain size, fine content, saturation, etc., are the maximum acceleration (or ZPA), the magnitude M and the soil characteristic NSPT. The author assumed a Magnitude equal to 6.5, which is similar to that experimented in Italy during the last strong earthquakes of Friuli (1976) and Irpinia (1980), while the other two parameters are given in table I. In fact Eurocode characterizes the soil type D by a NSPT less or equal to 15 for soil D and in the range of 15-50 for soil type C. The simplified method determines the safety factor as the ratio between the resistant cyclic shear stress and that induced by the earthquake. The first depends on physical soil properties and is computed through experimental diagrams, which correlates the cyclic shear stress, known to have caused liquefaction during past earthquakes, to the measured value of NSPT. The second depends on the peak acceleration at the investigated soil depth and on the Magnitude of the event.

The resulting safety factors are less than one in any case for soils type D (ZPA=0.47g) and in many cases for soil type C and E when the NSPT values are near the lower limit of their range or for important structures, $\gamma_l = 1.4$.

In conclusion, from a simplified liquefaction analysis, results that soil type D and large part of soil E and C, in a first Italian seismic category, could be considered exclusion areas for important structures, like hospitals, schools etc and in many cases also for normal buildings. This is important because a lot of villages are built on little alluvial valley, with soft soil type C, D and E, along Apennines Mountains.

4.2 Investigation on soil deformation.

Considering soft soils in an Italian seismic category 1, the shear deformation in the soil, compatible with the ground motion defined by the spectrum shape described in EC8 Part 1 (maximum acceleration= 0.47 g) were computed. The computer code SHAKE (Schnabel et al, 1972), valid for a stratified soil and vertically impinging shear waves on the surface, have been used. The scheme is shown in fig. 6, where the stratified soft soil is shown on the right and the uniform outcropping rock on the left side. The soil non-linearity is accounted for by the use of an equivalent linear analysis using an iterative procedure to obtain, in each iteration, the characteristics of the soil compatible with the effective strain in each layer. The iterations stop when a convergence is obtained on the shear deformation in each layer. The author solved an inverse problem, that is the motion is assigned on the surface of the soft soil, point B in the fig. 6, and results are searched in the lower layers and on the outcropping rock (point A). In order to have generally valid results, I used:

- different shear velocity distributions within 30m depth, with a mean value compatible with the $V_{s,30}$ assigned. I used the upper bound, $V_s=180$ m/s, for soil type D and the mean value of the assigned $V_{s,30}$ range for soil C and E,
- different artificial and natural accelerograms compatible with the assigned spectrum,
- different realistic soil material laws (G/Go and damping vs shear deformation). They are taken from literature in different sites (Pergalani et al., 1999; Seed & Idriss, 1970; Seed et al., 1986)

Results are strongly dependent on the shear stiffness distribution on the depth and on the material characteristics: shear modulus and damping versus shear deformation. In case of soil type D, generally the analyses do not converge to a solution because the high level of shear deformation reached in the lower layers. The soil is so deformed that it is not able to transmit the assigned motion on the surface. In few cases the analyses converge to high shear deformations in the lower soil layers and high acceleration on the outcropping rock, point A of fig.6, (greater than 1.0 g). The maximum shear deformation is reached at depth near to 10 m and is greater than 0.2%. Such results do not depend on
the used computer code. A check has been done with other codes, like PHAKE (Sanò and Pugliese, 1991) and SUMDES (Li et al., 1992), and results substantially do not change.

![Fig. 6 Scheme of the soil for SHAKE analysis (Schnabel et al. 1972)](image)

In figures 7a and 7b the computed spectra on outcropping rock are shown in two cases: respectively in case of an artificial and a natural accelerogram compatible with the assigned spectrum for a soil type D. The natural accelerogram is that recorded in NS direction at Storno during the 1980 Irpinia earthquake in Italy. In both cases the levels of the peak acceleration and the spectrum shape on the outcropping rock are different from those of the reference spectrum for soil type A.

![Fig.7a Computed spectrum on outcropping rock compared with that assigned on soil D, case of artificial accelerogram.](image)

![Fig.7b Computed spectrum on outcropping rock compared with that assigned on soil D, case of natural accelerogram.](image)

![Fig.7c Computed spectrum on outcropping rock compared with that assigned on soil C, case of artificial accelerogram.](image)

![Fig.7d Computed spectrum on outcropping rock compared with that assigned on soil C, case of natural accelerogram.](image)

This is a demonstration that spectra of EC8 are not corresponding to the same event at least for high seismic zones.
Similar conclusions hold also for soil type E and C, mainly when their material characteristics, i.e., $V_{s,30}$, are at the lower bound of their range of definition (Table 1) or in case of important structures, $\gamma_t=1.4$ or unfavourable topographic conditions. Results are shown in figures 7c and 7d in case of an input on soil type C (dotted lines) respectively for an artificial and a natural (Sturno-NS) accelerogram and $\gamma_t=1.0$.

Checks were made through further analyses. A spectrum on rigid soil type A was assumed as characteristic ground motion of the seismic event, which code want to design for. Then a local amplification analysis was performed facing a direct problem. The ground motion on point A of fig.6 was assigned and the motion on point B on soft soil, type D, was computed, considering a first seismic category in Italy. Finally a comparison of the computed spectrum and that of EC8 on the same soil was made. A few results are shown in fig. 8. The code spectra, for soils type A ($a_g=0.35g$) and D ($a_g=0.35*1.35=0.472g$) are shown as continuous lines while the computed motions on the surface of soil type D, respectively for natural and artificial accelerograms, are shown as dotted lines. The natural Brienza-NS accelerogram refers to that recorded during Irpinia (1980) earthquake.

![Fig.8 Computed spectrum on soil type D compared with that assigned on soil D and A. Case of a first category seismic zone](image1)

![Fig.9 Computed spectrum on soil type D compared with that assigned on soil D and A. Case of a 3rd category seismic zone](image2)

It is important to note that:

- The motion on the surface of soil type D, compared with the A type one, is richer of low frequencies because of the effect of the non-linearity induced by the high intensity of the seismic input. As matter of fact the output spectra are wider in the long period range, but they became not higher than the input one, contrarily to what proposed by the new EC8 code (spectrum D on the figure).
- High frequencies are drastically filtered because the soft soil. It become softer because the reduction of the G modulus caused by the high shear deformation induced by the earthquake. Such filtering explains why in the inverse problem (figures 7) we get high peaks in the high frequency range in the motion on rigid soil A.

The same amplification analysis was performed in a lesser seismic zone, considering an Italian third category and peak ground acceleration equal to 0.15g. Results, shown in fig. 9, are completely different from previous ones. The computed spectra on point B of fig 6, soil type D, are sufficiently comparable to those proposed by the EC8 code. That is because the EC8 spectra on soft soil are suitable for less seismic country than Italy. For it and other high seismic country in the South Europe, the use of site-specific spectra on soft soil, compatible with that one on rigid soil (subsoil type A), could be explicitly allowed.

5. Conclusions:

The seismic ground motions of the last version of Eurocode 8 have been briefly described and their main features have been compared with the previous version. It has been outlined the strong difference between the ground motion on soft soils, defined in the last version, with literature data valid for high
seismic zones. Then some important features have been highlighted in relation to soil stability. Numerical analyses, with usual methodologies, shown that:

- Simplified analyses of soils class D and E, if potentially liquefiable, show that they are likely to liquefy in a first seismic zone in Italy. This is important because a lot of villages are built on little alluvial valley, with soil type C,D and E, along Apennines Mountains.

- The shear deformations of soils type D, E and part of soil C (in case of important structures and/or unfavourable topographic conditions), under input ground motion described by EC8 Part 1, are such that the soil stability cannot be guaranteed in a first seismic zone in Italy.

- Numerical analyses shown that the soil class D cannot transmit waves contained in the ground motion defined by the EC8 in a high seismic area. As a proof, performing a local amplification analysis using as input the ground motion on outcropping rock, compatible with the rigid spectrum (subsoil type A) and peak ground acceleration = 0.35 g, in no case you can find a ground motion, at the surface of the soft soil, compatible with the spectrum of subsoil D and ZPA=0.47g. A compatible motion can be found only in lower seismic areas, in which the soil material behaves in elastic or quasi elastic way. So the spectra described in EC8 Part 1, for subsoil type C, E and D are compatible with low seismic countries like those on the North of Europe, but not in Italy especially in a first seismic zone.

- The use of site-specific spectra on soft soil, compatible with that one on rigid soil (subsoil type A), could be explicitly allowed in high seismic zones.

6. Bibliography

Linee guida per la progettazione, esecuzione e collaudo di strutture isolate dal sisma, Presidenza del Consiglio Superiore dei LL.PP.- Servizio Tecnico Centrale, 1998

Sanò T., Pugliese A.,(1991), PSHAKE, Analisi probabilistica della propagazione delle onde sismiche, ENEA, RT/DISP/91/03

PROOF OF SEISMIC DESIGN CODE
-ROLE OF DAMAGE REPORTS INCLUDING SHAKING TABLE TESTS

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Heki Shibata
National Research Institute for Earth Science and Disaster Prevention
1-5-203 Sakurajosui 4 Setagaya, Tokyo 156-0045, JAPAN
Tel. & Fax. +81/3-3303-2591

Memo for Presentation

I have prepared two third of the draft of the manuscript for the proceedings under the title above. However, as the newspapers have been reporting, the degrading of nuclear power plants is the great issue to the related structural engineers in Japan last several weeks. Even recent mornings, September 24 and 26, the newspapers report new facts. Under such a situation, I should rewrite my draft, because the new maintenance criteria has been discussed, and the concept, which I try to discuss, is deeply related to this, that is, the design guideline should be prepared in relation to the maintenance criteria.

The seismic design of mechanical and electrical components should be made as a safety system as well as piping systems. The development of disasters is usually discussed along its scenario. Role of field surveys on damage status and shaking table tests is one of the significant, key subjects in the Workshop, and I try to discuss how to prepare the scenario and what issues are existing in my presentation.

For the meaning of “Scenario”, I presented on the paper “Assumption and Analysis on Catastrophic Event by Setting Scenario under Various Uncertainties” in a seminar in the mid-September. The point, which I have been considering for this workshop, was included in the papers of the Seminar in last September. Therefore, temporary, I attach them in the following part of this article.

The figure attached is the key relation of the role of mechanical shaking table, for example, 1,200 ton 3-D shaking table, E-Defense in NIED, as well as other large tables like Tadotsu 1,000 ton 2-D shaking table, NUPEC, to establish the seismic safety of nuclear and other critical facilities.

In the papers above, I concluded as follows: Scenario is necessary to make the judgment under existing “uncertainty”, and as a result it is “subjective”. For planning of tests on the table, we start it based on knowledge of failures which obtained through field surveys. In 1940 ~ 50’s, the theory and technique on “Planning of Experiments” had been developed, and it was based on Stochastics, like Monte Carlo Method in the papers above. The menu for testing based on stochastic approach has the same difficulty as Monte Carlo approach. Therefore, a test on a shaking table is usually one specimen test, and how to cover the fluctuation of test results, I talked at one of the previous workshop[1]. Even
though, the one specimen test is taken in usual shaking tests for NPP, and the project which started in this year in NUPEC is the initial project in this field.

To fix a plan of usual one specimen test, we need to assume a kind of the scenario obtained through the results of field survey, and it is subjective. Therefore, in this process, there is a possibility to be biased as well as in the process of data analysis. The paper, which I have been preparing, is discussing the role of scenario, and now we are facing on a certain possibility of such "bias". Newly rewritten papers titled “Proof of Seismic Design Code”, and it may be handed at the Workshop.

Reference

Fig. 1 Fundamental Relation of Mechanical Shaking Table to Numerical Model, and Field
ASSUMPTION AND ANALYSIS ON CATASTROPHIC EVENT
BY SETTING SCENARIO UNDER VARIOUS UNCERTAINTIES

Heki Shibata
National Research Institute for Earth Science and Disaster Prevention
1-5-203 Sakurajosui 4 Setagaya, Tokyo 156-0045, JAPAN
Tel. & Fax. +81/3-3303-2591

Abstract

This paper deals with a concept of the worst scenario as an initial condition and boundary conditions to simulate how an event is going to develop mainly related to the safety problem. Some twenty years ago, the worst scenario was decided very subjectively under the limited CPU time of an available computer. The author wants to discuss how to get the worst scenario under uncertainties logically and related matters. Comparison of Fault Tree and Event Tree methods as well as Monte Carlo method has been discussed. And the concept of craziness, that is, fuzziness with fluctuation, is discussed also.

Keywords

scenario, simulation, event, safety, Monte Carlo method, subjective approach, fuzzy

Introduction

It is rather difficult how to assume a scenario of accidental events for the safety analysis. The author has been working for the safety on critical facilities under destructive seismic conditions mainly. And this job has been expanded into disaster preventions of various kind of accidental events induced by a natural phenomenon as well as a man-induced one. Those events are under various degrees of uncertainties. One extreme case is followed surely a certain stochastic distribution, and the other extreme case is, of course, definite one, if we assume that “uncertainty” would be a random process. However, we can obtain a certain scenario from the experienced case of an accidental event in the real world, such as a man-induced air crash to wide urban failures induced by particular ground motions of a strong earthquake like Hyogoken-Nanbu earthquake-1995, so-called Kobe earthquake and so on.

It is easy to explain on the scenario of an air traffic accident, but it is rather difficult to explain the scenario of a strong earthquake. If we discuss on a particularity of ground motions in this sense, it comes from the mechanism of an earthquake, that is, a fracture of fault surface, whose size is 20
km depth x 100 km long or more. How to brake or slip, approximately 1 m to 10 m length, on a fault surface is a scenario in this case. In Fig. 1, Faults for Hyogoken Nanbu, Kobe earthquake – 1995, and also in Fig. 2, its process of failure are shown, and the scenario means this process. The wave form of ground motions is completely depending on this scenario, which is also described by a pattern of stucked areas, so-called “asperity”, on a fault surface and its slipping process. Now, we can analyze the pattern of the asperity of the event, which has been occurred. If the fault will move again in a future, will the asperity, that is, the scenario, be the same as before? This question has not been solved yet. But seismologists estimate that it would be almost similar to previous ones, even it might be fluctuated. The author doesn’t discuss this subject in detail, but this problem brought the subject in this paper to his mind with it.

Another type of a simulation on an earthquake disaster may be mentioned. We, in Japan, have worked for the simulation how the big fire, induced by a destructive earthquake, will be spread in the urban area like Tokyo. We started this type of the study in late 1960's\(^{(1)}\). For this simulation, the scenario, such as, season of the year, time of the day, wind direction and velocity, is very significant to the result, usually we express it as loss-of-lives. In 1923 earthquakes in Tokyo area, 140,000 lives were lost by such spread fires.

On the other hand, in nuclear engineering we assess the probabilistic risk or safety with fault-tree and event-tree by starting from all probable internal events including man induced ones. In this case, scenarios of all probable events are covered for the assessment, and concluded as one valve, the probability of occurrence of the core damage, CDF. And the expected risk of deaths induced by the leakage of radioactive materials by this core damage is calculated with a scenario of a weather condition and others as described in the latter part of this paper.

The author will try to discuss such various procedures for setting up the “scenario” for the simulation on disasters, both a man-induced event or a natural event more logically than the subjective approach.

Single Scenario for Simulation

Recently, we have more chances to simulate how to develop catastrophic events with various assumptions for estimating and suppressing development of such events. In the assumption, there are many variables as the initial condition and boundary conditions. Some years ago, the CPU time for such a simulation was very limited. Therefore, these initial condition and boundary conditions for the simulation were selected only one set of conditions as already mentioned. We often said that we assume “the worst case”. What is the worst case? These variables usually have a stochastic nature, then it is difficult to say that this particular set of variables is the worst for this simulation. If we have some examples in the history, we can find the worst one in the historical document. But, it would be doubtful whether or not this set of variables is the worst one in the stochastic sense. The author has been talking it without actual examples in this article. However, in his mind, the development of spreaded big fires in urban area induced by a destructive earthquake came out at first. Then, the development of crack failure of active earthquake fault came out. The first one might be in the area of

![Fig. 2 Asperity Rupture Transmission by Time](image-url)
disaster prevention engineering, and the second one is in the seismology for deciding input ground motions for the design of critical facilities. As far as spreading the fire, the wind velocity and the humidity are the key parameters. For predicting the ground motions, the length and the amount of its slip or stress drop seem to be key items, but they usually give the total energy of the ground motions, and the detailed time histories are rather depending on its asperity and the initiating point of slipping of the fault, and it is clear that such parameters are very complicated and specialized in each subject.

For simulating a series of time history of events, we need to fix key parameters or variables as initial and boundary conditions. To explain this, we assume that the number of variables is two for the simplicity, and the mapping of key variables is shown in Fig. 3(a). As the result of the simulation, the key variables, for the input to simulate a certain model, transform to the consequent map as shown in Fig. 3(b). The simulation in early period was started from only one point, which was considered as "the worst case", the point "u". We didn't know the figure of over-all results like Fig. 3(b), and only we got one point as "W" in Fig. 3(b), therefore we couldn't judged whether or not that this was actually the worst point. If we can figure out the total scope, "W_95" might be said the worst under the condition as discussed later, but the one-point simulation couldn't find such a map. This is the simulation for disaster prevention or other works in early 1980's. It was very subjective to select the condition "u", and actually this "u" was selected with subjective ambiguity rather than uncertainty.

More Chance for Simulations

If the computer runs rapidly, we repeat such simulations for the set of parameters.

The large circle in Fig. 3(a) is defined as 95% confidence of range of parameters in a certain distribution for a simulation, and the result transformed from these parameters is the egg-like curve in Fig. 3(b). A vector from the origin to the curve is considered to be the result, and the vector W_95 is the worst one under the restriction of parameters in 95% confidence. As an application of Monte Carlo method, we can consider several ways. The first one is to select a set of parameters according to some distribution within a circle of 95% confidence as point such , , +, , and so on in Fig. 4. Another one is to select a set of parameters as uniform distribution like the box-shape distribution between vertical tangents to 95% confidence circle,
A and B, and also horizontal tangents, C and D in Fig. 5.

More sophisticated example will be discussed on a typical example of stochastic problem. One of the results done by Homma, JAERI was presented in a recent workshop (2). This simulation was done for “individual risk of radiation fatality at a distance” induced by CDF of a nuclear power plant. And this computation was done for 128 sets of 23 parameters as mostly uniform box-shape distribution by uncertainty which they have. However another group of a boundary condition “weather sequence” is significant for such an analysis. He divided into two sections for his analysis. The author tries to figure out it based on his presentation as Fig. 6. A key issue here, even if the distribution of the sampled set for a scenario meet with the over-all distribution of “weather sequence”, the result “individual risk of radiation fatality at a distance” seems not to follow to a certain distribution as shown in Fig. 7. Especially a result of 99% of confidence case extremely deviates, and not smooth as a cumulative curve as we can observe figure on the left hand in Fig. 7. If we would make those distributions much clear, and employ to select sets of parameters, the result might be different. The author will discuss it.

It is possible that such a phenomena comes from the distortion of a “transformation” in Fig. 3. The most of simulation in social science or disaster prevention has this distortion. However, some other reasons might be considered. One is as follows; even the distortion of transforming would give the distortion of the distribution, lack of number of simulation brought such an irregular distribution in Monte Carlo process as observed in Fig. 7. Also, the classifying “weather sequences”, and random sampling from each type may curvate this distortion on the distribution, because this process of setting parameters works similar to subjective judgment, even all steps were done logically, except the definition of crasters, Type 1 to Type (m) in Fig. 6. It is really an interesting subject how the real distribution is.

Fig. 6 Schematic Flow of Fatal Risk Analysis, [Ref. (2)]
Prepared by Shibata, based on Homma’s Presentation and Private Communication [Ref. (2A)]
As an initial condition and boundary conditions the extreme values of parameters, that is, the corner points A, B, C and D are employed for the simulation. For these results, there is no guarantee to be the worst. Sets should be selected under rules of distribution of each parameter. In this case, required number of “scenario” is numerous based on the concept of Monte Carlo method. If we decide the notations on the nature of “uncertainty” as follows:

R: theoretical randomness.
A: ambiguity origin uncertainty.
U: uncertainty originated from lack of knowledge.
F: fuzzy judgment.
C: craziness which will be discussed in the following chapter.

Then, in the transform from Fig. 3(a) to Fig. 3(b), it is theoretically only based on a defined function, therefore deterministic or theoretically random: R. In principle, other uncertainties are in the process of defining initial conditions in Fig. 3(a), however, F and C may be included in the process of transforming to Fig. 3(b).

FT-type analysis

In this Chapter, the author discusses on Fault Tree-type approach. Such a scenario as the initial and boundary conditions mentioned above is only one point which would be possible, and selected as the worst, or a group based on randomly to meet the rule of Monte Carlo approach. The case quoted above, 23 key parameters are contributing to the result, and the simulation was done only in 128 cases. If we select the values of those parameters in two extreme cases as A & B or C & D in Fig. 4, the total number of combinations is \(2^{23}\), that is approximately \(8 \times 10^6\) cases. The number of 128 cases is only \(10^4\) of that in all combinations of only
To make clear the total scope of the structure of results, we need much number of simulations. To overcome such a difficulty, we can introduce Fault Tree type method as shown in Fig. 8. We assume one top event such as a catastrophic result initiated from initial events at the bottom. If we can find the most probable event with associated other initial (bottom) events, this is the most significant event. Therefore, it is rather easy to find the scenario by a modification of an ordinary Fault Tree analysis method, however, to find the worst one, we need calculate valuesm such as loss, probability or others of each tree, and it is not made in general. Also, it should be recognized, the number of sheets to express a CDF: core damage frequency of a nuclear reactor, may be 5000 sheets, which was drawn in SSMRP, by Lawrence Livermore National Laboratory, in 1980's, it was shown in one sheet drawings, even for the explanation.

The author believes that it is a simple way to establish the complete scenario. Uncertainties, which belong to all roots, may be included the coefficients on each tree. However, he has never implemented this.

Some Examples of FT and ET

Event Tree analysis was used in SSMRP with the result of FT analysis to complete to estimate CDF of a nuclear reactor. Starting from one particular event, such as a loss of external power supply induced by a destructive earthquake, and each branch of a tree will reach to the core melt down or not, that is, fail or success of cooling core. In this example in Fig. 9, the final state is a two value like “success” or “fail” as mentioned above. We can define the probability on each branch, and in final states the most fatal one is only one case with a certain probability of occurrence. And this tree is the scenario for the story. However, during the route to the other end states, some damage would be expected. For example, as an initial event we assume a destructive earthquake, and the second event failure of houses against controlling a quality of residential building by a code, if success, 90% of houses remain to be without collapse, and if fail, 10% of houses remain without collapses. Next step is to start fire, and even a healthy house may start fire in 0.5%, and a collapsed house may start fire in 3 %. Then 0.45% of healthy houses start fire, and 2.7% of collapsed houses start fire. Thus story develops into a big urban fire. In this case, the final result can be expressed by an expected value, or the vector of estimated damage value and the probability of occurrence. In this case, we can define the worst scenario as the maximum expected damage rate as a “value”, or the subjected judgment of the vector: probability of occurrence and estimated damage rate as a “value”. In general as noted in Fig. 9, the route to the maximum damage value, loss rate is the worst scenario.

By the Event Tree analysis, we can find the scenario as an expected value or the maximum loss value as you like, but it will be done with low uncertainty, because uncertainty exists only in probability of branching and estimated value or cost of loss of each success or fail.
Some Examples of FT and ET

In previous two chapters, the author referred to some examples. Here, he tries to discuss on daily events on each approach.

A story on currie mail trouble

The following affair was happened in my, the author’s, office:

i) CD-Rom of an annual report to reach to my former office.

ii) My young friend in the office sends the fax to me where shall be remailed it as reaching to me.

iii) I sent the reply to ask to send it to my new office by currie, DHL-type mail by fax on Sunday.

iv) He sent a bottle of whisky as his gift to my home for his appreciation to my gift to congratulate of his marriage almost same time.

v) A package was delivered to my home from my previous office, but all of us were absent in my house at that time.

vi) I asked to resent it to my new office to a currie business office, and they promised to send it tomorrow to my office.

vii) Two days after, it hadn’t reached to my office yet.

viii) I phoned to the office of currie near by my office to ask it, and they phoned to the office near by my home, and they found that it was broken. I asked them why CD-Rom was broken, and they said that it was a bottle of whisky and they wanted to replace a new bottle as soon as possible.

ix) The author thought that it was CD-Rom, but it was a bottle of whisky.

The reasons were in the following two points.

- In my previous office, the fax machine was switched off during a weekend, but its responder worked as normally without any message like “Not Received” to the sender. The author, I forgot it, and believed that my message was reached to the young friend.
- And, when he sent whisky to me, he has not noticed it to me.

Such a type of series of errors can be expressed by FT as certain initial events, and can be evaluated on the probability of occurrence. If we evaluate it by the product of probabilities of each step as mentioned in i) ~ ix) without fault tree approach, the value might be very small like 10^{-10} or so under the assumption that the probability of an error would be 10^{-2}. The typical case of this can be found in TMI Nuclear Power Plant Accident. There were human errors in the process to reach to the final state, core melt down, but some of them were induced by previous steps, therefore, if we would take the number of erroneous steps through the process, the probability of occurrence of this accident might be very, very low. But actually, effective independent essential errors are estimated only 2 steps by the detailed analysis compared to 11 errors which were reported, as that of the former example consist of only two steps based on the author’s consideration, as the young friend didn’t notify on his gift and my belief on his receiving my fax. If we assess such an event, FT assessment is effective to do so, starting from initial events to find the scenario, which are experienced. Of course, after we experience the affair, we can build the ET by knowing the scenario, but FT is more effective to analyses such an event in advance.
Recent accidents of young ladies in Japan

Let's move to another subject. This summer, many young ladies love a mule with high-heels. As a result, they had many chances to injure her ankles. We can analyze this process by simple fore balance problem as Fig. 11. In the case of ordinary shoes with high-heels, they have shells or straps, to fix the shoes and here heels. In the case of mules, no fixing device to fix both legs and mules relation. Therefore, the safety contact point of a mules in narrower than ordinary shoes. Also more unstable on irregularity of floor flatness, or side force from her legs. For such disturbances, mules are easier to overturn and to have a trouble on her ankles. This process may be analyzed by ET.

Starting from the event to wear shoes with high-heels or mules with high-heels, ETs to reach to have broken ankles both for shoes or mule are almost same, but their critical limit may be different because of the difference of stable zone of loading. This might bring the difference of the worst scenario for each case, even ETs for both cases are not much difference except that of the values of transit probability. Therefore, easy to find the worst scenario by calculating the over-all transit probability.

Fuzziness and Craziness

As far as a judging process, we make our judgment in fuzzy sense sometimes. These fuzzy criteria may be fluctuated time by time. To warm up the room, our feeling would change day by day, and this range of fluctuation also depend on his condition. The author described this in one of his papers approximately 5 years ago. In some sense, we may call this fluctuation as “craziness”. In the previous chapter, the author mentioned the final result could be evaluated by a vector like (value, probability). Elements of the vector may be expanded to more such as (value, probability, fuzziness, craziness). Even an example of the previous chapter, the behavior of a lady, way of stepping in her walk is fuzzy and it's fluctuated. Therefore, the occurrence of an accident would be depended to her such a variable behavior associated with conditions of floor, which are randomly distributed. However, in average, an ordinary shoe is safer than mule.

As discussed above, “fuzzy judgment” or “fuzzy selection” may bring uncertainty, but more uncertainty would come from their “craziness”, that is, daily fluctuation of them much more. The author tried to measure the individual craziness for the watching and recovery operation in his paper mentioned above, and he found that is quite depended on operator’s characteristics person by person. Thus, it is rather difficult to establish the worst scenario definitely, and its uncertainty shall be functions of “fuzziness” and/or “craziness”, that means that the worst scenario of even an individuals may not be established, if his craziness is large.
Concluding Remarks

It is very difficult to establish the worst scenario of a particular event. However, in early 1980’s, only one scenario was chosen by the subjective way to estimate a future disaster.

The author suggests how to evaluate events by simulation, and the most simple access is the application of Monte Carlo method; however, it is necessary to evaluate on numerous sets of parameters, if the number of parameters, or conditions is not small because of their uncertainty.

Except using Monte Carlo method the author suggests that it is possible to use FT method to evaluate the over-all probability and may be its distribution starting from various initial, bottom, events to its final, top, event without a particular story as the worst scenario. However, if we need the worst scenario for our analysis, we may get it by ET method easier than FT one, because we can obtain of the probabilistic distribution of the final events and its limited confidence.

Each transition of events has a transient probability, but also some parameters coming from its fuzziness, and sometimes the fluctuation of fuzzy judgment or selection, which the author call it as “craziness” in this paper.

Acknowledgement

The author has been thinking on “scenario” since 1960’s. Recently he had two chances to develop his thought. One was to estimated the ground motions for “Design Basis Earthquake” for a critical facility near to an active fault. Another chance is writing manuscripts as an Essay on the disaster for a small magazine.

He expresses his gratitude to Professor Irikura, Kyoto University who has been discussing on the estimation of ground motions.

And to Dr. Homma, Japan Atomic Energy Research Institute for his presentation and discussion on OSCAAR as well as Dr. Muramatsu, as the head of their group, which the author has been working as an advisor for some years.

The author doesn’t have any intention to implement his concepts. He welcomes for you to use them to any applications.

Reference

Session 6 – Prof. G-F. Panza
(University of Trieste, Italy)

Topic 2 Seismic input motion for design purpose
DESIGN INPUT BASED ON GROUND MOTION ANALYSIS FOR THE TAIWAN HIGH SPEED RAIL PROJECT.

Dr. H. Wenzel (VCE Vienna Consulting Engineers, Vienna)

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering Istanbul, 16-18 October 2002

Abstract

The design of structures in seismic regions requires careful consideration of near fault effects. This contribution highlights the facts and figures used to make decisions about the design approach to be used for railway bridges crossing and active fault.

The Tuntzuchiao Fault has been classified as a minor active, secondary, right – oblige, strike slip fault. The location of the fault at bedrock is not known sufficiently and its orientation is close to 45° to the longitudinal axis of the bridge. The expression of the fault at the surface is likely to be well defined due to existing site conditions. The fault movement should be expressed over a relatively narrow width. The fault is expected to be able to generate earthquakes with a magnitude of M = 6.5. The expected horizontal fault displacement is a right lateral slip of 150cm. This can be resolved into 106cm along the bridge and 106cm transverse to the bridge axis. The expected vertical fault displacement is a vertical dip of 50cm.

The expected performance objectives are as follows:
- Safeguard against major failures and loss of life under type 1 (severe) earthquakes
- Ensure adequate service performance under type 2 (moderate) earthquakes

When subjected to a type 1 earthquake it is acceptable for the structure to response in the inelastic range, provided the activity demand does not exceed the available ductility. All damage is to be
repairable. When subject to a type 2 earthquake no yielding of reinforcement or structural steel is permitted and the displacement of the deck shall be such that trains can break safely to a stop from their full design speed of 350 km/h.

The earthquake characteristics are as follows:
Type 1 earthquake with a 950 year return period, vertical shaking 2/3 of the horizontal shaking.
Type 2 earthquake where the ground acceleration is 1/3 of the type 1 earthquake.
The ground type are layers of conglomerates over 30m thick on mudstone. The site is classified as an ordinary site. The base spectra are provided in the following figures.

1. **Introduction**

 About 15km north of Taichung, the THSR track is crossing the Tuntzuchiao fault. Therefore, a special bridge design has to be developed for the 4 times 30m concrete box girder spans and the steel bridge with 55m span, taking the specific site conditions into consideration. This report is made to enable the development of a specific bridge design for this area. It addresses the relevant items, provides alternative solutions and issues recommendation for the implementation. It is based on the authors experience with seismogene phenomena registered at the Earthquakes of:
 - Chi-Chi Earthquake, Taiwan of September 1999
 - Kocaeli and Düzge Earthquake, Turkey of August and November 1999
 - Kobe Earthquake, Japan of January 1995
 - Northridge Earthquake, California of 1994

2. **Relevant Fault Characteristic**

 From the 1999 Earthquakes in Taiwan and Turkey the actual performance of faults at the surface can be studied. For the HSR infrastructure this performance is relevant. Particular the example of the Bolu Viaduct in Turkey, where one of the piers was exactly located on the fault, shows which action has to be expected. In this case the foundation was distorted approximately 15 degrees together with a horizontal and vertical displacement. Never the less no breaking of the pile cap nor a shear failure of any of the piles has been recorded.

 The following photos provide information on fault ruptures as experienced in Taiwan and Turkey in 1999. It is clearly visible that the fault rupture is:
 - Two dimensional (vertical and horizontal movement)
 - Comparatively straight forward
 - Effecting only a small strip along the fault

![Figure 1: Chee Lung Pu Fault 1999](image1)

![Figure 2: Anatolian Fault, Turkey, 1999](image2)
This means for the Tuntzuchiao fault that the following has to be accommodated:

- Horizontal and vertical displacement will appear together
- In addition a distortion of the pier in the horizontal plane shall be considered
- A considerable distortion in the vertical plane shall not be expected
- A direct hit will only effect 1 pier in a chain of 35m spans
- The static action by the Earthquake (displacement) will be combined with the dynamic action. Near source effects have to be considered to NCREE recommendations.
- A catastrophic failure of a longer section along the HSR alignment (wedge slip), as experienced in the dam failure in Taiwan, is not to be expected in this case

3. **Performance criteria**
 The following criteria are developed from operational point of view:

a) To prevent loss of span failure
b) To accommodate the potential rupture offset, which has been estimated to 50 cm vertically and up to 150 cm horizontally, as much as possible

c) To allow realignment after a potential rupture offset with a minimum of structural changes

With regard to safety:

d) To guide a derailed train

The discussion of above mentioned criteria provide the following assessment:

a) Can be achieved

b) Can be achieved for the structure, but cannot be achieved for the rail position

c) Can be achieved

d) Can only partly be achieved under the given circumstances. The case of a train being exactly in the position of the rupture or approaching the location rapidly can not be covered by this approach. It is considered that any activity in the fault immediately triggers an emergency breaking of all trains along the line.

4. Specification

The Specification specifies:

- The Tuntuchiao fault is a fault which would not be able to generate strong motion earthquakes with magnitudes exceeding 6.5

- A maximum magnitude of M = 6.5 shall be taken, which is covered by the zoning factor (Z=0.34)

- As the Tuntuchiao fault is a secondary slip fault being initiated and probably created in the 1935 earthquake future seismic movement have to be considered.

- The maximum movements to be considered in the HSR infrastructure design shall be takes as natural strike slip = 150 cm and vertical dip slip = 50 cm

5. Items of Consideration

The following items shall be considered in the search for an optimum solution for this case. The first category are the Action driven items:

5.1 Vertical Drop

As indicated earlier a vertical drop of 50cm shall be accommodated. It is assumed that this drop occurs in case of a pier located directly on the fault. It is seen as a differential displacement between the 2 shores of the fault. Anyhow a sharp drop in one location only can not be expected. For the geometric solution (loss of support) the full range shall be considered, whereas for the stress calculations in the structure only 50% as a differential settlement shall be used.

![Figure 8: Effect of Vertical Drop on Tender Design](image)
5.2 Loss of Support

In case that a pier is directly located on the fault in a very unfortunate way the complete loss of the support is feasible. Despite the fact that this is most unlikely it should be considered here. Considering the size of the foundation pile cap and the typical characteristic of fault rupture this case is most unlikely.

5.3 Pier Torsion

In case that a pile cap is located directly on the fault it is more likely that a distortion will happen with the pier rather than a shear failure. The horizontal displacement of 150 cm at the fault could result at a pile cap of 12 by 12m in a distortion of 15 degrees approximately. The relevant space shall be allowed at the supporting length. In this case the Bolu Viaduct in Turkey shall be quoted again, where this distortion is clearly visible in the photo.
5.4 Foundation Failure

All piers are founded on piles (8 piles diameter 150 cm) which are covered by a huge pile cap of 12 by 12m. This huge structure is mainly designed to allow for the very small displacement requirements of the train in operation and Therefore shows considerable strength against extraordinary loads such as a fault rupture would bring. It is expected that a fault rupture would rather result in the loss of a couple of piles with a mostly undamaged foundation ready to support the infrastructure loads. Therefore this case shall not be treated as an actual issue of consideration.

Figure 13: Potential Area of Influence at a typical Foundation
5.5 **Pile Shear Off**

The failure of an individual pile or even a number of piles will not result in a significant problem for structural survival. Anyhow it would effect the operational performance of this structure but could be treated as a midterm repair item.

5.6 **Longitudinal Slip**

The topographic map shows that the fault crosses the HSR alignment under 45 to 60 degrees. This means that a lateral component of the displacement shall be expected. Rail extension joints shall be provided to accommodate this slip in the rail itself. For the structure the full value of displacement shall be considered in lateral direction for the dimensioning of the support length.

5.7 **Transversal Slip**

The same facts apply as described under 5.6. The displacement might be fully transversal due to local reasons. No reduction of the displacement value shall be done. In any case vertical and horizontal displacement shall be combined.
5.8 Acceleration

All recent earthquakes from Northridge 94 via the 1995 Kobe earthquake to the 1999 Kocaeli and Düzge in Turkey and Chi-Chi in Taiwan earthquakes a trend has been observed in near field action. The recorded acceleration close to faults are in the range of approximately 200% of the given code values. Anyhow the magnitude was always greater than 7, which is not the case here. According to the geological report magnification effects are not to be expected in this case. It might be considered to apply the NCREE recommendations for the directly affected structures, which means only the bridge across the fault. Suitable counter measures to accommodate the increased horizontal forces are proposed in a later chapter.

![Image of graphs showing acceleration, velocity, and displacement]

Figure 16: Typical Transversal Slip of Bridge supported on elastomeric Bearings, Turkey

Figure 17: Acceleration, Velocity and Displacement at Nantou, Taiwan 1999
5.9 Earthquake Spectra

Considering the spectra of the latest earthquakes it was observed that in Turkey the frequencies between 2 and 4 Hertz particularly exceeded the code values, whereas in Taiwan this region was located between 0.8 and 3 Hz. For this purpose a rather stiff structure could improve the situation considerably. Structures with frequencies above 4 Hz are desirable. This leads to the case “the stiffer the better”.

![Figure 18: Collapsed Bridge Section at Hanshin Expressway, Kobe, Japan 1995](image)

5.10 Multi Support Excitation

The rather short spans of 30 m and 55m suggest that an equal excitation of all piers will occur. Anyhow it is considered that in case of multiple support excitation the structure would rather benefit from this action by unsynchronized out of phase movement which would eliminate part of the action. Therefore this item shall only be considered in case that a large span is chosen finally.

5.11 Train Derailment

In case that a train is located on the fault or directly approaching a fault during an earthquake it will derail. In case of dam containment earthworks shall make sure that the train is more or less guided in longitudinal direction without crashing completely. In case of a bridge this scenario is much more difficult to achieve. Anyhow a proper guiding system is thinkable, but it would also have effects on the structure itself.

![Figure 19: Design Spectrum Vs Monitored Spectrum, Kocaeli EQ, Turkey 1999](image)
5.12 Track Displacement

The track displacement to be expected is directly related to the interaction between ground – foundation – structure – track. The stiffer the connections between the single elements are the more displacement has to be expected. Anyhow it has to be clearly distinguished between a track performance under usual operational loads and these extraordinary cases. It can not be expected that the tolerances required for operation can be satisfied.

5.13 Force Majeur

Any earthquake has the potential of a Force Majeur situation. Anyhow from the geological report the expected magnitude from an earthquake in this fault is 6.4, where the potential for a force majeur situation is small. It shall not be considered in this case.
From operational point of view there are the following circumstances to be taken into consideration:

5.14 Rail Displacement
The limits for rail displacement under normal operation condition are not valid for the earthquake case. The specification does not know any limits for bridges in a near fault situation. Therefore assumptions have to be taken. The rail displacement is a function of the support conditions. In case of a standard bridge the rail displacement would suffer almost the full range of the fault displacement. In case of a base isolation of the bridge structure the rail displacement can be reduced. Anyhow part of the displacement will be retained. This could be seen as a first level of protection. Considering a 2nd isolation, consisting of a slab track on elastic material and a continuos structure below it, this displacement can be further limited. Anyhow it always becomes a function of the effort to be taken by the structure. A comparison will be made in further chapters.

![Tracks across an active Fault, Kocaeli EQ, Turkey 1999](image)

Figure 25: Tracks across an active Fault, Kocaeli EQ, Turkey 1999

6. Structural Options
The considerations are primarily based on the available single span design.

![Concept of Tender Design](image)

Figure 26: Concept of Tender Design

The following options are available in the design to accommodate the described phenomena:

6.1 Sufficient Support Length
As indicated earlier a vertical drop of 50cm and a horizontal slip of 150cm shall be accommodated in combination. This results in a minimum pier cap size as shown in the following sketch under the consideration that a minimum of 50% of the bearing size shall be supported. A reasonable pier head size for this case would be 6,80 x 7,80m which considers that in longitudinal direction the slip consists of 150cm of horizontal displacement by the fault, 47cm displacement by pear torsion and 7cm displacement from the vertical drop. This results in a total margin of 202cm of which the existing margin has been subtracted. In cross direction only the horizontal displacement shall be considered reduced by the existing margin.

373
6.2 Wider Deck

In principal it should be considered to provide a wider deck structure for this case to allow:

- Movement of the track without falling from the structure
- Realignment of the track after medium earthquakes within very short time
- Space for additional safety measures

Anyhow all this items will require a different design from the single beam standard design. The additional width should be limited to 2/3 of the given 150cm horizontal displacement to both sides, which is in total 2m.
6.3 Continuous Beam

A continuous beam solution under the given conditions, a chain of 35m spans with a structural height of 3.35m could be designed such that the loss of a complete support could be covered. It has been proven at a case in Austria (Refer to the Annex) that a continuous pre-stressed bridge can survive a settlement of 128cm without major damage and can be repaired to full function. The disadvantage of the continuous beam solution is that single spans can not be exchanged. Anyhow there are cases known, where the complete continuous bridges has been exchanged by parallel movement. From structural point of view the performance of a continuous beam will be much better compared to single spans. Anyhow the decision has to be made also based on the emergency concept.
6.4 Anti Derailing Devices

The distortion of the wheels shall be avoided to keep the direction of the train. This has become standard equipment on tracks of DB (Deutsche Bahn) on all their lines, where derailment is thinkable. It was introduced after the accident of Enschede (Germany). Their function under a huge displacement at a limited distance has to be discussed.

It has to be emphasized that this measure will not be able to avoid a disaster. Anyhow it represents the present state of the art.

6.5 Rail Expansion Joint

The use of rail expansion joints has to be carefully considered in connection with the safety concept. A whole system approach has to be chosen to decide about location and even application or not of the devices.

Under earthquake loads an elongation of the rail might occur. A rail expansion joints allows an elongation without major resistance. Thus the rails in the adjacent stretches of the line will not be damaged. Anyhow the resistance of the rails might help to keep the alignment of the track in certain cases. But there is the chance of a rail break.
6.6 Guide Walls

The earthwork provided by the dam solution could be replaced by guiding walls on the structure. Anyhow a similar soft impact than at a dam solution can not be guarantied. Regular guiding measures as guardrails and restrainers as used in road bridges, will not be good enough to fulfill the requirement. A special wall solution could be adapted. Nevertheless the function of such a measure is questionable.

The final concept for such a guide wall has to be developed after principal decision have been taken. For that reason the given solution is a standard used on road bridges which has to be adapted for the case.

6.7 Seismic Devices

Seismic devices are of great help in case that displacement and acceleration shall be limited. In case of the Bolu viaduct in Turkey they helped to keep the superstructure in place even an active fault passed directly below the bridge and displaced and distorted a pier. The main function is to reduce the forces coming from ground acceleration to a limit desired by the designer. The dimensioning of such devices is mainly depending on the chosen specification of the fault behavior.

To absorb energy from any earthquake it is highly advisable to install such devices even so they can not provide the perfect solution for the project. It solves part of the near fault amplification effects and problems arriving from large displacement under unfavorable conditions. The costs of such devices might be balanced by the savings in the piers and the substructure, if regulations allow.
6.8 Base Isolation

The concept of base isolation is to take provisions for normal operation, which fulfills all the conditions of the specification and to take a system into operation when excessive acceleration or displacement happens. By this measure the forces on substructures and superstructures can be reduced to the ordinary values of operation, which will not create additional costs from this items. Anyhow the base isolation system itself will eat up most of this benefit. Such system have been used very successfully on road bridges and is under major consideration for railways right now. Tests have been carried out already successfully.

6.9 Isolated Slab Track

In cases where a dominant horizontal displacement is expected and vertical displacement is limited (for example by a continuous beam) an isolated slab track makes sense. In this case it would be desirable to combine both tracks with 1 slab to achieve a huge horizontal rigidity. This slab can be placed on an isolation material with a certain resistance. In case of a major movement of the bridge the track can keep its position as much as possible. This “bridge on a bridge” concept has been used in minor cases but for different conditions. Anyhow such solutions could be to the benefit of the track safety.
6.10 Structural Control

Today’s structural control abilities are good enough to deal with this case. Structural control normally goes hand in hand with base isolation and monitoring. Anyhow there is still resistance against such solutions for railways due to the non-existent long time behavior record. Probably structural control systems in connection with a wider deck and an isolated slab track could make sense for this special case. This is discussed in the next chapter.

6.11 Track Control

A controlled slab track which is continuous over the length of the bridge might be one of the most attractive solutions for this case. The principle is that the continuous slab with huge horizontal resistance is controlled by hydraulic cylinders which keep its position in case of a movement of the structure. Such a system would not be too difficult and bears a small risk only. In case that it is not in operation during an earthquake the bridge will behave as a normal bridge and not experience disadvantages. The advantage gained by such a system can be huge.

6.12 Realignment of HSR Layout

Another option to avoid major problems is a complete realignment of the layout in such way that the fault is crossed with a dam solution as initially intended. Anyhow from the present layout it can be seen that such realignment would bring considerable changes with a variation of consequences.
6.13 Connection of Spans

Considerable unequal behavior of single spans resting on a common pier have been recorded in the Kobe earthquake 1995.

Fig. 44 : Unequally displaced girders in Kobe 1995

Fig. 45 : Connection principle

7. Assessment

The major items of consideration have been listed in chapter 5 and the structural options are described in chapter 6. In this chapter it shall be tried to assess the cross influence of items of consideration against the options. This has to be repeated in different scenarios which are:
- Survival of a displaced superstructure with unusable tracks
- Survival of the superstructure with track for emergency use
- Survival of the superstructure with limited displacement and provisional use
- Complete survival of the system with minor realignment and repair
Survival of a displaced superstructure with unusable tracks

<table>
<thead>
<tr>
<th>Options</th>
<th>6.1</th>
<th>6.2</th>
<th>6.3</th>
<th>6.4</th>
<th>6.5</th>
<th>6.6</th>
<th>6.7</th>
<th>6.8</th>
<th>6.9</th>
<th>6.10</th>
<th>6.11</th>
<th>6.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items of Consideration</td>
<td>Tender Design</td>
<td>Support Length</td>
<td>Wider Deck</td>
<td>Continuous Beam</td>
<td>Anti Derailling Devices</td>
<td>Rail Expansion Joint</td>
<td>Guide Walls</td>
<td>Seismic Devices</td>
<td>Base Isolation</td>
<td>Isolated Slab Track</td>
<td>Structural Control</td>
<td>Track Control</td>
</tr>
<tr>
<td>Action driven Items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Vertical Drop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Loss of Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Pier Torsion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Foundation Failüre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5 Pile Shear Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 Longitudinal Slip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7 Transversal Slip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8 Accelleration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9 Earthquake Spectra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.10 Multi Support Excitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.11 Train Derailment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12 Track Displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.13 Force Majeur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.14 Rail Displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.15 Realignment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.16 Repair of Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.17 Repair of Substructures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18 Provisional Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.19 Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.20 Emergency Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.21 Emergency Concept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Score
0 not effective
1 very little effective
2 little effective
3 effective
4 very effective
5 solves the problem

Figure 46: Assessment Scenario 1
<table>
<thead>
<tr>
<th>Action driven Items</th>
<th>Survival of the superstructure with track for emergency use</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Vertical Drop</td>
<td>2 4 0 3 5 0 0 0 1 0 0 0 0 0 0 12</td>
</tr>
<tr>
<td>5.2 Loss of Support</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10</td>
</tr>
<tr>
<td>5.3 Pier Torsion</td>
<td>2 5 0 4 0 0 0 0 0 0 0 0 0 0 0 16</td>
</tr>
<tr>
<td>5.4 Foundation Failure</td>
<td>5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10</td>
</tr>
<tr>
<td>5.5 Pile Shear Off</td>
<td>5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15</td>
</tr>
<tr>
<td>5.6 Longitudinal Slip</td>
<td>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 21</td>
</tr>
<tr>
<td>5.7 Transversal Slip</td>
<td>1 0 4 0 4 2 1 5 0 0 0 0 0 0 0 27</td>
</tr>
<tr>
<td>5.8 Acceleration</td>
<td>3 0 0 4 0 0 1 0 0 0 0 0 0 0 0 13</td>
</tr>
<tr>
<td>5.9 Earthquake Spectra</td>
<td>3 0 0 4 0 0 0 1 5 0 0 0 0 0 0 13</td>
</tr>
<tr>
<td>5.10 Multi Support Excitation</td>
<td>3 0 0 0 0 0 0 0 1 5 0 0 0 0 0 13</td>
</tr>
<tr>
<td>5.11 Train Derailment</td>
<td>2 0 4 3 8 0 2 0 0 0 0 0 0 0 0 14</td>
</tr>
<tr>
<td>5.12 Track Displacement</td>
<td>4 0 3 4 0 0 0 4 0 0 0 0 0 0 0 4 16</td>
</tr>
<tr>
<td>5.13 Force Majeur</td>
<td>0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 4</td>
</tr>
<tr>
<td>5.14 Rail Displacement</td>
<td>4 0 3 4 3 0 0 4 0 0 0 0 0 0 0 18</td>
</tr>
<tr>
<td>5.15 Realignment</td>
<td>3 4 5 4 1 2 0 4 0 0 0 0 5 0 0 28</td>
</tr>
<tr>
<td>5.16 Repair of Structures</td>
<td>4 4 2 3 0 0 4 0 0 0 0 0 0 0 0 17</td>
</tr>
<tr>
<td>5.17 Repair of Substructures</td>
<td>4 4 0 4 0 0 4 0 0 0 0 0 0 0 0 16</td>
</tr>
<tr>
<td>5.18 Provisional Use</td>
<td>1 3 5 5 3 3 0 5 0 0 0 0 5 0 0 32</td>
</tr>
<tr>
<td>5.19 Monitoring</td>
<td>4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 8</td>
</tr>
<tr>
<td>5.20 Emergency Stop</td>
<td>4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 8</td>
</tr>
<tr>
<td>5.21 Emergency Concept</td>
<td>2 4 4 4 3 3 3 3 0 0 0 0 0 0 0 35</td>
</tr>
</tbody>
</table>

Score:
0 not effective
1 very little effective
2 little effective
3 effective
4 very effective
5 solves the problem

Figure 47: Assessment Scenario 2
<table>
<thead>
<tr>
<th>Scenario: 3</th>
<th>Survival of the superstructure with limited displ., provisional use</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6.1</td>
</tr>
<tr>
<td>Items of Consideration / Options</td>
<td>Tender Design</td>
</tr>
<tr>
<td>Action driven Items</td>
<td></td>
</tr>
<tr>
<td>5.1 Vertical Drop</td>
<td>2</td>
</tr>
<tr>
<td>5.2 Loss of Support</td>
<td>0</td>
</tr>
<tr>
<td>5.3 Pier Torsion</td>
<td>2</td>
</tr>
<tr>
<td>5.4 Foundation Failure</td>
<td>0</td>
</tr>
<tr>
<td>5.5 Pile Shear Off</td>
<td>8</td>
</tr>
<tr>
<td>5.6 Longitudinal Slip</td>
<td>1</td>
</tr>
<tr>
<td>5.7 Transversal Slip</td>
<td>1</td>
</tr>
<tr>
<td>5.8 Acceleration</td>
<td>0</td>
</tr>
<tr>
<td>5.9 Earthquake Spectra</td>
<td>3</td>
</tr>
<tr>
<td>5.10 Multi Support Excitation</td>
<td>0</td>
</tr>
<tr>
<td>5.11 Train Derailment</td>
<td>2</td>
</tr>
<tr>
<td>5.12 Track Displacement</td>
<td>0</td>
</tr>
<tr>
<td>5.13 Force Majeur</td>
<td>0</td>
</tr>
<tr>
<td>Operational Items</td>
<td></td>
</tr>
<tr>
<td>5.14 Rail Displacement</td>
<td>4</td>
</tr>
<tr>
<td>5.15 Realignment</td>
<td>3</td>
</tr>
<tr>
<td>5.16 Repair of Structures</td>
<td>4</td>
</tr>
<tr>
<td>5.17 Repair of Substructures</td>
<td>4</td>
</tr>
<tr>
<td>5.18 Provisional Use</td>
<td>1</td>
</tr>
<tr>
<td>5.19 Monitoring</td>
<td>4</td>
</tr>
<tr>
<td>5.20 Emergency Stop</td>
<td>4</td>
</tr>
<tr>
<td>5.21 Emergency Concept</td>
<td>2</td>
</tr>
</tbody>
</table>

Score
0 not effective
1 very little effective
2 little effective
3 effective
4 very effective
5 solves the problem

Figure 48 : Assessment Scenario 3
Figure 49: Assessment Scenario 4

Table: Complete Survival of the System with Minor Realignment and Repair

<table>
<thead>
<tr>
<th>Scenario: 4</th>
<th>Complete Survival of the System with minor realignment and repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Vertical Drop</td>
<td>2 4 0 6 0 0 0 1 2 4 1 2 2 23</td>
</tr>
<tr>
<td>5.2 Loss of Support</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 10</td>
</tr>
<tr>
<td>5.3 Pier Torsion</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 41</td>
</tr>
<tr>
<td>5.4 Foundation Failure</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 15</td>
</tr>
<tr>
<td>5.5 Pile Shear Off</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 41</td>
</tr>
<tr>
<td>5.6 Longitudinal Slip</td>
<td>1 0 0 0 0 0 0 0 0 0 0 0 52</td>
</tr>
<tr>
<td>5.7 Transversal Slip</td>
<td>1 4 4 2 1 4 4 0 0 4 31</td>
</tr>
<tr>
<td>5.8 Accelleration</td>
<td>3 0 0 4 0 0 1 4 4 0 31</td>
</tr>
<tr>
<td>5.9 Earthquake Spectra</td>
<td>3 0 0 4 0 0 1 4 4 0 31</td>
</tr>
<tr>
<td>5.10 Multi Support Excitation</td>
<td>3 0 0 0 0 0 1 4 4 0 32</td>
</tr>
<tr>
<td>5.11 Train Derailment</td>
<td>2 0 4 3 0 0 0 2 4 0 0 0 16</td>
</tr>
<tr>
<td>5.12 Track Displacement</td>
<td>0 0 3 3 0 0 0 4 4 4 4 3 31</td>
</tr>
<tr>
<td>5.13 Force Majeur</td>
<td>0 0 0 2 0 0 0 2 2 0 2 0 10</td>
</tr>
<tr>
<td>5.14 Rail Displacement</td>
<td>4 0 3 4 3 0 0 4 4 4 4 4 0 34</td>
</tr>
<tr>
<td>5.15 Realignment</td>
<td>3 4 6 4 1 2 0 4 4 4 4 4 4 43</td>
</tr>
<tr>
<td>5.16 Repair of Structures</td>
<td>4 4 2 3 0 0 0 4 4 4 4 4 0 33</td>
</tr>
<tr>
<td>5.17 Repair of Substructures</td>
<td>4 4 0 4 0 0 0 4 4 4 4 4 0 32</td>
</tr>
<tr>
<td>5.18 Provisional Use</td>
<td>1 3 5 5 3 0 0 0 4 4 4 4 0 47</td>
</tr>
<tr>
<td>5.19 Monitoring</td>
<td>4 0 0 4 0 0 0 0 0 0 1 0 18</td>
</tr>
<tr>
<td>5.20 Emergency Stop</td>
<td>4 0 0 4 0 0 0 0 0 0 0 0 18</td>
</tr>
<tr>
<td>5.21 Emergency Concept</td>
<td>2 4 4 4 3 3 3 2 3 3 3 3 53</td>
</tr>
</tbody>
</table>

Score

- 0 not effective
- 1 very little effective
- 2 little effective
- 3 effective
- 4 very effective
- 5 solves the problem
Conclusion
From the figures a trend can be derived and the interpretation of the figures can be developed into an assessment of the options. The following conclusions might be drawn:

- A sufficient support length generally contributes to a solution of the problem and has no technical disadvantages.
- Connection cables are a well established mean to ensure equal performance of adjacent single span girders and shall be used here.
- A wider deck has advantages in operational terms only in combination with other measures, but does not create technical disadvantages.
- The continuous beam solution appears to be little attractive for the situation because of the span arrangement (4x30m concrete and 55m steel bridge) in the tender design. Reparability is a main focus here.
- Anti derailing devices are essential and state of the art.
- The question of rail expansion joints shall be decided when the final emergency concept is available.
- Guide walls as a substitution of the containment earthworks in case of the dam are very little effective and questionable.
- Seismic devices will provide additional safety in case that a higher level of emergency use is desired and near fault effects shall be considered, but pier sizes shall not be increased.
- Base isolation actually could be of help in case that the concept is changed completely.
- An isolated slab track could be a very attractive solution in case that a high level of safety and emergency use shall be achieved.
- Structural control might be the concept of the future but its readiness for application has yet to be proved.
- Track control might be the simpler version of a structural control and could be taken into consideration.
- A complete realignment of the layout could be a good technical solution but seems to be impossible from organizational point of view considering the progress of the project.

Literature
[1] Juin-Fu CHAI, Chin-Hsiung LOH, Chao-Yu CHEN
 Consideration of the Near-Fault Effect on Seismic Design Code for Sites near the Chelungpu Fault
 Journal of the Chinese Institute of Engineers, Vol. 23, No. 4, July 2000
 Dynamic Responses of Bridges subjected to Near-Fault Ground Motions
 Journal of the Chinese Institute of Engineers, Vol. 23, No. 4, July 2000
[3] ERDIK, M.
 Report on 1999 Kocaeli and Düzce Earthquakes
 Special Report Learning from Earthquakes (October 1999)
[6] Kocaeli EQ Online, Bogazici University
 http://www.koeri.boun.edu.tr/earthqk/earthqk.html
[7] ITO, M.,
 Special Report to IABSE on the Kobe EQ at the 1995 San Francisco Symposium
SEISMIC INPUT MOTIONS FOR STRUCTURE, PLANT AND EQUIPMENT DESIGN

John H Mills
Babtie Group Ltd.

OECD Workshop on the Relations Between
Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

The seismic input motions used in the design of nuclear safety related facilities in the UK were developed in the early 1980's. Although there have been improvements to the methodology used since then, the basic definition remains a peak free field acceleration and piece-wise linear response spectra. The increased computing power available to engineers means that the design process can now accommodate a more fundamental definition of the seismic hazard, whilst the increased availability of strong motion records means that ground motion specialists are perhaps now in a position to meet such requirements. The aim of this paper is to stimulate discussion between design engineers and seismologists about how best to harness these advances in technology to overcome any current problems and to identify the co-operation needed to achieve this.

Introduction

The design engineer's requirement is for a simple deterministic definition of the seismic ground motion hazard suitable for use in an already complex design process. The seismologist's responsibility is to provide ground motion data which properly represent the seismic hazard at the site and which recognise the uncertainty inherent in virtually every input parameter to such data. The regulator's concern is to ensure that the level of conservatism in the totality of the seismic design is sufficient to allow for both the simplifications and uncertainties in the whole process. It is little wonder that the interface between design engineers and ground motion specialists has traditionally been seen as a source of significant, potentially unnecessary, conservatism in the definition of seismic ground motion parameters for the design of safety related nuclear facilities.

This paper is based upon experience in the design of safety related structures, systems and components for nuclear power and nuclear fuel reprocessing facilities in the United Kingdom. In this context, the term design includes the engineering verification of new facilities and the evaluation and re-evaluation of existing facilities. The author is a civil engineer whose principal responsibility is the design of building structures. However, the comments made are also informed by experience as a design manager for nuclear projects. Whilst the author has assisted the UK regulator in the assessment of seismic designs for nuclear facilities, and has in this capacity visited every nuclear facility in the UK, and has close contacts with UK earthquake research facilities, principally Imperial College, the comments and observations in this paper are made essentially from an industrial perspective.

This workshop is a timely opportunity to revisit the way in which the seismic hazard is treated in the design of nuclear facilities, to personally review interaction with ground motion specialists and to gauge the responsiveness of regulators to changes which may be anticipated in the next 5 to 10 years.
Which Parameters to Use?

The UK nuclear industry is regulated by H. M. Nuclear Installations Inspectorate. The industry is regulated through a non-prescriptive, goal-setting regime with the emphasis on the licensee demonstrating to his own satisfaction, and that of the regulator, that the design meets well established principles. In contrast to the US Nuclear Regulatory Commission nothing is prescribed. In the context of external hazards, the principles by which the regulators assess the suitability of the design criteria are shown in Table 1.

The principles do not prescribe how to describe the hazard (peak ground acceleration or other) and do not define in absolute terms the size of the hazard. They do, however, indicate that a degree of caution is required with respect to natural hazards due to the uncertainties inherent in the data and procedures used in the deviation of the design criteria. However, again, the degree of caution or conservatism required is not specified but is left to the licensee depending upon the radiological consequences of the facility.

The UK seismic environment is, by most standards, benign; earthquake loading is not considered in the design of conventional buildings and facilities. Nevertheless, earthquakes do occur and the headline in Figure 1 occurred only last month. Indeed, it was an earthquake of similar magnitude in 1979 which occurred close to Chapelcross nuclear power station in Cumbria that awakened the UK nuclear industry to the need to consider external hazards in general, and seismic hazards in particular, in the design of such facilities.

The UK has developed criteria for earthquake resistant design of nuclear safety related facilities based upon.

- peak free field horizontal ground acceleration (pffhga)
- piecewise linear response spectra
- vertical motion = 2/3 horizontal motion

The somewhat tenuous relationship between damage and pffhga has been recognised, particularly for building structures, as has the importance of site specific effects including soil-structure interaction. The aim has been to produce a description of the seismic hazard in a form which can be used in design, remembering that for nuclear facilities the performance of plant and equipment can be critically important to the safety of the facility. Such plant and equipment is subjected to motions which are filtered by the soil at the site, the building structure and intermediate support systems. These interactions are complex and in many cases may be non-linear.

Peak Free Field Horizontal Ground Acceleration

Work in the early 1980's established the geological context of UK seismicity and thoroughly researched the historical archive, which proved to be amazingly rich. Through relationships between magnitude and felt area, established from instrumental data, a magnitude/frequency relationship was developed for the UK as a whole. However, no strong motion data exists for the UK, and the conversion of the magnitude/frequency relationship into an acceleration/frequency relationship was based upon European and US data and attenuation formulae. The resulting relationship is shown in Figure 2. These analyses also showed that, in terms of risk, the main contribution to the seismic hazard at a UK nuclear facility is from a 'direct hit' by a small earthquake.
The seismologists recognise and understand the uncertainties associated with the derivation of the seismic hazard. No doubt, they believe that the hazard curves eloquently describe these uncertainties so that even an engineer can use the criteria appropriate to his design. The engineer on the other hand is working in an essentially deterministic process. This process is multi-disciplinary with many interfaces between different disciplines and, usually, different companies. Specialist activities, such as dynamic analysis, may be subcontracted. To minimise interactions at these interfaces a linear process is imposed, which together with the inevitable time constraints lead to a requirement for simple, conservative criteria. The uncertainties in the seismic design criteria defined by the seismologist cannot be easily incorporated in this process and for new facilities there has been a tendency to reduce the definition of the hazard to a single value of the peak ground acceleration of 0.25g associated with one set of the piecewise linear response spectra. This has become the de-facto design standard for new UK nuclear facilities, to the extent that the uncertainties inherent in the whole process tend to have been forgotten. There has also been reluctance on the part of the regulator to move away from this definition.

Piecewise Linear Response Spectra

In parallel with the development of the acceleration/frequency relationship sets of piecewise linear response spectra were developed, again based upon European and US data. Three sets of spectra were developed for three different site types, characterised as Hard, Intermediate and Soft.

The development of the UK piecewise linear response spectra followed procedures current in the early 1980s. For each ground type, strong ground motion records were selected using macro-seismic data. These were:

- Complete triaxial set
- Recorded in the free field
- Richter Magnitude between 4.0 and 6.0
- Focal depth between less than 30 km
- Epicentral distance less than 50km
- Duration of strong motion less than 10 seconds
- MMI site intensity ≥ IV
- Peak horizontal acceleration > 0.04g

As noted previously, no strong ground motion records exist for UK earthquakes and the records used were taken from the then relatively small database of US and European records. It is interesting to note that the criteria for duration did not operate in this process. Statistical analysis was carried out of the ratios of v/a and ad/v² and median values were obtained. Mean plus one standard deviation amplification factors for acceleration, velocity and displacement were obtained and corner frequencies were chosen. Spectra were plotted for different levels of damping, the Hard Ground spectrum for 5% damping being shown in Figure 3 (note that the spectrum applies to both horizontal and vertical motions). This figure also shows the spectrum of one of the strong motion records used in the analysis, in this case a German record. The actual earthquake spectrum approaches the piecewise linear spectrum only over a small range of frequencies, each particular earthquake in the dataset challenging the spectrum at a different frequency range.

Figure 4 shows the acceleration time history of the German record. This was a relatively short event with a high peak acceleration but with a limited frequency content. Figure 5 shows a time history generated to match the piecewise linear spectrum using USNRC guidelines. This is much
longer and has a much fuller frequency content, altogether a more energetic event. These comparisons show that the input motions defined, whether the piecewise linear spectrum or the spectrum matched time history, input significantly more energy into the structural system than any one particular event. This is particularly important in the analysis of non-linear systems.

The spectra generated in the way described are recognised as having a variable probability of exceedence. More recently, Uniform Risk Spectra (URS) have been generated which have the same probability of exceedence at all frequencies. These are generated using frequency dependent attenuation relationships and derive horizontal and vertical motions separately. To date URS have not been accepted for the design of new facilities. In the evaluation of existing structures URS and piecewise linear spectra are used, although there are concerns about the URS below 1 Hz.

Analytical Methods

Many of my engineers can carry out the most complex dynamic analyses, including non-linear time history analysis. Only the older engineers can carry out a simple analysis by Equivalent Lateral Force (ELF) methods. I say this to remind myself how far we have moved since the seismic hazard criteria were developed. In the late 1970's and early 1980's ELF methods were used for initial design and relatively simple 'stick' models were used with response spectrum methods for final design verification. Exceptionally, linear time history analysis would be carried out on even simpler models to generate a few in-structure response spectra for design.

Increasing computer power and improved analytical procedures mean that detailed finite element analysis is now the norm. Response spectrum analysis is used primarily in the validation of the model and the main design is based upon time history analysis. For the evaluation of existing facilities non-linear analysis is commonly used. The increased complexity of the analysis itself introduces further uncertainties. For example, in steel frames semi-rigid connections are generally modelled as either fully rigid or pinned. The effect on the overall analysis is small, but locally the stresses calculated are meaningless. The code allowable stresses, against which the results of the analysis are checked are based on simple rules and generally refer to gross stresses on the section. Also most codes were developed before detailed finite element analysis became available. Thus we have a situation where the sophistication of the analysis has outstripped the definition of the input and the treatment of the output. In the context of this workshop the treatment of the output of the analysis is not the issue. But the definition of the input is.

Taking account of the requirements for plant and equipment design can have a fundamental impact on the design of the building structures. Firstly, Soil-Structure-Interaction (SSI) is often beneficial to heavy nuclear structures and for simplicity and conservatism this can often be ignored. For plant and equipment SSI dictates entirely the seismic motions they will be subjected to. Thus SSI must be carried out. Plant-structure-interaction is also often beneficial both to the plant and the structure. However, at the time that the structural analysis is required for building design and the generation of secondary (or floor) response spectra many plant details are not available. Plant-structure-interaction is therefore ignored. Figure 6 shows a typical plant item supported within a structure. Structural analysis will generate floor response spectra at the master nodes marked 'X'. These will then be used on further detailed models of the plant components. In order to ensure predictable, and easily demonstrated secondary spectra, it is often required to ensure that the building's response is essentially elastic. This seemingly reasonable requirement can completely dictate the building design.
Discussion

The broad band piecewise linear response spectrum was a convenient and concise way of capturing and enveloping the frequency content of the design ground motion, taking account of many of the uncertainties discussed earlier. Coupled with a defined pgha this simple definition of the seismic hazard allows analysis and design to proceed to acceptable project programmes, albeit at a cost, and has become the 'design standard' for nuclear facilities in the UK.

The recent European Conference on Earthquake Engineering was held in London, and the conference dinner was held in the main hall of the National History Museum. Surrounded by dinosaur bones, such as those shown in Figure 7, seemed to be an appropriate reminder that earthquakes have their genesis in geological ages long gone. And like the palaeontologist who extrapolates an entire skeleton from a single bone, seismologists extrapolate a no less impressive structure for the prediction of seismic hazard from relatively little data. The engineer is the cave man who has to overcome the monster the palaeontologist/seismologist has created!!

Figures 8 and 9 show in a diagrammatical way the change in the seismic criteria and the cost of seismic design in the UK since 1980. The definition of the hazard stepped up sharply in the early 1980's through the work outlined above. Since then, some further data has been recovered, and the science has been refined. The net effect is a small reduction in the 'design standard'. The cost of seismic design has, against this trend, steadily increased, with at times significant step changes. These increases are due to an increased requirement for demonstration of numerical compliance with acceptance criteria, in turn leading to increasing complexity in analysis and design. For new facilities, earthquake resistant design represents a significant design challenge, even at the levels of design event used in the UK. For the evaluation of existing facilities, whose continued operation depends upon demonstrating an acceptable level of earthquake resistance, these methods can become life limiting.

Given the level of analysis now available, is the use of piecewise linear spectrum matched time histories appropriate, particularly for non-linear analysis? If not, what alternatives can the seismologists offer for the definition of the seismic hazard?

Alternative parameters such as Effective Peak Acceleration (EPA) or Arias Intensity may better correlate with earthquake damage for some types of buildings. However, correlation of plant and equipment performance with any seismological parameters is much more complex. Advances in the use of Experience Data have been made, but the possible combinations of plant type, support conditions, performance requirements and possible input motion are so numerous that it is unlikely that anything less than full seismic qualification by analysis will prove satisfactory. Therefore, given that it is now possible to carry out multiple time history analysis on desk top computers relatively quickly, is it possible to replace the piecewise linear response spectra and its matched time histories by a suite of real time histories scaled to an appropriate pgha? If so, what are the criteria for selecting appropriate the time histories for use in the design of structures, plant and equipment?
For natural hazards, the uncertainty of data may prevent reasonable prediction of events for frequencies less than once in 10,000 years. In these cases, plants should meet the requirements of P25 for a design basis event that conservatively has a predicted frequency of being exceeded no more than once in 10,000 years. Plants which cannot give rise to doses as high as those specified in P25 may be designed against more frequent, i.e. less onerous, events.

It should be shown that there will not be a disproportionate increase in risk from an appropriate range of events which are more severe than the design basis event.

In all cases either site specific or, if this is not appropriate, best available relevant data should be used to determine the magnitude of the hazard.

The seismology and geology of the area around the proposed site and the geology of the site should be evaluated. Information on historical and instrumentally recorded earthquakes which have occurred in the region should be established. The extent of the studies carried out by the licensee should cover all those aspects which could affect the estimation of the seismic hazard at the site.

A design basis earthquake (DBE) should be determined in accordance with Principle P120. This DBE should be defined in terms which will enable buildings, structures and plant in the nuclear installation to be designed to withstand safely the ground motions involved.

Table 1 Safety Principles
THE EARTH MOVES AS QUAKE ROCKS BRITAIN

Figure 1. Newspaper Headline for a Magnitude 4.8 Earthquake in the UK in September 2002

Figure 2. Seismic Hazard Curves
Figure 3. Piecewise Linear Response Spectrum
Figure 4. Strong Motion from UK dataset

Figure 5. Spectrum Matched Time History

Figure 6. Typical Plant Support System
Figure 7. Dinosaur Skeleton

Figure 8. Hazard Development
Figure 9. Cost Development
RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES
ON ROCK SITES

Shizuo Noda, Kazuniko Yashiro
Tokyo Electric Power Company, Japan

Katsuya Takahashi, Masayuki Takemura, Susumu Ohno
Kajima Corporation, Japan

Masanobu Tohdo
Toda Corporation, Japan

Takahide Watanabe
Osaka Research Institute, Japan

ABSTRACT

For seismic design of nuclear power facilities, we propose an empirical method for evaluating response spectra and time-dependent features of horizontal and vertical earthquake ground motions on free rock surfaces. A response spectrum of horizontal motion on seismic bedrock is given by a control point in the matrix by four magnitudes M and four equivalent hypocentral distances X_H. The response spectra for other M and X_H are determined by interpolation between values in the matrix. The response spectra of the horizontal and vertical motions on the free rock surface are determined by multiplying the horizontal motion on the seismic bedrock by the amplifications of horizontal and vertical motions due to surface layers, which are given as functions of S- and P-wave velocities on the free rock surface, respectively. The proposed evaluation method adequately explains near-source observation records.
Introduction

Earthquake ground motion evaluation methods used for seismic design of structures are roughly classified into empirical, semi-empirical, and theoretical methods [1]. Empirical methods have been widely used as a standard for calculating the response spectrum to be used for seismic design of nuclear power facilities (e.g., Reference 2). This paper discusses and proposes an empirical method for evaluating the response spectra of horizontal and vertical earthquake ground motions on the surfaces of rock mostly composed of Tertiary or older strata, as a reasonable method for establishing a design-basis earthquake ground motion for seismic design of nuclear power facilities.

The earthquake ground motion evaluation method proposed here uses the earthquake magnitude, equivalent hypocentral distance, and elastic wave velocity on the ground at the evaluation point as evaluation parameters. The method is organized so as to reflect, as accurately as possible, actual earthquake ground motion observations. The major features of the method are that (1) it empirically evaluates earthquake ground motion amplification by the surface layers overlaying seismic bedrock using the elastic wave velocity on the ground at an evaluation point, (2) it includes the effect of the extension of the fault on earthquake ground motion so that it can be applied to near-source regions, (3) it can evaluate earthquake ground motion with periods from 0.02 to 5 seconds, which are longer than those in Ref. 2, and (4) it can evaluate both horizontal and vertical motions.

Response Spectra of Earthquake Ground Motion on Free Rock Surface

The response spectra of horizontal and vertical ground motions with periods from 0.02 to 5 seconds on free rock surfaces are evaluated by multiplying the horizontal earthquake ground motion on seismic bedrock by the amplifications of horizontal and vertical motion due to surface layers. Figure 1 shows a schematic flowchart for evaluating the horizontal ground motion.

Horizontal Ground Motion on Seismic Bedrock

The response spectrum $S_x(T)$ of a horizontal earthquake ground motion on seismic bedrock, which is the acceleration response spectrum (cm/s^2) with a damping factor of 5%, is obtained from the pseudo-velocity response spectrum $p\delta V(T)$ (cm/s) of the period T (s) represented by the control point in Table 1. To determine a control point $p\delta V$ from an arbitrary magnitude M (the Japan Meteorological Agency Magnitude (JMA) or its equivalent) and an equivalent hypocentral distance X_{eq} that are not directly found in Table 1, log $p\delta V$ is interpolated by M first and then by log X_{eq}.

Here, the equivalent hypocentral distance X_{eq} (km) is the distance between an evaluation point and a point source that would produce the same seismic wave energy as the total seismic wave energy that arrives at the evaluation point radiated from the extended fault plane. This is given by [3]

$$X_{eq}^2 = \frac{1}{2} \int e_m X_m^2 ds / \int e_m ds,$$ \hspace{1cm} (1)

where X_m is the distance (km) from the evaluation point to each small segment m in the fault plane, e_m is the relative distribution of seismic wave energy released from each segment m, and ds is the segment area (km2).

e_m is the distribution of seismic wave intensity released from the fault plane in a period range for response spectrum evaluation. Although it has energy dimensions here, a relative distribution can be used instead. Therefore, the distribution of the square of the slip D_s can substitute for the e_m distribution. Because such a distribution is rarely predicted before an earthquake, calculations can...
assume that \(e_\alpha \) is uniformly distributed (i.e., constant) over the fault plane. Figure 2 illustrates the pseudo-velocity response spectrum for each control point in Table 1.

Horizontal Ground Motion on Free Rock Surface

The response spectrum of the horizontal ground motion on the free rock surface at the control point with a specified period is calculated as follows. We multiply the horizontal ground motion spectrum on the seismic bedrock for the control point by the amplification of horizontal motion due to the surface layers. The amplification is a function of both the S-wave velocity at the free rock surface and the dominant period of the surface layers between the seismic bedrock and the free rock surface.

\[
S_s(T) = S_b(T) \ast \alpha_s(T) \ast \beta_s(T)
\]

where \(S_b(T) \) is the response spectrum (cm/s²) of horizontal earthquake ground motion on the free rock surface, \(T_b \) is the period of control points from A to H in Table 1, \(S_s(T) \) is the response spectrum (cm/s²) of horizontal earthquake ground motion on seismic bedrock from Table 1, and \(\alpha_s(T) \) and \(\beta_s(T) \) are amplifications of horizontal motion by the surface layers expressed by Eq. (3) below.

The amplifications of seismic waves due to the surface layers overlaying the seismic bedrock depending on the S-wave velocity of the ground and the dominant period are given by the equations below:

\[
\alpha_s(T) = \begin{cases} \left(\frac{V_s}{V_{s,0}} \right)^{\delta_s(T)} & (T_s \leq T_0) \\ \left(\frac{T_s}{T_0} \right)^{\frac{\delta_s(T)}{\delta_{s,0}}} & (T_s > T_0) \end{cases} \quad \beta_s(T) = \begin{cases} 1 & (T_s \leq T_0) \\ (10T_0 > T_s > T_0) \\ (T_s \geq 10T_0) \end{cases}
\]

where \(V_s \) is the S-wave velocity (km/s) of the free rock surface, \(V_{s,0} \) is the S-wave velocity (km/s) of the seismic bedrock, \(T_s \) is the dominant period of horizontal ground motion caused by the surface layers overlaying the seismic bedrock, and \(\delta_s(T) \) is the coefficient given in Table 2.

Vertical Ground Motion on Free Rock Surface

The response spectrum of the vertical ground motion on the free rock surface at the control point with a specified period is calculated as follows. We multiply the horizontal ground motion spectrum at the seismic bedrock for the control point by the amplification of vertical motion due to the surface layers. The amplification is a function of both the P-wave velocity at the free rock surface and the dominant period of the surface layer between the seismic bedrock and the free rock surface.

\[
S_v(T) = S_b(T) \ast \alpha_v(T) \ast \beta_v(T)
\]

where \(S_v(T) \) is the response spectrum (cm/s²) of vertical earthquake ground motion on the free rock surface, \(\alpha_v(T) \) and \(\beta_v(T) \) are amplifications of vertical motion by the surface layers expressed by Eq. (5) below.

The amplifications of seismic waves due to the surface layers overlaying the seismic bedrock depending on the P-wave velocity of the ground and the dominant period are given by the equations below:

\[
\alpha_v(T) = \alpha_{v,0}(T) \begin{cases} \left(\frac{V_p}{V_{p,0}} \right)^{\delta_v(T)} & (T_s \leq T_{p,0}) \\ \left(\frac{T_s}{T_{p,0}} \right)^{\frac{\delta_v(T)}{\delta_{v,0}}} & (T_s > T_{p,0}) \end{cases} \quad \beta_v(T) = \begin{cases} 1 & (T_s \leq T_{p,0}) \\ (10T_{p,0} > T_s > T_{p,0}) \\ (T_s \geq 10T_{p,0}) \end{cases}
\]
where V_p is the P-wave velocity (km/s) of the free rock surface, V_p is the P-wave velocity (km/s) of the seismic bedrock, T_{sh} is the dominant period of the vertical ground motion caused by the surface layers on the seismic bedrock, c_s (T) is a coefficient given in Table 2, and α_c (T) is the vertical-to-horizontal response spectral ratio on the seismic bedrock given in Table 2.

Table 2 assumes $V_p = 2.2$ km/s and $V_p = 4.2$ km/s. When V_p or V_p of the free rock surface exceeds these values, we use instead $V_p = 2.2$ km/s or $V_p = 4.2$ km/s, respectively. Figure 3 shows calculation examples of amplification by surface layers of the horizontal and vertical motions. When T_{sh} or T_{sh} does not equal the periods of the control points shown in Table 1, new control points for them are added. From the spectrum obtained above, the response spectrum for a period not equal to the period of the control points is determined by interpolation along a straight line in a diagram where the abscissa is the logarithm of the period and the ordinate is the logarithm of the pseudo-velocity response spectrum.

Time Dependent Features of Earthquake Ground Motion on Free Rock Surface

The amplitude envelope in the time domain $E(t)$ of horizontal and vertical ground motions on the free rock surface is calculated as an envelope with a build-up section from 0 to t_b, a strong-shaking section from t_b to t_c, and a coda section from t_c to t_d as shown in Fig. 4. The envelope function is

$$E(t) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-(t/t_b)^2} & (0 < t < t_b) \\ e^{-2(t/t_b)} & (t_b < t < t_c) \\ e^{-2(t/t_c)} & (t_c < t < t_d) \end{cases}$$

(6)

The duration t_b (s) of the build-up section and the duration $t_c - t_b$ (s) of the strong-shaking section are calculated as functions of the magnitude M. The duration $t_d - t_c$ (s) of the coda section is a function of both the magnitude M and the equivalent hypocentral distance X_e. These expressions are derived by Eq. (7). Figure 4 shows examples of the envelopes.

$$t_b = 10^{0.52M - 2.0}, \quad t_c - t_b = 10^{0.53M - 1.0}, \quad t_d - t_c = 10^{0.17M + 0.54 \log_{10} T_{sh} - 2.5}$$

(7)

Response Spectra for Different Damping Factors

When the damping factor is not 5%, the response spectra of the horizontal and vertical ground motions on the free rock surface for the period of the control point are calculated by multiplying the control point’s response spectra by the response spectra on the free rock surface by a correction coefficient as a function of the damping factor

$$S_h(T, h) = S_h(T) \times \eta(T, h), \quad S_v(T, h) = S_v(T) \times \eta(T, h)$$

(8)

where $S_h(T, h)$ and $S_v(T, h)$ are the response spectra of the horizontal and vertical ground motions, respectively, on the free rock surface for the damping factor h. $\eta(T, h)$ is the correction coefficient of the response spectrum for the damping factor h, which is expressed by Eq. (9). Figure 5 shows examples of the correction coefficient.

$$\eta(T, h) = \begin{cases} \sqrt{1 + \alpha \cdot (h - 0.05) \cdot \exp\left(-b \cdot T / T_{sh}\right)} & (T = T_1, \ldots, T_{10}) \\ \sqrt{1 + \alpha \cdot (h - 0.05) \cdot \exp\left(-b \cdot T / T_{sh}\right)} & (T = T_9) \\ 1 & (T = T_9) \end{cases}$$

(9)
where T_a, which is given by Eq. (10) below, is the duration for which an acceleration wave is assumed to have a constant intensity of the strong-shaking section and its total power equals that of the envelope's acceleration wave. Constants a and b are given by Eq. (11) below.

$$T_a = 0.3^{0.3 - b} + 0.2 \times 10^{a - 0.5} \times 10^{10M + 0.5\log Z_m + 0.5}$$ \hspace{1cm} (10)

$$a = 15, \ b = 2.0 \ (b < 0.05), \ a = 13, \ b = 5.0 \ (b > 0.05)$$ \hspace{1cm} (11)

On Application of the Proposed Method

Database

The evaluation method proposed in the above sections is based on an average response spectrum from references 4 and 5 obtained from regression analyses of 107 records (321 components) of 44 earthquakes observed in Tertiary or older strata. The standard error in the regression analysis was nearly independent of period and about 0.23 in common log scale (base 10).

At the above observation points, the S-wave velocity V_s ranged from 0.5 to 2.7 km/s and the P-wave velocity V_p ranged from 1.7 to 5.5 km/s. These values closely correspond to those of the free rock surface (V_s of approximately 0.7 km/s or larger [2]) and the seismic bedrock (with V_p of about 3.0 km/s [6]). This evaluation method is applicable to rock sites with elastic wave velocities within the above range. Its application to rock sites with other elastic wave velocities requires special attention, such as reanalysis of the amplification by the surface layers. In addition, when many observation records are collected at an evaluation point, the amplification by the surface layers peculiar to the site can be evaluated by comparing the observation records with the estimate on the seismic bedrock by the present evaluation method. However, as a rule, recorded data to be used in this case should be within the range of data used by this evaluation method.

The range of data used in the regression analysis is shown in Table 3. The range of magnitudes for the control points was up to $M = 8.5$, as shown in Table 1, and the control points corresponding to $M > 7.0$ were determined by extrapolation. Nevertheless, it was shown that results obtained from the regression equation agree closely with records of large earthquakes inside and outside Japan [4, 5]. Therefore, the control points at $M = 8.0$ were determined from this regression equation [7]. However, because there were no observation records for comparison, the control points for $M = 8.5$ were extrapolated from those for $M = 8.0$ by a theoretical examination based on a fault model. The time-dependent characteristics and the response spectrum correction coefficient due to damping factor are also based on analysis of earthquake records in the above database.

As all hypocentral depths of the earthquake in the regression data were less than 60 km, and about 80% of the earthquakes occurred at subduction zones, the estimates by the proposed method are strongly affected by the strong-motion characteristics of subduction-zone earthquakes. Accordingly, for shallow earthquakes at inland active faults or deep earthquakes within a subducting slab, or for near-source regions at which the long-period pulse become predominant, the following corrections or considerations become necessary.

Evaluation of shallow inland earthquakes

Using the regression data and K-NET data (the K-NET has been widely installed in Japan since the Kobe earthquake of 1995 [8]), we divided these data into two categories: data of subduction-zone earthquakes and data of shallow inland earthquakes. We took the spectral ratios between the observations and the estimates by the present method for all categorized data.
The data ranges used for analysis are summarized in Table 3. M-Xeq distributions and the epicentral map of the data are shown in Fig. 6 and Fig. 7. The stations at which shear-wave velocity within 20m-depth exceeds 0.7 km/s were used. To avoid the effect of soil response by the soft layers shallower than the layer of Vs<0.7 km/s, the period range longer than twice the soft layer's predominant period were analyzed.

Figure 8 shows the average and the average plus-minus the standard deviation of the spectral ratios. The estimates agree with the observations for the subduction-zone data as the average is closer to one, while the estimates for the shallow inland earthquake overestimate the observations. Accordingly, the present method explains the subduction-zone data well, as expected, and corrections become necessary in application to shallow inland earthquakes. As the spectral ratios shown in Fig. 8 are nearly independent of M and Xeq, we propose the correction coefficient \(\zeta \) for the shallow inland earthquakes based on this spectral ratio as

\[
\zeta(T_r) = 0.6 (T_r \leq T_p) \quad \zeta(T_r) = 10^{4.84} \left(\frac{T_r}{T_p} \right)^{-0.58} (T_p < T_r).
\]

This result means that the amplitudes of the shallow inland earthquake data are smaller than those of the subduction-zone earthquake data. This is probably because (1) the JMA magnitude scale, which is used in this study, tends to be overestimated for shallow inland earthquakes compared with its proper earthquake scale [9], and (2) the radiation strength of the short-period amplitude of shallow earthquakes is smaller than that of deep earthquakes because of the different rigidities of the source media.

Evaluation of Intermediate Depth Earthquakes

Reference 10 reports that the short-period amplitude for an earthquake with a focal depth deeper than 60 km is greater than that for shallower earthquakes, even for the same magnitude and source-to-site distance. It also reports that short-period amplitudes for such intermediate-depth earthquakes have regional variations. Therefore, the evaluation of the response spectrum for an intermediate depth earthquake needs a site-dependent investigation based on the records observed around the evaluation site.

Evaluation of Near-Fault Rupture Directivity (NFRD) Effect

The dominance of the fault-normal component with periods from one to a few seconds has been reported in the near-source records of shallow inland earthquakes such as the 1995 Hyogo-ken Nanbu (Kobe) earthquake, Japan. The reason for this phenomenon is that the horizontal component perpendicular to the fault strike grows larger in the direction of rupture propagation due to the combined effects of rupture propagation and the fault mechanism. Therefore, attention must be paid to such effects in the evaluation of near-fault ground motion. Reference 11 describes the range in which the NFRD effect is dominant and also describes a method for correcting the response spectrum for this effect. For correction of the NFRD effect based on Reference 11, the corrected spectrum can be obtained by multiplying the correction factor \(\lambda \), where

\[
A(T_r) = 1 (T_r \leq T_p) \quad A(T_r) = 10^{4.84} \left(\frac{T_r}{T_p} \right)^{-0.58} (T_p < T_r).
\]

by the response spectrum obtained by the evaluation method proposed in this paper.

Figure 9 compares the response spectra of the observation record at Kobe University during the Hyogo-ken Nanbu earthquake of 1995 and the record at Sakarya during the Kocaeli earthquake of 1999 with the estimates by this evaluation method. At Sakarya, the NS (Fault-normal) component was not observed. As both were shallow inland earthquakes, the correction by Eq.(12) was applied in the
estimation. In spite of the fact that the stations are located very close to the faults, the proposed method can explain the observation records well. Still, by the correction of Eq. (13), the correspondence between the estimate and the observation improve for the NS (Fault-normal) component of Kobe Univ.

Conclusions

We proposed a method for empirically evaluating response spectra and time-dependent features of horizontal and vertical earthquake ground motions on a free rock surface, based on analysis of observation records on rock. This method should be useful for calculating design-basis earthquake ground motion used for seismic design of nuclear power facilities. We also showed that the evaluation method could adequately explain observations of near-source regions.

Acknowledgments

This study was jointly funded by ten electric power companies in Japan. Because of their helpful guidance, we also thank the late Emeritus Prof. Syunjiro Ono of Kyushu Industrial University, former Prof. Makoto Watabe of Keio University, Prof. Motohiko Hakan of Kogyo University College of Technology, and Emeritus Prof. Hiyoshi Kobayashi of Tokyo Institute of Technology.

References
Fig.1 Evaluation Flowchart of Response Spectrum of Horizontal Ground Motion on Free Rock Surface

Table 1. Control Points of Horizontal Earthquake Motion on Seismic Bedrock

<table>
<thead>
<tr>
<th>Field</th>
<th>M</th>
<th>Xeq (km)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>pSv (kms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Near</td>
<td>8.5</td>
<td>40</td>
<td>1.52</td>
<td>18.44</td>
<td>27.32</td>
<td>47.87</td>
<td>68.05</td>
<td>64.56</td>
<td>53.52</td>
<td>40.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>25</td>
<td>1.69</td>
<td>20.05</td>
<td>28.96</td>
<td>49.22</td>
<td>67.80</td>
<td>65.25</td>
<td>52.51</td>
<td>38.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12</td>
<td>1.40</td>
<td>17.20</td>
<td>24.84</td>
<td>33.86</td>
<td>43.42</td>
<td>36.42</td>
<td>25.15</td>
<td>17.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>1.04</td>
<td>12.82</td>
<td>18.51</td>
<td>21.84</td>
<td>23.17</td>
<td>17.41</td>
<td>9.64</td>
<td>3.68</td>
<td></td>
</tr>
<tr>
<td>Near</td>
<td>6.5</td>
<td>80</td>
<td>0.73</td>
<td>7.36</td>
<td>11.43</td>
<td>22.92</td>
<td>34.79</td>
<td>32.58</td>
<td>27.60</td>
<td>21.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>20</td>
<td>0.78</td>
<td>9.44</td>
<td>13.64</td>
<td>19.10</td>
<td>24.63</td>
<td>20.69</td>
<td>14.46</td>
<td>10.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>0.77</td>
<td>9.45</td>
<td>13.65</td>
<td>18.23</td>
<td>17.18</td>
<td>12.73</td>
<td>7.16</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>8.5</td>
<td>160</td>
<td>0.28</td>
<td>2.22</td>
<td>3.67</td>
<td>9.45</td>
<td>15.17</td>
<td>14.63</td>
<td>13.64</td>
<td>12.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>100</td>
<td>0.32</td>
<td>3.08</td>
<td>4.86</td>
<td>10.27</td>
<td>16.04</td>
<td>14.96</td>
<td>12.73</td>
<td>10.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>50</td>
<td>0.23</td>
<td>2.65</td>
<td>4.01</td>
<td>6.02</td>
<td>7.64</td>
<td>6.68</td>
<td>4.87</td>
<td>3.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>25</td>
<td>0.21</td>
<td>2.49</td>
<td>3.90</td>
<td>4.52</td>
<td>4.84</td>
<td>3.98</td>
<td>2.07</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Far</td>
<td>8.5</td>
<td>200</td>
<td>0.18</td>
<td>1.44</td>
<td>2.43</td>
<td>6.87</td>
<td>11.17</td>
<td>11.17</td>
<td>10.67</td>
<td>10.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>200</td>
<td>0.10</td>
<td>0.80</td>
<td>1.35</td>
<td>3.82</td>
<td>6.21</td>
<td>6.21</td>
<td>5.65</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>125</td>
<td>0.06</td>
<td>0.43</td>
<td>0.70</td>
<td>1.34</td>
<td>1.81</td>
<td>1.59</td>
<td>1.26</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>78</td>
<td>0.041</td>
<td>0.45</td>
<td>0.95</td>
<td>1.03</td>
<td>0.80</td>
<td>0.49</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value of pSv is pseudo-velocity response spectrum with a damping factor of 5%.

Table 2. Coefficients $\delta_0 (T)$, $\delta_k (T)$, and $\alpha_0 (T)$

<table>
<thead>
<tr>
<th>Field</th>
<th>M</th>
<th>Xeq (km)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>$\delta_0 (T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Near</td>
<td>8.5</td>
<td>40</td>
<td>0.02</td>
<td>0.02</td>
<td>0.13</td>
<td>0.3</td>
<td>0.6</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>25</td>
<td>0.12</td>
<td>0.25</td>
<td>0.42</td>
<td>0.67</td>
<td>0.90</td>
<td>1.03</td>
<td>1.10</td>
<td>1.09</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12</td>
<td>0.58</td>
<td>0.55</td>
<td>0.52</td>
<td>0.59</td>
<td>0.56</td>
<td>0.60</td>
<td>0.70</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

The coefficients are common for all combinations of M and Xeq.
Fig. 2 Response Spectra of Horizontal Earthquake Motions on Seismic Bedrock at the Control Points in Table 1.

Fig. 3 Calculation Examples of $\alpha (T)$ and $\beta (T)$ for Horizontal and Vertical Ground Motions.

Fig. 4 Time Envelopes at the intermediate distances of the Control Points in Table 1.

Fig. 5 Correction Coefficients of Response Spectra for Different Damping Factors at the intermediate distances of the Control Points in Table 1.
Fig. 6 M-Jeq distribution of the data used for analysis in Fig. 8.

Table 3. Data Range used for analysis

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Data for regression analysis</th>
<th>Data for applicability check</th>
<th>Number of Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 - 7.0</td>
<td>5.5 - 7.0</td>
<td>5.5 - 7.0</td>
<td>107</td>
</tr>
<tr>
<td>6.0 - 8.1</td>
<td>6.0 - 8.1</td>
<td>6.0 - 8.1</td>
<td>78</td>
</tr>
<tr>
<td>7.0 - 7.3</td>
<td>7.0 - 7.3</td>
<td>7.0 - 7.3</td>
<td>37</td>
</tr>
</tbody>
</table>

Fig. 7 Epicenter distribution of the earthquakes used for analysis in Fig. 8.

Fig. 8 Observation-to-Estimation Response Spectral Ratios

Fig. 9 Application Examples of the Evaluation Method to Near-Source Records.

(1) 1995 Hyogo-ken Nambu (Kobe) Eq., Kobe Univ. station, Japan
(2) 1999 Kocaeli Eq., Sakarya station, Turkey
LONG TERM SEISMOLOGICAL HAZARD ASSESSMENT FOR MORSLEBEN SITE:
DETERMINISTIC AND PROBABILISTIC APPROACH

Günter Leydecker\(^1\) & Jürgen R. Kopera\(^2\)

\(^1\)Federal Institute for Geosciences and Natural Resources, Germany
\(^2\)Consultant for Engineering Seismology, Germany

Abstract

Existing and planned nuclear waste repositories in the Federal Republic of Germany are situated in areas of low seismicity. Nevertheless, seismic hazard assessment has to be performed for a very long time period in order to prove the facilities of the repositories to withstand seismic induced loads. As an example, the site of the former salt mine Morsleben, which now is a nuclear waste repository, is investigated. A combination of deterministic and probabilistic methods is used to assess the seismic hazard for this site in Northern Germany. The probabilistic evaluation has the advantage of quantifying the seismic hazard. Both methods together are a practical tool for mutual control of the results and to overcome the deficiencies of each approach alone. The combination of both, seismicity and structural geology, provides the basis for a long term seismic hazard assessment with probabilities of exceedance in the order of 10\(^{-3}\) per year. The following parameters are derived: site intensity as a function of exceeding probability, site acceleration, strong motion duration, site dependent response.

1. Introduction

An important aspect for the selection of a suitable site for a nuclear waste repository is the seismic activity of the area. The existing repository and potential sites under investigation are situated in Northern Germany, an area of very low seismicity. There is a considerable debate whether or not it is possible to quantify the seismic risk in such an area. An attempt to do this will be presented in this paper. As an example we will use the site of a nuclear waste repository, the former salt mine Morsleben. This site is situated near the southern border of the Northern German Lowlands, about 100 km east of Hannover.

A deterministic and a probabilistic approach will be applied for the seismic hazard assessment of the Morsleben site. The deterministic approach follows the German regulations for nuclear power plants, the "Technical Safety Guide" of the KTA (Nuclear Safety Standard Commission). The probabilistic method is based on the works of Cornell (1968) and McGuire (1976). The comparison of the results of both methods finally should lead to more realistic seismic load assumptions for the selected site.

\(^1\) guenter.leydecker@bgr.de Tel.: +49-511-643-2867, Stilleweg 2, 30655 Hannover / Germany
\(^2\) bus_kopera@hotmail.com Tel.: +49-511-6101442, Seerosenstrasse 10 B, 30916 Lierneuwen / Germany
2. Seismic activity in Germany

The distribution of epicenters in Germany is shown in fig. 1. The map contains all registered and felt earthquakes for the time period from 800 to 2001 (Leydecker, 1986; 2002) and it gives an impression of the seismicity of the site area. The epicenters are plotted together with the "seismogeographic regions", the result of the recent regionalization of Germany (Leydecker & Archele, 1998). The subdivision of Germany into seismogeographic regions is not only based on the distribution of epicenters, but also on the tectonic structures and the geological development of the area. Therefore, these regions are used in the following investigation as "tectonic units" with respect to the regulation guide KTA 2201.1 (1990) and as "seismotectonic provinces" with respect to the IAEA Earthquake Safety Guide (International Atomic Energy Agency, 1991).

Relatively high seismicity in southern Germany is observed in the Alps, the lake of Constance area and the Swabian Jura, south of Stuttgart. The activity follows the river Rhine through the Upper Rhine Graben from Basel to Frankfurt and north-westward into the Lower Rhine Area. In eastern Germany, Central Saxony and the swarm-quake area of Vogtland near the Czech border are zones of relatively high activity. Isolated events up to the macroseismic epicentral intensity VI MSK (macroseismic scale; s. Sponheuer, 1965) have occurred in the northern parts of Germany, the area of interest. It is covered by thick sedimentary deposits of about 3000 to 4000 m and includes big salt domes and salt structures.

3. Deterministic approach

For nuclear power plants and nuclear installations, the regulations of the technical safety guide (KTA 2201.1, 1990) are obligatory for Germany. From this we have to estimate the so called "design earthquake" This is the earthquake with the highest intensity at the site which can take place, from a scientific point of view, in an area of about 200 km around the site.

Following the instructions of the deterministic approach in the regulation guide KTA 2201.1 (1990), the tectonic unit in which the site is situated has to be determined. The site Morsleben is located inside the seismogeographic region Altmark. The three strongest events in this area are historical earthquakes in the years 997, 1202 and 1409. They reached intensities up to VI MSK. Taking into account that the maximum possible earthquake has not occurred in our observation time of approximately 1200 years, the maximum epicentral intensity in the Altmark is assumed to be half a unit higher, that is VI-VII MSK. We thus assume that an earthquake of intensity VI ½ MSK will occur at the nearest potential seismogenic structure. This structure has to be identified.

The site Morsleben is situated near the border of the Northern German Basin, a region where subsidence prevailed since Permian time. Therefore sediments of some thousand meters thickness were accumulated over the folded basement (Carboniferous and older). Salt layers (Permian) of more than 1000 m which later formed salt domes and pillows were important for the structural development.

In detail, Morsleben is situated (fig. 2) at the northeastern border of the NW-SE striking Allertal zone. The most important fault nearby is the fault zone of Haldensleben, which is parallel to the Allertal zone to its NE. The shortest distance of the fault zone of Haldensleben to the site is 17 km, but it plunges southwestwards deep into the crust and also under the site. The last main activity phase of the Haldensleben faulted zone was in middle Upper Cretaceous. Smaller creeping movements occurred
0.5 or 2 Ma years ago. The main stress field in Central Europe shows a NW-SE orientation of the principal compressional axis (Ahornier, 1975, 1982; Müller et al. 1992). As the fault is parallel to this direction, a reactivation is very unlikely. Only on parts of the fault with a favorable strike direction, earthquakes with small rupture areas and therefore with moderate magnitude seem possible.

As a consequence the Haldensleben fault has to be assumed as the potential seismogenic structure for the design earthquake. As the Haldensleben fault plunges beneath the Allertal zone, an earthquake at this fault with the epicentral intensity VI-VII MSK will lead to the same intensity at Mursleben.

4. Probabilistic approach

The widely accepted probabilistic approach used in our investigation was developed by Cornell (1968) and was transferred into a numerical algorithm by McGarr (1976). The method is based on a specific probabilistic mathematical model. It assumes that the distribution of the parameter epicentral intensity follows a Poisson process. The Poisson probability distribution can be expressed in the form:

$$P_k(x) = \frac{(\lambda \cdot \Delta T)^k}{k!} \cdot \exp(-\lambda \cdot \Delta T)$$

(1)

which is the probability of \(k \) successes of an arbitrary event \(x \) in a given unit of time \(\Delta T \). \(\lambda \) is defined as the expected number of occurrences of this event and \(k! \) means the factorial of \(k \).

In terms of earthquakes: \(P_k(x: I_e \geq I_0) \) is the probability of having \(k \) earthquakes with epicentral intensities \(I_e \geq I_0 \) during a time interval \(\Delta T \). \(\lambda \) is defined as the average rate that an intensity \(I_0 \) will be exceeded in a given spatial area and a time interval of normally one year. The Poisson distribution is valid for rare and independent events, therefore pre- and aftershocks as well as nontectonic earthquakes have to be excluded from the data catalogue. From eq. (1), the probability that no event (\(k=0 \)) will occur during the time interval \(\Delta T \) is simply

$$P_0(x) = \exp(-\lambda \cdot \Delta T)$$

(2)

Seismic risk (better called "seismic hazard", if we do not consider the consequences of earthquakes for people or structures) is defined as the probability that at least one earthquake (i.e. \(k \geq 1 \)) with epicentral intensity \(I_e \) equal or greater \(I_0 \) will take place within the time interval \(\Delta T \). As the secure event has the probability \(P = 1 \) the seismic hazard can be expressed as

$$P(I_e \geq I_0) = 1 - \exp(-\lambda \cdot \Delta T)$$

(3)

One of the principles of Cornell's method is that epicenters are not uniformly distributed over the entire area of investigation. The earthquakes are bounded to seismic source regions, the seismotectonic units. The epicenters inside these source areas are assumed to be statistically uniformly distributed. The seismic source areas can then be characterized by the statistic distribution of epicentral intensities. The cumulative number \(N_e \) of events with epicentral intensities \(I_e \) within a source area is assumed to obey the following Gutenberg-Richter relation:

$$\log_{10}(N_e) = a - b \cdot I_e$$

(4)

The cumulative number \(N_e(I_0) = N_e / T_{obs} \) of events \(x: I_e \geq I_0 \) in a region per unit of time, with the observation period \(T_{obs} \), is called the seismic activity rate \(v(I_0) \) of that region.

3 Small letters define the stochastic variable of the parameters in capitals.
Taking into account the parameters focal depth H, attenuation coefficient α, lower and upper intensity limits $I_{\text{low}}, I_{\text{up}}$, an appropriate attenuation law like Koevevligtheys and further relations (for details see Leydecker & Koper, 1999), the contributions of all seismic source regions to the site intensity I_z are calculated and their expected values are summed up. The probability of exceedance for a site intensity I_z caused by the m-th source region, can be represented in the most basic form by the theorem of total probability

$$\lambda_m(I_z \geq I_z) = \int_{I_{\text{low}}}^{I_{\text{up}}} \int_{I_m}^{I_z} P(I_z | I_m, R) \cdot f_{I_m}(I_m) \cdot f_R(r) \, dI_m \, dr$$

(5)

where the distribution function $P(I_z \geq I_m | I_m, R)$ represents the conditional probability of the random variable I_z reaching or exceeding the value I_z at the site, under the condition that an epicentral intensity I_m has occurred at an epicentral distance R. Assuming stationary conditions, the seismicity of the source area is characterized by the probability density functions f_{I_m} and f_R. They specify the frequency distribution of epicentral intensities I_m and the distribution of epicenters with distance R to the site. The average rate per year that an intensity I_z will be exceeded, is obtained by summing up the expected values of all source areas:

$$\lambda(I_z) = \lambda(I_z \geq I_z) = \sum_m \nu_m \, \lambda_m(I_z)$$

(6)

where $\nu_m = \frac{N_m(T_{\text{obs}})}{T_{\text{obs}}}$ defines the activity rate of the m-th source region (s. tab. 1).

Finally, to calculate the seismic hazard at the investigated site, $\lambda(I_z)$ is used in the Poisson distribution of eq. (3)

$$P(I_z \geq I_z) = 1 - e^{-\lambda(I_z)}$$

(7)

where $P(I_z \geq I_z)$ gives the annual ($\Delta T = 1$) probability, that the intensity I_z will be reached or exceeded at the investigated site.

5. Seismotectonic models

The three seismogeographic regions, Southern Altmark, Central Saxony and Vogtland, are used to establish seismotectonic models for the investigated site (fig. 1). From all possible models that were tested, only two seem reasonable. In model 1 only Central Saxony and Vogtland and in model 2 all three regions are taken as seismic sources, applying the approach of McClure (1976). The tectonic earthquakes outside these source areas but inside the 200 km radius around the site are considered as seismic background activity. The events of the seismic background are assumed as uniformly distributed over the remaining area. The parameters of the seismotectonic models are summarized in tab. 1.

The low seismicity in the wider vicinity around the site is shown in fig. 1. Only the north-western parts of the active regions Central Saxony and Vogtland, south-east of the site, are within 200 km distance. The different seismicity of the seismotectonic regions and of the seismic background is reflected in the activity rate of intensity (tab. 1). The number of events N_s of Southern Altmark is barely sufficient for a statistical analysis. Therefore model 1 is preferred in which the effects of the active but distant regions Central Saxony and Vogtland are considered, using the remaining earthquakes as background activity.
Table 1: Parameters of seismic source regions and seismic background activity

<table>
<thead>
<tr>
<th>Seismic source region</th>
<th>begin of selected time interval</th>
<th>focal depth (km)</th>
<th>cum. number of events (I_e \geq 4)</th>
<th>(I_{\text{min}}) observed (I_{\text{min}} \geq 4)</th>
<th>linear regression (intensity interval) (v \text{ for } I_0)</th>
<th>activity rate (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Altmark (sAM)</td>
<td>997 year with (I_0)</td>
<td>6 / 8</td>
<td>6</td>
<td>9</td>
<td>6.0</td>
<td>1.903 (4 \cdot 6)</td>
</tr>
<tr>
<td>Central-Saxony (CS)</td>
<td>823</td>
<td>7.0</td>
<td>8</td>
<td>69</td>
<td>7.5</td>
<td>3.20 (5 \cdot 8)</td>
</tr>
<tr>
<td>Vogland (VG)</td>
<td>868</td>
<td>5.5</td>
<td>10</td>
<td>174</td>
<td>8.0</td>
<td>5.233 (5 \cdot 8)</td>
</tr>
<tr>
<td>Background BG(_1)</td>
<td>997</td>
<td>6.5</td>
<td>8</td>
<td>19</td>
<td>6.5</td>
<td>4.564 (5 \cdot 7)</td>
</tr>
<tr>
<td>Background BG(_2)</td>
<td>1079</td>
<td>5.0</td>
<td>8</td>
<td>14</td>
<td>6.5</td>
<td>4.053 (5 \cdot 7)</td>
</tr>
</tbody>
</table>

\(BG_1\) = Background area, excluding the source regions CS and VG (model 1).
\(BG_2\) = Background area, excluding the source regions sAM, CS and VG (model 2).

For all regions, an absorption coefficient of \(\alpha = 0.001 \text{ [km}^{-1}\text{]}\) was used for the intensity attenuation.
1 Half intensity values are accounted to the next higher intensity class \(I_e\), e.g. \(I_0 = III-IV\) and \(I_0 = IV\) belong to \(I_e = 4\). To exclude fore- and aftershocks for the Vogland region, \(I_e \geq 5\) is used.
2 The intensity interval for the regression analysis in the frequency distribution eq. (4) was selected individually, depending on the data. The intensity limits are given in parentheses.
3 The activity rate for the background is calculated for an area of 200 km around the site and normalized to 10000 km². The areas and activities of source regions within the background are excluded.
4 The less motivated region Central Saxony was modified for this investigation. Its southern boundary was moved northwards to coincide with the northern boundary of the Erzgebirge. As a consequence, CS is completely included in the 200 km zone around the site.

Applying eq. (7) gives the annual probabilities of exceedance for macroseismic intensities at the site (fig. 3). Curves 1 to 4 are the results of model 2 with three seismic source regions and seismic background, while curve A1 and A2 were calculated for model 1. The numerical upper intensity limit \(I_{\text{max}}\) in each source area is assumed to be half a unit respectively one intensity unit higher than the maximum observed value. This takes into account, that the observation period was probably too short for the maximum possible earthquake to occur in the area of 200 km around the site, or that historical records of these events are lost.

6. Seismic load assumptions

From the deterministic approach, a site intensity of 6 5/6 MSK is estimated. The probabilistic calculations give a site intensity of 5.6 MSK for a probability of exceedance of \(10^{-4}\) per year and 6.4 MSK for \(10^{-3}\) (curve A2 in fig. 3). For nuclear installations a probability level of \(10^{-4}\) per year is
widely applied. As mentioned above, the geological development and the tectonics of the area of Morsleben are well known. The latest activity of the nearest fault zone of Haldensleben is probably more than 0.5 Ma ago. We believe that the stable geological conditions of this area over such a time span permits us to extrapolate the probability calculations to a level of 10^{-5} per year.

This can be summarized to:

deterministic approach \Rightarrow site intensity $I_s = 6 \frac{1}{2}$ MSK
probabilistic approach \Rightarrow site intensity $I_s = 6.4$ MSK with $P(I_s \geq I_s) = 10^{-5}$ per year

Both methods have led to comparable results. A probabilistic evaluation quantifies the hazard assessment, but deterministic and probabilistic approaches together provide a practical tool for mutual control of the results and to overcome the deficiencies of each method alone. A probability of exceedance of 10^{-5} per year is an appropriate level for long term safety aspects.

The maximum horizontal component of acceleration is derived from the high frequency values of the response spectra (Hosser, 1987) in the next chapter (fig. 4). A factor of $\sqrt{2}$ is applied to estimate the resultant maximum horizontal acceleration. The maximum vertical acceleration is assumed as 50% of the horizontal acceleration (KTA 2201.1). The intensity- and site-specific strong ground motion duration is taken from Hosser (1987). The acceleration inside a mine is commonly expected to be lower than at the surface. However for conservative reasons, the same intensity inside the mine as at the surface is assumed. The response spectrum and the strong motion duration inside the mine are determined for rock conditions. The results are summarized in tab. 2.

Table 2: Seismic load assumptions (design earthquake) for the site of Morsleben at the surface and inside the mine

<table>
<thead>
<tr>
<th></th>
<th>at surface</th>
<th>inside mine</th>
</tr>
</thead>
<tbody>
<tr>
<td>site intensity I_s</td>
<td>VI $\frac{1}{2}$ MSK</td>
<td>VI $\frac{1}{2}$ MSK</td>
</tr>
<tr>
<td>probability of exceedance</td>
<td>$< 10^{-5}$ / year</td>
<td>$< 10^{-5}$ / year</td>
</tr>
<tr>
<td>maximum horizontal acceleration (resultant)</td>
<td>113 cm/s2</td>
<td>99 cm/s2</td>
</tr>
<tr>
<td>maximum vertical acceleration</td>
<td>57 cm/s2</td>
<td>50 cm/s2</td>
</tr>
<tr>
<td>strong motion duration</td>
<td>4 s</td>
<td>1.5 s</td>
</tr>
</tbody>
</table>

7. Response spectra

The seismic load assumptions, resulting from the design earthquake, have to be expressed in terms of response spectra. A catalogue of response spectra for three classes of site intensities and for three soil classes was developed on the basis of mostly European strong motion records (Hosser, 1987). In contrast to standard response spectra, which had to be scaled by a single value of horizontal acceleration, site-specific response spectra are preferred here, because they are defined with respect to the site intensity of the design earthquake and the dynamic behavior of the subsoil.

The used site-specific response spectra are 50% fractile spectra belonging to a design earthquake with a probability of exceedance of 10^{-5} per year. After Hosser (1986) this corresponds with a 84% fractile response spectra and with the widely used probability of exceedance of 10^{-5} per year. The response spectra of the resultant horizontal acceleration (fig. 4) for the Morsleben site are valid for the
site intensity 6.5 MSK with a probability of exceedance less than 10^{-5} per year. The local geological conditions of the shallow subsoil, known from several borehole logs, are laterally rapidly changing. Therefore the site had to be classified as a mixture of soft and medium stiff subsoil. Inside the mine, rock conditions must be assumed.

8. Conclusions

The Morseleben mine is situated in an area with very low seismic activity. It is obvious that in such a region seismic hazard assessment is difficult to realize. We have tried to do this by a combination of deterministic and probabilistic methods. In both cases, assumptions had to be made which are not free of subjective weighting. Seismic source areas had to be defined, and in each of them parameters like maximum earthquake, focal depth and absorption coefficient had to be fixed. A transparent presentation of all these parameters is vital for an assessment of the quality of the results.

Because of the required long term stability of a nuclear waste repository, a probability of exceedance of at least 10^{-5} per year for the design earthquake is demanded. The limited German earthquake history covers 1200 years with various completeness over the time. An extrapolation up to a mean recurrence period of 10,000 years appears tenable. This limit of 10,000 years can only be overcome by incorporating detailed information on the tectonic history of the last million years. For Morseleben the last activity and most important fault was more than 0.5 Ma ago. This justifies to assign a probability of exceedance of 10^{-5} per year to the design earthquake.

The deterministic approach in an area of low seismicity can be dominated by a single strong shock. This may result in an overestimation of the design earthquake. The probabilistic evaluation has the advantage to quantify the seismic hazard and allows a judgement of the reliability of the deterministically estimated design earthquake. Both methods together form a practical tool for mutual control of the results and to overcome the weakness of each approach alone.

References

Ahorn, L., 1975. Present-day stress field and seismotectonic block movements along major fault zones in Central Europe. Tectonophysics 29, 233-249

Fig. 1: Earthquake epicenter map for Germany and border regions for the years 800 - 2001 (Leydecker, 1986, 2002) together with the seismogeographic regions (straught line segments) (Leydecker & Achele, 1998). The size of the earthquake symbols corresponds to the epicentral intensity fo. Io < 4.5 means also non felt events. --

☆ Morsleben, radius of circle 200 km, Altmark = southern part of Altmark.
Fig. 2. Structural geology of the Allertal zone (Baldschuhn, Frisch & Kockel 1996)
★ = Morsleben site
Fig. 3. Annual probability of exceedance for earthquake intensities at Morsleben site. Curve A1 and A2 are the results of model 1 with two sources: Central Saxony and Vogland and the seismic background BG. Curves 1 to 4 are calculated for model 2 with the two sources of model 1 plus Southern Altmark ($H_{0.5}$ = focal depth) and the background activity BG.

Fig. 4. Response spectra (5% damping) of the resultant horizontal acceleration of the design earthquake with intensity 6.5 MSK at Morsleben site. Soil conditions at surface: soft and medium stiff, inside mine: rock.
METHODOLOGY TO PRODUCE HAZARD CONSISTENT FREE-FIELD AND IN-STRUCTURE DESIGN RESPONSE SPECTRA

C. J. Costantino, Professor Emeritus, City University of New York
W. J. Silva, Senior Scientist, Pacific Engineering and Analysis, El Cerro CA
R. K. McGuire, Risk Engineering, Boulder, CO
R. M. Kemnally, Senior Structural Engineer, USNRC, Washington, DC
A. J. Murphy, Senior Technical Advisor, USNRC, Washington, DC

Abstract

This report summarizes recommendations recently published by the USNRC in NUREG/CR-6728 [9] for development of seismic ground motions to be used in the design and analysis of nuclear facilities. The recommendations for response spectral shapes are developed for western US (WUS) and central/eastern US (CEUS) rock site conditions. Procedures to develop corresponding response spectra at the ground surface for soil sites have also been developed, using as input the recommended rock site spectra. Recommendations for use of these newly developed ground motion estimates in SSI analyses are not as yet complete. Procedures to determine consistent estimates of structural member loads and in-structure response spectra are in the process of development for use in design.

Introduction

Recommendations for prediction of seismic design ground motions for nuclear facilities require a consistency with both the observed strong motion data set and with seismological theory on the characteristics of strong shaking. The recommendations need to capture the potential effects of regional differences in source characteristics and crustal properties to be appropriate for application to various regions of the US. In this study, recommendations for spectral shapes were first developed for WUS rock sites based primarily on characteristics of California strong motion recordings. For the CEUS sites, numerical modeling was used to quantify the differences between WUS and CEUS motions to account for anticipated differences in both seismic source and path properties. A well-validated model was used for prediction of strong motion [17] to quantify the effect of these characteristics. This model was used to adjust the WUS empirical soil-rock spectral shapes to corresponding CEUS hard-rock conditions. The spectral shape recommendations have been made using both 1-corner and 2-corner seismic source models considered appropriate for the CEUS.

The procedure recommended to develop facility design response spectra begins with the development of a probabilistic seismic hazard analysis (PSHA) for rock site conditions. The PSHA is then used to obtain the uniform hazard spectrum (UHS) at the appropriate annual frequency of
exceedance, which is typically set at or near the 10^4 level for the design of nuclear facilities. The seismic hazard is then disaggregated at the 1 and 10 Hz structural frequencies to determine dominant magnitudes and distances at the design exceedance level. The spectral shapes incorporated into the attenuation models used in the PSHA need to be consistent with those contained in these recommendations. In the CEUS, both 1- and 2-coupler source models need to be considered to obtain weighted spectral shape recommendations. Finally, the spectral shapes associated with the disaggregated events are then scaled to match the UHS amplitudes at approximate low (1 Hz) and high (10 Hz) structural frequencies.

For design recommendations for structures founded on rock, the UHS is then modified by a Scale Factor to determine a Uniform Reliability Spectrum (URS). The purpose of the Scale Factor is to achieve a relatively consistent annual frequency of plant component failure across the range of plant sites and structural frequencies. It is intended to account for differences in the slope of the seismic hazard curve, which changes with both structural frequency and site location, as well as the fragility curve of plant component equipment. The Scale Factor to convert the UHS to the URS may be either greater or less than unity, depending upon values of these particular parameters.

Historical Perspectives

The development of ground motions, as described by the approaches described in the Standard Review Plan (SRP) [1-4], attempts to reflect the current state of the uncertainty in ground motion estimation methods, together with limitations of available data. Its objective is to provide reasonable assurance that the ground motion at any site would be conservatively estimated. Recent studies [6] have shown that it is difficult to capture the total uncertainty in ground motion prediction even with the large number of strong motion recordings now available in California.

To develop design spectra, two teams were organized by NRC [10, 12] to separately analyze almost identical data sets. Each team used different normalization schemes to develop spectral shapes. In both studies, amplification or scale factors on peak ground motion parameters were derived from statistical analyses of normalized shapes to construct smooth design spectra for varying fracture and damping levels. In the Blume study, a single normalization parameter, peak ground acceleration (A), forms the basis for the shapes with scaling factors specified at fixed anchor points. In the Mohraz study, spectral amplification factors on peak ground acceleration (A), peak ground velocity (v), and peak ground displacement (d) were developed to construct the design spectrum. The spectral shape, based on A, V, and D, does to some extent accommodate site and magnitude dependencies in terms of the parameters V/A and AD/V^2 ratios.

Based on the two studies, NRC adopted and formalized a slightly modified form of the single parameter shape [12] as a recommendation in RG 1.60 [15]. The single parameter scaling results in a spectral shape that is source, path and site independent. A limitation that resulted from the small size of the data set available at the time and the normalization procedure used was that both the fractures and damping scaling were not well constrained and were not uniform with structural frequency. The RG 1.60 horizontal spectral shape was generally considered representative of an 84th fractile from an
event of magnitude about 6.75 occurring at a distance about 20-30 km from a deep soil site. Recommendations for corresponding vertical spectra were reasonable for distances in the 20-40 km range for soil sites and about the 10-20 km range for rock sites. Based on recent empirical data, the appropriateness of these factors at other distances is considered questionable.

More Recent Observations

Recent studies show that the dependence of spectral shapes on source, path, and site conditions is well constrained by both recorded motions and the results of well-validated modeling [17]. In general, shapes broaden and show a shifting of the peak spectral amplification to lower frequencies with increasing magnitude due to a decrease in the earthquake source corner frequency [18, 19]. Site dependencies are reflected in an increase in spectral levels at low frequencies and a decrease in levels at high frequencies as site stiffness decreases due to a combination of site amplification and material damping.

To capture some of these known effects in the development of design ground motions, it was considered necessary in this study to use the theoretical-empirical modeling method to realistically estimate ground motions, particularly for sites in the CEUS. The method [17] uses the empirical data from the relatively large database currently available to constrain results generated from the theoretical model. The approach develops a theoretical estimate of the ground motion spectrum based on parameters of the fault rupture (magnitude, stress drop) and travel path (distance, crustal and surficial rock properties). In regions where only few recordings of strong shaking, are available the parameters are estimated with empirical data from seismograph records. In addition, site-specific geologic and site soil information can be quantitatively incorporated directly into the ground motion estimation at any particular site.

Characteristics of Strong Ground Motions at CEUS AND WUS Rock Sites

Observations of strong ground motion due to small magnitude earthquakes occurring in CEUS, although not causing damage to engineered structures, have shown considerably higher peak accelerations than would have been expected based upon WUS experience. In addition to the relatively higher peak accelerations associated with these CEUS events, response spectral ordinates appear richer in high frequency energy, particularly for frequencies exceeding about 10 Hz. It has been known for some time that ground motion for CEUS attenuate less rapidly with distance than ground motions in WUS for events of similar moment magnitudes and source depths [2, 6]. The difference in attenuation rate has been attributed to the higher absorptive characteristics generally present in the crust and upper mantle beneath WUS as compared to CEUS.

The trends shown in available CEUS data indicate significantly higher spectral content at high frequencies as compared to WUS rock motion of comparable magnitudes and distances [7, 18]. The difference in spectral content can perhaps be most easily seen in spectral amplification (SA/A) computed from recordings from WUS and CEUS rock sites. Figure 1 shows average spectral shapes (SA/A) computed from recordings made on rock at close distances (≤ 25 km) for magnitudes of approximately 6.75 and 5.75 earthquakes in CEUS and WUS tectonic environments. The differences
are significant and indicate that the magnitude of spectral content is higher in CEUS events than that in WUS for frequencies greater than approximately 10 Hz.

The controlling mechanism for the differences in high frequency spectral content (at close distances) between WUS and CEUS ground motions is thought to be due to differences in damping in the shallow (1 to 2 km) part of the crust. The parameter which controls the shallow damping is termed kappa and is defined as the thickness of the zone over which the damping is taking place times the damping and divided by the average velocity over zone of damping or

\[\kappa = H / (V_s Q_n) \quad \text{and} \quad Q_n = 1/(2\eta_s) \]

where \(H \) is the thickness of the shallow crustal damping zone (1 to 2 km), \(V_s \) is the average shear-wave velocity over the depth \(H \), \(Q_n \) is the average quality factor over depth \(H \), and \(\eta_s \) is the corresponding average hysteretic damping ratio (in decimal terms).

An example of generic crustal models reflecting typical WUS soft rock and CEUS hard rock crustal conditions is shown in Figure 2 for both compression and shear wave velocities. The CEUS model is the midcontinent crustal model [6] and is considered appropriate for strong ground motion propagation in CEUS except for the Gulf Coast region. The Gulf Coast region is typified by a crustal structure somewhat intermediate between those of the CEUS and WUS and is predicted to have correspondingly different wave propagation characteristics. The shallow portion of the WUS crustal model, with \(V_s \leq 1 \text{ km/sec} \), is based on velocities measured at strong motion rock sites. Such sites generally show very low near surface (0 to 30m depth) shear and compression wave velocities.

The differences in the shallow crustal velocities between the WUS and CEUS models is striking, particularly over the top 2 to 3 km, and its effect on strong ground motions is profound. In terms of amplification from source regions below about 5 km to the surface, the differences between hard (CEUS) and soft (WUS) crustal conditions results in a difference of a factor of near 3 in amplification for frequencies exceeding about 5 Hz. All else being equal, WUS high frequency (f \(\geq 5 \text{ Hz} \)) ground motions would then be expected to be nearly three times larger than corresponding CEUS motions. However, damping in the shallow crust, parameterized through kappa, is much greater in soft crustal rocks, resulting in a dramatic loss in high frequency energy content as compared to hard rock conditions, counteracting the effects of the lower velocities.

Effects of Source Processes on Model Predictions

Another issue of consideration regarding the differences in spectral composition between WUS and CEUS strong ground motions at rock sites is the probable differences in earthquake source processes. Prior to the occurrence of the 1998 magnitude 5.8 Sagonayy earthquake, there was thought to be a difference of about two in stress drop (the difference in stress across the rupture surface before and after an earthquake) between WUS and CEUS sources. Typically, the CEUS was assumed to exhibit larger values of about 100 bars as compared to about 50 bars for WUS sources. These measures of stress drop, termed Brune stress drops, are primarily based on high frequency ground motion levels.
assuming a single-corner frequency source model. Apart from the differences in stress drop, overall source processes were thought to be similar in both tectonic regimes. The stochastic single-corner-frequency point-source model [8] provides accurate predictions of WUS strong ground motions using a stress drop of about 50 bars although having a tendency to overpredict low frequency (≤ 1 Hz) motions for large magnitude earthquakes.

For the CEUS, the simple point-source model with a stress drop of about 100 bars, about double that of the WUS, provided good agreement with existing data until the occurrence of the 1988 magnitude 5.8 Saguenay earthquake. Strong ground motions from this earthquake depart significantly from predictions of the simple 100 bar stress drop model. The stress drop required to match high frequency strong ground motions for this earthquake exceed 500 bars, causing intermediate frequency spectral levels to be overestimated by a factor of two or more. In addition, source spectra generated from teleseismic data from large intraplate earthquakes differ in general from the simple single-corner-frequency omega-square model, showing the presence of a second corner frequency. Based on the limited ground motion data in the CEUS as well as references on intensity observations, an empirical two-corner source model [3] was developed for CEUS earthquakes. In this model, the high frequency spectral levels are consistent with a Brune stress drop of about 150 bars while the equivalent stress drop for the low frequency spectral levels is about 40 to 50 bars.

This two-corner model currently provides unbiased estimates of recorded CEUS ground motions over the frequency range of the majority of the data, from about 0.1 to 10.0 Hz, while the single-corner-frequency model, with stress drops ranging from about 120 to 150 bars, overpredicts low frequency ground motions in the frequency range of about 0.1 to 1 Hz but is unbiased in the 2 to 10 Hz frequency range. Both the double and single corner source models, with actual or implied stress drops below 200 bars, underpredict the high frequency (≥ 2 Hz) ground motions for the Saguenay earthquake by factors of 2 to 3, suggesting anomalously high frequency levels for this event. While it currently appears that a two-corner source model may be more appropriate for CEUS strong ground motions, it is evident that in predicting strong ground motions for engineering design, significantly more variability needs to be accommodated in applications to the CEUS than to the WUS. This increased variability should accommodate both randomness (aleatory variability) in stress drop above that for the WUS as well as uncertainty (epistemic variability) in the source model.

A model which appears to be more consistent with WUS source spectra inferred from the strong motion data is similar to the CEUS two corner model but with a less pronounced spectral sag at intermediate frequencies. The two-corner nature of WUS source spectra is filled-in by crustal amplification resulting in a comparatively subtle feature in strong ground motions compared to CEUS data [1].

Comparison of WUS and CEUS Spectral Shapes
To characterize the differences in WUS and CEUS ground motion models, a few comparisons are presented in the following discussion. Much more detail is presented in NUREG/CR-6728. Comparisons of WUS to CEUS response spectra are shown in Figures 3 and 4 for shapes and absolute
spectra respectively. Also illustrated in the Figures are the differences between the single and double corner source spectral models. With regard to spectral shapes, Figure 3, the difference in spectral composition between the WUS and CEUS single corner models (solid lines) is clearly illustrated in the maximum spectral amplifications. The spectral peak occurs at about 5 Hz for WUS events and 40 Hz for CEUS. The difference between the single and double corner source models (solid versus dashed lines) is also clearly illustrated. For the WUS, the difference is mainly at low frequency and is not large, about 20% near 0.3 Hz. For the CEUS, the single corner source model significantly exceeds the double corner below about 2 Hz. The largest difference occurs near 0.4 Hz and is a factor of over 3 in 5% damped spectral acceleration. Choices between the two shapes for the CEUS, single or double corner, clearly have major impacts on implied motions.

The corresponding absolute spectra are shown in Figure 4. The WUS and CEUS single corner spectral estimates are nearly the same for frequencies up to about 5 Hz. This is the result of compensating effects previously discussed, higher stress drop for CEUS and larger crustal amplification factors for WUS. Beyond about 5 Hz, the differences in kappa (crustal damping) values (0.04 sec as compared to 0.006 sec) results in the differences in high frequency spectral estimates.

Comparison of Model and Statistical Shapes at Rock Sites

To see how well the simple point-source models (single and double corner frequency) capture the differences in shapes between WUS and CEUS rock motions, Figures 5 and 6 compare model predictions to statistical shapes available for magnitude 6.5 to 7.0 (6.75 b terms) from 10 to 50 km. Figure 5 for WUS data compares both the single and double corner model predictions to the statistical shape. Both models capture the overall shape reasonably well but overpredict at low frequency (below 1 to 2 Hz). The double corner model provides a better fit but still shows overprediction in this magnitude range.

Figure 6 presents the corresponding comparison for CEUS data. Unfortunately, there is only one earthquake, 1985 Nahanni, with hard rock site recordings (3 stations) in this distance range. Both spectral models capture the difference in shape between WUS and CEUS equally well with the single corner frequency model showing an overprediction at low frequency (≤ 1 Hz) similar to the WUS. The double corner model shows an underprediction for frequencies below about 2 Hz. However, the lack of data available for CEUS strong ground motions reflects the current state of uncertainty regarding CEUS strong ground motion predictions.

Figures 7 and 8 show similar comparisons for magnitude 5.0 to 5.5 events for WUS and CEUS respectively. For the WUS, Figure 7 shows reasonable model predictions down to about 1 Hz, below which the number of spectra are rapidly dropping out due to increasing noise levels. Figure 8 shows the corresponding plot for CEUS. The models captures the shift in shape to higher frequency but overpredict for frequencies above about 20 Hz. As with the comparisons with the larger magnitude 6.75 b terms, the low frequencies are enveloped by the two models. Again, model departures at high frequency for the CEUS bin, reflects the paucity of data available. These comparisons to CEUS statistical shapes point out the quandary in estimating strong ground motions in the CEUS.
recordings at close distances (≤ 50 km) for earthquakes of engineering significance are currently not available to unequivocally distinguish between plausible ground motion models.

Based upon the empirical data base and associated attenuation models available for WUS rock sites, a functional form was developed which allows prediction of response spectral shapes given magnitude and distance of any event. For the WUS events, the form of the relationship is not based on a physical model of the ground motion process but is designed to fit the general characteristics of the empirical spectral shapes. For WUS sites, the functional form is given by:

\[
\ln(S/A) = \left[C1 / \cosh(C2*1^{C3}) \right] + C4 \left[\exp(C5*1^{C6}) \right]
\]

The coefficients C1 through C6 are functions of magnitude and distance and are provided in Table 1.

The first term in equation 2 is designed to fit the high frequency portion of the response spectral shape while the second term models the low frequency portion of the curve.

The approach used to develop spectral shapes for CEUS rock site conditions were based on the results from numerical modeling. Scaling relationships were first developed to convert WUS to CEUS spectral shapes. These scaling functions were then applied to the weighted empirical functional forms available for the WUS statistical shapes to develop comparable CEUS spectral shapes. The resulting functional form for response spectral shapes appropriate for CEUS sites is given by:

\[
\ln(S/A) = \left[C1 / \cosh(C2*1^{C3}) \right] + \\
C4 \left[\exp(C5*1^{C6}) \right] + \left[C7 \exp(C8*1^{C9}) \right]^{0.5}
\]

The parameters C1 through C9 are again functions of magnitude and distance and are listed in Table 1.

For comparison purposes, the results obtained for the developed spectral shapes are compared with the standard spectral shapes defined by RG1.60 [15] or Newmark-Hall (N-H) 0098 spectra [11]. For the N-H comparisons, average bin values for A, V and D for WUS sites were used to develop median and 1-sigma design spectral shapes. For WUS rock sites, Figure 9 indicates a reasonably good comparison of the predicted bin shapes with the N-H shapes, provided the recommended bin peak velocity is used in the N-H development. If the higher recommended values are used, the comparison of shapes is not as good and the N-H model is not supported by the empirical data. Comparisons with the RG1.60 shape indicate that it is generally conservative, particularly for the smaller magnitude events.

Comparison with similar data for CEUS rock sites is shown in Figure 10, including predictions for both 1- and 2-corner source models. The N-H shapes were generated using the WUS mean bin values since they are not available for CEUS sites. The CEUS shapes are lower at low frequencies than either set of standard spectra. Since CEUS peak accelerations are higher than the corresponding
WUS values, the WUS and CEUS absolute spectra are comparable at low frequency while the CEUS absolute spectra is higher than the WUS data and peaks at much higher frequencies.

Development of Hazard-Consistent Motions at Soil Sites

The approach to developing site-specific soil motions involves convolution analysis, using either equivalent-linear or fully nonlinear characterization of soil properties, and using rock outcrop control motions at the soil/rock transition zone. For "bottomless" profiles the rock control motions may be input at a sufficiently deep location such that soil amplification extends to the lowest frequency of interest. This depth has generally been about 500 ft for motions adequate to a low-frequency limit of about 0.5 Hz [16].

To develop procedures and results appropriate for soil sites at either WUS and CEUS locations, the point source model was first exercised to develop PSHA results for two sites, one in the WUS (site in Southern California) and one in the CEUS (site in South Carolina). Relatively complete hazard information for these sites was available in terms of the suite of magnitudes and distances that contribute to the seismic hazard. Model parameters appropriate for these two locations (source characteristics, rock properties, stress drops, etc.) were used to generate appropriate PSHA data. The rock outcrop UHS for both the WUS and CEUS sites are shown in Figure 11 at the $10^{-4} \text{ annual probability of exceedance level}$. As can be seen, the WUS motions generally exceed the CEUS motions by a factor of five or more for frequencies below about 10 Hz. The disaggregated earthquake spectra at 1 and 10 Hz, scaled back to the UHS, are shown in Figures 12 and 13 respectively. The difference in the hazard environment between WUS and CEUS sites is evident by noting the difference in disaggregated magnitudes dominating the 1 and 10 Hz frequencies (1.3 units for the CEUS site and 0.6 units for the WUS site).

The WUS site profile was developed using the Imperial Valley soil configuration extended to a depth of 1,000 feet while the CEUS soil site was developed from the Savannah River site data. The base case shear wave velocity profiles are shown in Figure 14. Strain degradation data for the two sites used in the convolution studies were based on either generic models or site-specific data considered appropriate for the site [9]. In the convolution analyses, uncertainty in dynamic material properties was accommodated through inclusion of parametric variations, using a Monte Carlo approach with the equivalent-linear site response calculation. Uncertainty in shear wave velocities and damping were based on statistical distributions available for the sites. For each input control motion, a number of convolution calculations were performed, with soil properties randomly selected from available site data, to obtain mean estimates of surface response and associated transfer functions.

The various approaches used to develop site-specific soil surface spectra following this procedure are listed below in the order of increasing difficulty: In each approach, the UHS rock outcrop spectra described previously and its disaggregated information at low and high frequency are used as input to the site response problem to varying degrees of completeness.
Approach 1: Use the rock UHS as the rock outcrop control motion,

Approach 2A: Use the disaggregated earthquake spectra at 1 Hz and 10 Hz scaled to the UHS as control motions (R.G. 1.165 approach) or develop transfer function for 1 Hz and 10 Hz rock characteristic earthquakes using a single control motion. The envelope of the two transfer functions is then used to scale the rock UHS.

Approach 2B: Develop weighted disaggregated earthquake spectra (typically at the 5th, 50th and 95th percentiles) at 1 Hz and 10 Hz as rock outcrop design earthquakes, accommodating magnitude distributions at each frequency. The mean of the soil surface motions for each frequency is then obtained. The envelope of the two mean surface motions is then defined as the soil surface spectrum. Alternatively, the envelope of the two mean transfer functions is used to scale the rock UHS.

Approach 3: Approximations to convolution integrations to obtain the mean transfer functions.

Approach 4: Develop the soil UHS using site-specific soil attenuation relations.

Approach 3 is a simplification to Approach 4 used to obtain the mean transfer functions. In the following, calculations using Approaches 1, 2A, 2B, and 4 are compared to determine the recommended convolution procedure. Approach 1, the simplest calculation model, involves driving the soil column with the broad rock UHS spectrum (rock control motions) and may result in unconservative high frequency motions, particularly in the context of equivalent-linear site response analyses. Approach 2A recognizes that different earthquakes may dominate the high and low frequency range of site response, which generate separate transfer functions for these average events. The use of multiple rock shapes scaled to the UHS at high and low frequencies is consistent with Regulatory Guide 1.165 [13] although not explicitly stated.

In Approach 2B, mean, high and low percentile magnitudes from the rock UHS disaggregations at the 1 Hz and 10 Hz frequencies, scaled to the rock UHS, are used as input to the site response evaluations. The resulting control motions are then used to develop weighted mean transfer functions for each design earthquake. The transfer functions, in turn, are then used to scale the rock UHS to obtain the corresponding soil surface spectrum. The use of a three-point magnitude distribution for each design earthquake better accounts for potential non-linear effects in the site response calculation caused by a wide range of earthquake magnitudes contributing to the hazard as compared to Approach 2A. In Approach 4, a site-specific soil attenuation relation is used in the hazard analysis. This approach assumes that appropriate parametric variations are incorporated in the development of the attenuation relation and that they are also reflected in the uncertainty about the median ground motions.
For the WUS site (Figure 15), the results from the calculations indicate that Approaches 2A and 2B yield very similar results, both of which are generally higher than Approach 1 (the single broad-banded UHS rock outcrop input spectrum). Nonlinear effects in the soil column cause the site to be softened more by the single input than by either of the approaches using the scaled deaggregated spectra. For the CEUS site (Figure 16), Approach 1 again tends to underestimate soil surface spectra as compared to Approach 4 while Approaches 2A and 2B are again similar and conservative above about 10 Hz. Strain levels at the CEUS site are generally much lower than those at the WUS site (0.02% as compared to 0.3%) due to its generally stiffer profile and lower ground motion input. These results are typical of the various site response calculations described in NUREG/CR-6728. Approach 1, although often used for site response calculations, generally leads to underprediction of site response.

Approaches For Vertical Motions

Assessment of site specific vertical motions for soil sites to accompany corresponding horizontal motions is a much more issue, particularly if it is desirable to maintain hazard consistency with the horizontal motions. Rarely are separate hazard analyses performed for horizontal and vertical control or rock outcrop motions and there are no widely accepted site response methodologies currently available to accommodate vertical analyses. Commonly, equivalent-linear site response analyses for vertical motions have used strain iterated shear moduli from a horizontal motion analysis to adjust the compression-wave velocities assuming either a strain independent Poisson's ratio or bulk modulus. Some fraction (generally 30% to 100%) of the strain iterated shear-wave damping is used to model the compression-wave damping and a linear analysis is performed for vertically propagating compression waves using the horizontal input control motions scaled by some factor near 2/3.

Alternatively, fully nonlinear analyses can be made using two- or three-component control motions [4, 5, 6]. These nonlinear analyses require two- or three-dimensional soil models, which describe plastic flow and yielding, and the accompanying volume changes as well as coupling between vertical and horizontal motions through linear and inelastic constitutive models. While these analyses are important to examine expected dependencies of computed motions on material, the models are very sophisticated and require specification of many parameters, at least some of which are difficult to measure both in mean or central values as well as their uncertainties.

The equivalent-linear approach implicitly assumes some coupling between horizontal and vertical motions. This is necessitated by the lack of appropriate strain-dependent degradation models for the constrained modulus of the soil and corresponding hysteretic damping data. Ideally, the strain dependency of the constrained modulus should be determined independently of the shear modulus. Also, the conventional approach assumes vertically propagating compression waves and not inclined P-SV waves. More recently, use has been made of V/H ratios for rock computed from empirical attenuation relations. This process accommodates observed trends in magnitude and distance dependences of vertical motions [6, 17] and results in vertical control motions appropriate for the controlling earthquakes. These are generally based on UHS 1 Hz deaggregation, as this usually results in the definition of the largest dominant earthquakes. Again, it would be more appropriate to use two
design spectra (e.g. at 1 Hz and 10 Hz) or envelop the 1 Hz and 10 Hz (or PGA) V/H ratios to develop a conservative vertical rock outcrop spectrum.

The approach recommended here makes use of generic soil V/H ratios to scale the site specific horizontal soil motions. It is intended to maintain as many site specific attributes as possible through the use of the horizontal soil motions (soil column) and generic soil V/H ratios (controlling magnitudes and distances) while avoiding the currently inherent ambiguity inherent in vertical site response analyses. This is the case for WUS sites where vertical and horizontal component empirical attenuation relations for soil sites are available. For the CEUS, this approach again relies on generic soil V/H ratios based on a validated site response methodology [17]. In this approach, WUS-to-CEUS scale factors are developed and used to scale an empirical WUS deep soil V/H ratio. The scale factors are ratios of WUS and CEUS V/H ratios computed for generic deep soil, representative of deep soils beneath the WUS strong motion recording sites and assumed to occur both in the WUS and CEUS. To compute the V/H ratios, a generic deep soil column is placed on the generic WUS and CEUS crustal models and the stochastic point-source model used to generate motions. Inclined P-SV waves are used as input to model the vertical motions [6, 17].

Impact on SSI Analyses

The effect of these new recommendations for site response evaluation on the computations for soil-structure interaction analyses is significant. The deterministic SSI analysis procedures currently used to develop in-structure design spectra and member design loads are not consistent with these newly recommended probabilistic approaches for developing free-field surface design ground motions. The current procedures typically used in SSI analyses make use of a time history generated to envelope a relatively broad-banded design surface response spectrum. Often the surface spectrum is defined by either a RGI 60 or N-H shaped spectrum controlled by only one or several ground motion parameters as previously described. The structural model and site geometry is specified as indicated schematically in Figure 17.

The site properties are specified in terms of their low strain values of shear wave velocity and hysteretic damping for each soil layer in the soil profile. These parameters are typically defined in terms of their best estimate, lower bound and upper bound values in an effort to capture variability of these properties over the building footprint as well as uncertainty in their specification as well as the SSI process. The broad-banded surface ground motion is then deconvolved to obtain “strain-compatible” parameters. However, since the broad-banded spectrum does not correspond to a single event, the deconvolution process leads to unrealistically high strains in the near-field soil profile and implied ground motions at depth. This problem led to the so-called “60% rule” contained in the SRP to try to prevent placing structures at depth to minimize ground motion input to the foundation.

In the new recommended procedures, surface ground motion design spectra are developed consistently; that is, the surface spectra are already associated with a compatible strain-iterated soil profile. Therefore, deconvolution of the surface ground motion is certainly no longer valid. However, procedures for development of upper and lower bound soil profiles to be used in the SSI analyses still
need to be developed. It is known, for example, that simple scaling of the site properties above and below the best estimate site profile does not necessarily bound response spectra, particularly at frequencies higher than the fundamental frequency of the soil column.

Currently, a process used to specify these bounding profiles involves selecting the ± one-sigma values of strain-stored velocities and hysteretic damping. The lower bound damping is typically associated with the upper bound velocities and vice versa, although this selection is subjective. It is not clear as yet whether these bounding selections lead to consistent estimates of ± one-sigma values of in-structure spectra or member loads. Studies to confirm these selections are being undertaken and recommendations still need to be developed to ensure conservative estimates of mean structural demand.

References

DISCLAIMER
This paper was prepared in part by an employee of the United States Nuclear Regulatory Commission. It presents information that does not currently represent an agreed-upon staff position. NRC has neither approved or disapproved its technical content.
Table 1
Shape Coefficients for 5% Damped Response Spectra

<table>
<thead>
<tr>
<th>Coef</th>
<th>WUS</th>
<th>CEUS - 1 Corner</th>
<th>CEUS - 2 Corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1.8197</td>
<td>0.88657</td>
<td>0.97697</td>
</tr>
<tr>
<td>C2</td>
<td>0.30163</td>
<td>exp(-10.411)</td>
<td>exp(-9.4827)</td>
</tr>
<tr>
<td>C3</td>
<td>0.47499+0.034356M+0.0057204ln(R+1)</td>
<td>2.5099</td>
<td>2.3006</td>
</tr>
<tr>
<td>C4</td>
<td>-12.665+2.4796M-0.14792M²+0.0354059ln(1+0.048952R)</td>
<td>-7.4408+1.5223M-0.088583M²+0.0072696ln(1+0.12639R)</td>
<td>-12.665+2.4869M-0.14562M²+0.024477ln(1+0.04807R)</td>
</tr>
<tr>
<td>C5</td>
<td>-0.25746</td>
<td>-0.34965</td>
<td>-0.23002</td>
</tr>
<tr>
<td>C6</td>
<td>0.29784+0.010723M-0.0000133R</td>
<td>-0.31163+0.0019646R</td>
<td>0.743611+0.0000671R</td>
</tr>
<tr>
<td>C7</td>
<td>NA</td>
<td>3.7841</td>
<td>exp(-13.476+4.4007M-0.31651M²+0.000235MR)</td>
</tr>
<tr>
<td>C8</td>
<td>NA</td>
<td>-0.89019</td>
<td>0.95259-0.5875M+0.000166MR</td>
</tr>
<tr>
<td>C9</td>
<td>NA</td>
<td>0.35806+0.05832M</td>
<td>-3.3534+0.44094M</td>
</tr>
</tbody>
</table>

M = moment magnitude
R = fault distance (km)
Figure 1: Comparison of Rock Response Spectral Shapes (5% Damping) Between WUS (Solid Lines) and CEUS (Dashed Lines) for Earthquakes Recorded at Rock Sites [M 6.75 (upper figure) and M 5.75 (lower figure)]
Figure 2. Comparison of Generic Shear and Compression Wave Velocity Profiles for WUS and CEUS Crustal Models
Figure 3. Response Spectral Shapes (5% Damping) for WUS and CEUS Crustal Conditions
Figure 4. Absolute Response Spectra (5% Damping) for WUS and CEUS Crustal Conditions
Figure 5. Comparison of 5% Damped Bin Statistical Spectral Shapes with Model Predictions, WUS Recordings, Bin M 6.5 - 7.0, R 10-50 km
Figure 6. Comparison of 5% Damped Bin Statistical Spectral Shapes with Model Predictions, CEUS Recordings, Bin M 6.5 - 7.6, R 5 - 50 km
Figure 7 Comparison of 5% Damped Bin Statistical Spectral Shapes with Model Predictions, WUS Recordings, Erd M 5.4, R 0 - 25 km
Figure 8. Comparison of 5% Damped Bin Statistical Spectral Shapes with Model Predictions, CEUS Recordings, Bin M 5.0 – 5.5, R 0 - 25 km
Figure 9. Comparison of WUS Model Prediction (Small Event) with RG 1.60 and Newmark-Hall 0098 Spectral Shapes (5% Damping)
Figure 10. Comparison of CEUS Model Prediction (Small Event) with RG 1.60 and Newmark-Hall 0098 Spectral Shapes (5% Damping)
Figure 11: Comparison of 5% Damped Rock Outcrop UHS Spectra for WUS and CEUS
Sites at 10^-6 Probability of Exceedance Level
Figure 12. WUS Bedrock UHS and Scaled Deaggregated Spectra
At 1 Hz and 10 Hz
Figure 13. CEUS Bedrock UHS and Sealed Deaggregated Spectra
At 1 Hz and 10 Hz
Figure 14. Base Case Shear Wave Velocity Profiles
Meloland and Savannah River Site
Figure 15. Comparison of Soil Surface Spectra Using Approaches 1, 2A, 2B and 4 For WUS Soil Site Conditions
CEUS 10E-4 APPROACH COMPARISON, SAVANNAH RIVER GENERIC

Figure 16. Comparison of Soil Surface Spectra Using Approaches 1, 2A, 2B and 4
For CEUS Soil Site Conditions
Figure 17. Typical Configuration for SSI Response Analyses
Final Session – Mr. P. Sollogoub
(CEA, Saclay, France)

Formulation of conclusions and recommendations

F. Poster Sessions
SEISMIC HAZARD ASSESSMENT OF THE LUCAS HEIGHTS HI-FLUX AUSTRALIAN REACTOR, SYDNEY, AUSTRALIA: SEISMIC HAZARD ASSESSMENT IN A LOW-SEISMICITY REGION

Mark Stirling, Kelvin Berryman, & Graeme McVerry
Institute of Geological & Nuclear Sciences Ltd, P.O. Box 30368, Lower Hutt, New Zealand

Gary Gibson
Seismological Research Centre, Level 3, 20 Council St, Hawthorn East, Victoria 3123, Australia

Norm Abrahamson
Pacific Gas and Electric Company, P.O. Box 770000, B32, San Francisco, CA 94177, USA

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering Istanbul, 16-18 October 2002

Abstract

We present an overview of our probabilistic seismic hazard assessment (PSHA) of the Lucas Heights site in south Sydney, New South Wales, Australia. The study represents the first modern PSHA of its kind ever carried out in Australia, including the full treatment of uncertainty in the input parameters. The study had the considerable challenge of being located in a low seismicity intraplate setting, and was also undertaken without access to any well established attenuation relations for eastern Australia. The peak ground accelerations calculated were in the range of 0.3 to 0.4g for the mean 10,000 year return time, somewhat higher than the estimates from previous studies which did not incorporate the modern methods of PSHA for the siting of nuclear reactors.

Introduction

In this paper we present a brief overview of our probabilistic seismic hazard assessment (PSHA) of the Lucas Heights site in south Sydney, New South Wales, Australia. The study was undertaken for the Department of Industry, Science and Resources in accordance with international best practice in seismic hazard analysis for the siting of nuclear reactors by a multinational team of seismologists, geologists and earthquake engineers (Alliance, 1999; Stirling & Berryman, 2001). The study had the considerable challenge of being located in the intraplate setting of eastern Australia (Fig. 1) where seismicity rates are low and difficult to constrain from the short (approximately 100 year) historical record of earthquakes. An additional difficulty was the lack of a well established attenuation relation for eastern Australia. Furthermore, only limited work had been done to determine the recency of activity on faults in eastern Australia prior to our study.
Methodology

An early step in construction of the PSHA was to define area sources that enclose areas of roughly homogenous seismicity and geology (Fig. 2). Magnitude – frequency distributions and the associated seismicity parameters were then constructed from the historical seismicity for each area source, and parameters were also defined for the Lapstone Structural Complex (the one fault in the region thought to be active; Fig. 2). To address the epistemic (knowledge or model) uncertainty in the earthquake parameters and likely accelerations produced at the site from the resulting earthquakes we constructed logic trees for each area source and also for the Lapstone Structural Complex (Fig. 3). Particular emphasis was placed on incorporating a range of attenuation relationships for intraplate and interplate tectonic settings into the logic trees, acknowledging that the Sydney Basin is not a “classic” intraplate environment (i.e. not within an area of stable continental shield or craton like central Australia or eastern North America). The weightings used in the logic trees were determined by consultation among the Alliance team and by consultation with Australian experts. We ran the PSHA by way of a Monte Carlo method, which involved repeatedly sampling the logic tree and constructing “hazard curves” for each sample (annual frequency of exceedance for a suite of acceleration levels; e.g. the peak ground acceleration example shown in Fig.4). The uniform hazard (probabilistic) spectra for a series of percentile levels and return times were calculated by this method from 1000 samples of the logic trees.

Hazard Estimates

The peak ground accelerations and spectral accelerations (0.1, 0.2, 0.4, and 1 second periods) calculated from the 1000 samples of the logic tree are given in Table 1. The peak ground accelerations are in the range of 0.3 to 0.4g for the mean 10,000 year return time, somewhat higher than the estimates from previous studies which did not incorporate the modern methods of PSHA (i.e. treatment of uncertainty, and other aspects). Throughout the analysis considerable effort went into conducting sensitivity analyses to determine the “robustness” of our results, and in doing so we found no one parameter to strongly influence the hazard above all of the others.

Deaggregations

To aid in providing appropriate information for eventual definition of design earthquakes for the site we conducted deaggregations of a number of samples from the logic trees to determine the dominant (modal) magnitudes and distances that dominate the hazard. The results of the deaggregations were then used to select representative historical earthquakes from global strong motion datasets (for eventual use in earthquake loading analyses at the site) by finding the best match of the individual spectra for these events to the uniform hazard spectra of the site. The analysis showed that the mean 10,000 year return period accelerations given in Table 1 are most likely to come from moderate earthquakes occurring less than 20km from the site.

Conclusions

Our study has utilised the modern methods of PSHA applicable to the siting of nuclear reactors to calculate the levels of peak and spectral acceleration expected at the Lucas Heights site. The peak ground accelerations calculated are in the range of 0.3 to 0.4g for the mean 10,000 year return time, somewhat higher than the estimates from previous studies which did not
incorporate the modern methods of PSHA. A deaggregation analysis shows that these accelerations are most likely to come from moderate earthquakes occurring less than 20km from the site.

References

Table 1

Estimates of PGA and 0.1, 0.2, 0.4, and 1 second spectral acceleration (SA) for Lucas Heights, for the 50th percentile, mean and 84th percentile levels, for four return periods (RP).

<table>
<thead>
<tr>
<th>PGA</th>
<th>10^2</th>
<th>10^3</th>
<th>10^4</th>
<th>10^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>50th</td>
<td>0.05</td>
<td>0.10</td>
<td>0.35</td>
<td>0.75</td>
</tr>
<tr>
<td>Mean</td>
<td>0.04</td>
<td>0.12</td>
<td>0.37</td>
<td>0.85</td>
</tr>
<tr>
<td>84th</td>
<td>0.05</td>
<td>0.17</td>
<td>0.49</td>
<td>1.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.1 Second SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
</tr>
<tr>
<td>50th</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>84th</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.2 Second SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
</tr>
<tr>
<td>50th</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>84th</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.4 Second SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
</tr>
<tr>
<td>50th</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>84th</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.0 Second SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
</tr>
<tr>
<td>50th</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>84th</td>
</tr>
</tbody>
</table>
Figure 1
The plate tectonic setting of the Lucas Heights site in the low-seismicity intraplate environment of eastern Australia.

Figure 2. Area sources defined for the study.
Figure 3.
Logic tree for the East Sydney Basin area source

Figure 4.
Hazard curves for peak ground acceleration calculated by way of a Monte Carlo analysis
PROBABILISTIC ANALYSIS OF THE NON LINEAR SEISMIC RESPONSE OF AN OSCILLATOR - EFFECT OF THE VARIABILITY OF SEISMIC MOVEMENT ON THE DAMAGE SUSTAINED BY A SIMPLE STRUCTURE (1)

* EDF-SEPTEN INSU Lyon-URG, ** ENPE Lyon, *** INSA Lyon, **** IAEA Wien

Introduction
If the prediction of seismic events remains impossible up to now, to foresee damages experienced by a structure submitted to an earthquake becomes more and more relevant. It is a well-known fact that these damages depend both on the nature of the earthquake and the structure characteristics. Then, for a given structure such as a precise building, the main parameter of the problem stays the earthquake nature. The characteristic of seismic movements lead to different representations of a signal from the simple accelerogram to the Acceleration Displacement Response Spectrum. From these representations, engineers are trying today to define the damaging potential of an earthquake by performing calculations of what is called the Damage Potential Index. This paper aims to characterize the dispersion of damage experienced by simple RC structures (columns and frames) according to different Damage Potential Index in order to evaluate the relevance of these Index on their ability to foresee damage. The effects of non-linearity, the correlation between different Damage Potential and Damage Index, the influence of seismic level or Index value on the dispersion of damage are then tested in this study and presented hereafter to give an illustration of damage scatter due to seismic movement variability.

Characterisation of damaging potential of earthquakes: Potential Damage Index (Dp)
The Potential Damage Index used for the study are the following:
The statistical dispersion of Damaging Potential Index

- Area Intensity
- Peak Ground Acceleration
- Spectral Intensity
- Coefficient Magnitude Distance
- Cumulative Absolute Velocity
- Destruction Power

The diagram above shows some examples of correlation between Pd and Potential Damage Index in order to evaluate the relevance of Pd to IP, correlation

Characterisation of structural damage: Damage Index (Dj)
The Structural Damage Index used for the study can be:

Global Damage Index
- Maximum top displacement: Dp or Dp
- Plastic, maximum and final softening: Dp, Dp, Dp

Local Damage Index
- Displacement ductility
- Knitting Index: Dk

Modelling and Calculations

Concrete Constitutive Law
PROBABILISTIC ANALYSIS OF THE NON LINEAR SEISMIC RESPONSE OF AN OSCILLATOR - EFFECT OF THE VARIABILITY OF SEISMIC MOVEMENT ON THE DAMAGE SUSTAINED BY A SIMPLE STRUCTURE (2)

- The external dispersion of damage due to the variability of seismic movement
 Almost 100 non-linear time history calculations have been performed by CASTEM99 software for the column as well as for the frame. The results have been chosen in order to cover the whole range of Potential Damage Index values. Non-linear Static Analysis Procedures (CSM) was performed to estimate maximum displacement or the Performance Point by such simple methods as Capacity-Spectrum technique which uses the intersection of the capacity (pushover) curve and a reduced response spectrum. This method requires that both the demand and response spectra and structural capacity curves be plotted in the spectral acceleration vs. spectral displacement domain. Spectra plotted in this format are known as Acceleration Dispersion Response Spectra (ADRS).

- Scatter Factors (1)
 Damage scatter of both column and frame versus damaging potential of earthquakes as represented by the following graphs. The tables summarise this scatter by the determination factor R^2 for each couple (BR95). It clearly appears that Damaging Potential Index, Destruction Power P_d and Hourly Intensity I_h, are the best correlated to the top displacement, D_{max} Damage Index.

Determination factors for column structure

<table>
<thead>
<tr>
<th>R^2</th>
<th>0.675</th>
<th>0.687</th>
<th>0.688</th>
<th>0.683</th>
<th>0.687</th>
<th>0.681</th>
<th>0.685</th>
</tr>
</thead>
</table>

Determination factors for frame structure

| R^2 | 0.790 | 0.788 | 0.789 | 0.790 | 0.789 | 0.788 | 0.790 |

- Effect of non linearity (3)
 Linear and non-linear calculations have been performed. The comparison of the results shown that non-linearities do not amplify the scatter of damage. The graphs below illustrate this result.

- Comparison between Non Linear Static (CSM) and Dynamic Analysis (4)
 Using Capacity-Spectrum Method as described above, maximum displacement has been performed and compared with Damaging Potential Index calculated by non-linear classical transient analysis. The comparison has underlined that simple approach such as CSM does not generate more uncertainties on damage than the most sophisticated ones. Scatter factors calculated with simple static time history Analysis provide similar results in term of damage uncertainty. The graphs hereafter illustrate this result.

- Proposal for improvement of Damaging Potential Index (2)
 Up to now “elementary” IP in the studied cases are P_d and I_h. “complete” IP like CAV or I_0 with “threshold” IP like PGA leads to divide damage scatter by at least 2 and then increase the determination factor R^2 by more than 15%. The following graphs show this result by putting forward correlation with “PhotPGA” or “CAVG4PGA/ω_0^4”, where ω_0 is the central frequency of the signal.

- Conclusion
 1. The most relevant “elementary” IP in the studied cases are P_d and I_h.
 2. This relevance can be improved by combining cumulative and “threshold” IP into “complete” IP. To combine cumulative IP such as CAV or I_0 with “threshold” IP such as PGA leads to divide damage scatter by at least 2 and then increase the determination factor R^2 by more than 15%.
 3. Non linearity of behaviour does not amplify damage uncertainty.
 4. Non linear static analysis, based on Capacity-Spectrum Method, does not generate more uncertainties on damage than classical time history analysis.
SITE RESPONSES IN THE TAIPEI BASIN DURING THE 1999 CHI-CHI, TAIWAN EARTHQUAKE SEQUENCE

Kuo-Liang Wen1,3, Han-Yih Peng2, Tao-Ming Chang3, and Chi-Ling Chang3

1. Institute of Applied Geology, National Central University
2. LinkEarth Technology Ltd. Co.
3. Office of the National S&T Program for Hazards Mitigation, National Taiwan University

OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering
Istanbul, 16-18 October 2002

Abstract

On September 20, 1999 a magnitude M_L 7.3 earthquake struck Taichung and Nantou in central Taiwan. Taipei basin located more than 100 km from the epicenter but also had many buildings damaged during the earthquake. In this study we use the mainshock and aftershocks data of Chi-Chi earthquake to analyze the site effect of Taipei basin. The results show that the dominant low frequency band response is located in the western part of Taipei basin and Songshan area; the main high frequency band response areas are near the edge of basin. Another hand, comparing the results of amplification pattern with the location of damaged buildings found that the tall damaged buildings are located at the high response areas of low frequency band and the low-rise damaged structures are located at the high response areas of higher frequency band. From these results we can find the relationship between the site amplification and damaged structure distribution in the Taipei basin area during earthquakes.

Introduction

Taiwan is located on the Circum-Pacific seismic belt. The seismicity in Taiwan area is very high [1]. Therefore, defense lives and possessions from disaster earthquakes are a major concern of the people in this region. Strong ground shaking primarily causes the damaging effects of earthquakes. To reduce the loss of life and property from strong ground shaking, it requires conscientious application of construction codes and earthquake resistant design, enforcement of adequate land-use policies as well as implementation of appropriate retrofit measures. The implementation of these mitigation measurements must be based in large part on the recordings from large earthquakes at distances from 0 to 100 km. Such data are crucial for designing earthquake resistant structures and understanding the source mechanism of earthquakes and the propagation of seismic waves from source to site, including the local site effects.

Amplification of strong ground motion by alluvial deposits during an earthquake has been documented on a lot of occasions and caused damage in recent large earthquakes, for example, 1985 Michoacan earthquake, 1989 Loma Prieta earthquake, 1994 Northridge earthquake, 1995 Kobe earthquake, and 1999 Chi-Chi, Taiwan earthquake. Many studies shown that the top alluvium layer will play an important role for site amplification effects [2-4]. Therefore, site effects study is very
important for mitigating damage during an earthquake. Many methods have been used to characterize the site amplification. The best approach is through direct observation of seismic ground motion, although such observations are limited to high seismicity areas and by high cost. A dense strong motion observation network provides an opportunity to realize the basin effects in the Taipei basin. The preliminary results of the site responses in the Taipei basin had been done before [5-7]. In this study, we used the spectral ratio to analyze the site effect by adopting the data of Chi-Chi earthquake and its aftershocks for realizing the basin responses during the Chi-Chi earthquake. The spectral ratio contours at some specific frequencies are selected to compare with the geological and velocity structures under the Taipei basin. In the other hand, For the engineering concern, the relationship between the spectral ratio contour and the distribution of damaging building areas are also discussed in this study.

Geological structure of the Taipei basin

The Taipei basin is a triangle-shaped alluvium structure (Figure 1). The ground surface of the Taipei basin is almost flat and tilting gently to the northwest. The total area of the Taipei basin is about 240 square kilometers with an altitude below 20 meters. The Keelung River flows through it in an east-west direction, the Dahang Creek from the south through the basin center and then northwest to the ocean, and the Chingmei Creek from the southeast merge in the Dahang Creek at around the basin center. Because the basin is filled with the unconsolidated sediments, the subsurface geology of the Taipei basin can only be established by the information obtained from boring, electrical, and seismic prospecting [8,9]. Recently, the basement structure in the Taipei basin area had been modified through the work of deep boring by the Central Geological Survey [10] and dense reflection seismic survey by the National Central University [11-13]. The dotted contour lines in Figure 1 indicate the depth to the basement rock in the Taipei Basin, from inner to outer each line shows the depth from 400 to 100 m, respectively.

The geological structure inside the basin is the Quaternary layers above the Tertiary base rock. The stratigraphic formations of the Quaternary layers are, in descending order, surface soil, the Sungshan Formation, the Chingmei Formation, and the Hsinchuang Formation. The Sungshan Formation is composed mainly of alternating beds of silty clay and silty sand, and covers almost the whole Taipei basin. The Chingmei Formation is a fan-shaped body of conglomerate deposits. The Hsinchuang Formation consists of bluish grey, clayey sand with some conglomerate beds [9]. Wen et al. [14] calculated the \(V_p \) and \(V_s \) from surface to the depth of 350 meters through the travel time analysis of seismic waves by using the Wuku downhole records in the western part of Taipei basin. The average P- and S-wave velocity structures of the Taipei basin are shown in Table 1 which were the results from the reflection seismic survey in the whole Taipei basin area [15].

TSMIP network and earthquake data

The Taiwan Strong Motion Instrumentation Program (TSMIP) is executed by the Seismological Observation Center of the Central Weather Bureau, Taiwan, ROC [5,16]. The main purpose of this program is to study the characteristics of the ground motion in different geological conditions and the response of different types of man-made structures. All results can be used to improve the design spectrum and building codes of current use. The program installed up to 600 digital free field strong motion instruments and 400*3 digital channels of strong motion monitoring systems in nine metropolitan areas. About 100 free field stations are already in operation in Taipei area, and 43 stations are within the Taipei basin. The station interval is about 2 km in average. The distribution of
stations is shown in Figure 1 in triangle symbol and the number near each station is the station code. Each station includes one strong motion instrument and a recording room. Strong motion instrument is a force-balance accelerometer. The recorder which has 16 bits' resolution can record the ground motion within ±2g and has pre-event and post-event memory. Each strong ground motion station has the same design. A small fiberglass house covered on a concrete plate. All stations have AC power. When the power system is shutdown by earthquake or other problem, the DC powers of the recording system can still operate about 4 days.

The Chi-Chi earthquake and its 8 aftershocks which magnitude is over 6.0 were recorded by the TSMIP network which is located in the Taipei basin since September 20 to 22 1999. Table 2 shows the source parameters of Chi-Chi earthquake and its aftershocks. All the source parameters in the Table 2 are determined by the local seismic network of the Central Weather Bureau, Taiwan. Figure 2 shows the events location which is listed in the Table 2. In the Figure 2 we can find that, Chi-Chi earthquake and its aftershocks are all located at the south-western direction of Taipei basin and the Taipei basin is located more than 100 km away from the epicenters of these earthquake. In this study, earthquakes list in the Table 2 will be used to make spectral ratio to understand the site response in the Taipei basin during the Chi-Chi earthquake and its aftershocks. Figure 3 shows a typical waveform of Chi-Chi earthquake recorded at station TAP003 which is located at the western part of Taipei basin, and Figure 4 shows the waveform of No. 8 aftershock in Table 2 recorded at the same station of Figure 3.

Site effect analysis

Taipei basin is located in the north of the epicenter and the closed distance to the fault rupture is more than 100 km away. Figure 5 plots the waveforms from south to north in the western part of the basin. They indicate that the seismic waves from the south to the north edge of the basin show the amplification effects. If we consider the frequency response (Figure 6), the ground motions change from high frequency to low frequency, as the basin becomes deeper. Toward the north edge, the response turns to higher frequency again. The edge effects [17] seem also play an important role for this event.

In order to understand the soil amplification effects in the frequency domain, the spectral ratios of the soft soil stations were calculated with respect to the TAP043 site that is near the south-western edge of the basin. All the recorded earthquakes are more than 100 km away from Taipei basin in the south directions. The variation of azimuth and incident angle will not be so large. Therefore, selection of TAP043 as reference site will not change the pattern of average spectral ratio very much. The spectral ratios are calculated as follows [18]: (1) a window containing the shear wave is identified; (2) the window is tapered at both ends (at 5% of the length) using a cosine function; (3) the Fourier amplitude spectrum is calculated; (4) the spectrum is smoothed 1 times using a 3-point running Hanning average; (5) two smoothed spectra are divided; (6) the root-mean-square (RMS) spectral ratio is then calculated from the two horizontal ratios of EW and NS components. Figure 7 shows an example of the mean spectral ratio of the TAP003 and TAP043 station pair in Chi-Chin earthquake's aftershocks. The shaded bands represent ±1 standard deviation areas.

For the purpose of the earthquake resistant design, earthquake engineers must consider the site response at a specific period. For example, the structure period of a ten-flour building is at about 1 second. If the input ground motion is dominate at 1 Hz, then the building will has a resonant effect. Which may easily cause big damage to this building. Therefore, in this study, we select 7 periods (4, 3, 2, 1.5, 1, 0.5, and 0.3 sec) to plot out the contour map for understanding the frequency responses in the
Taipei basin. Figure 8 shows an example of the mean spectral ratio contour for the period of 2 sec. From these contours, it is obvious that the waves at different frequencies have different amplification patterns in the Taipei basin. For the low frequency responses (period from 4 to 1.5 seconds) in the Taipei basin, the contours show that main amplification effects occurred at the western part of the Taipei basin and the Sungshan area. Nevertheless, the response at the higher frequency band of larger than 1 Hz shows different amplification effects. The high contour areas occur near the basin edges at the north, east, and south basin boundaries. The responses in western part of the Taipei basin and the Sungshan area do not show strong amplification effect anymore. The basement structure (The dotted contours in Figure 1) may explain the high spectral ratio area occurred at the western part of the Taipei basin, which is the deepest area of the Taipei area. But it can not explain the contour high area at the Sungshan area of the low frequency responses. The top alluvium layer in the Taipei basin seems play an important role for site amplifications as mentioned by Anderson et al. (1996). The two deepest areas of the soft Sungshan Formation (Figure 9) can correlate with the two high spectral ratio areas at the lower frequency bands. More research works are needed to clarify the role of this top alluvium layer of the Sungshan Formation.

The damage distribution of the Chi-Chi Earthquake in Taipei basin

Although Taipei basin is located more than 100 km away from the epicenter of Chi-Chi earthquake, there are also three tall buildings collapsing and some low-rise structures damaging during the earthquake. As the spectral ratio method we used above, we chose the Chi-Chi earthquake and its aftershocks records to analyze the site effect of Taipei basin. The reference site we chose is TAP043. Figure 10 and Figure 11 show the examples of spectral ratio contour of Chi-Chi earthquake for period of 0.5 sec and 2 sec. Figure 12 and Figure 13 show the examples of mean spectral ratio contour of the Chi-Chi aftershocks for period of 0.5sec and 2 sec. These patterns of spectral ratio contour are very consistent with above results. The damages distribution of the Chi-Chi earthquake can compared with the site response in the Taipei basin. The three tall buildings are located in the high response areas of the lower frequency. The low-rise buildings are located near the basin edges where has the higher response in the higher frequency band. This phenomenon also shown in the earthquake of November 15, 1986.

Summary

The dense TSMIP network provides an opportunity for us to realize the site effects in the Taipei basin. In this study, we use the spectral ratio method to calculate the frequency response at each station with respect to a referent site TAP043 that is located at the southern edge of the basin. The spectral ratio contours at some specific periods are selected to compare with the geological structure under the Taipei basin. From the analysis of Chi-Chi earthquake and its aftershock records of the dense TSMIP network, it is noted that different areas have different local site effects in the Taipei basin. By comparison of the results with the geological structure, we can understand that the low frequency responses on the western part of the Taipei basin and Sungshan area are correlated with the basin structure and the top soft soil layer (Sungshan formation). The high frequency responses are mainly occurred near the edge of the Taipei basin except the western boundary of a steep structure. The soft soil layer of the Sungshan formation may dominate the site response at the Taipei basin. During the 1986, Hualien earthquake and 1999, Chi-Chi earthquake, there are some buildings damaged. By comparing between the distribution area of damaging buildings and spectral ratio contours of the Chi-Chi earthquake sequence, we found that the patterns can be correlated. The more accurate relationship between...
distribution of damaging buildings and earthquake response in Taipei basin needs to do more research works.

Acknowledgements

The authors would like to thank the Seismological Observation Center of the Central Weather Bureau for providing the original TSMIP data. This study was supported by the National Science Council under the grant NSC 89-2116-M-008-017 and NSC 89-2625-Z-002-037.

References

Table 1. Velocity structure of Taipei basin [15].

<table>
<thead>
<tr>
<th>Formation</th>
<th>Depth (m)</th>
<th>V_P(m/sec)</th>
<th>V_S(m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northwest</td>
<td>Southeast</td>
<td></td>
</tr>
<tr>
<td>Sungshan</td>
<td>0-20</td>
<td>0-15</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>20-50</td>
<td>15-35</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>50-100</td>
<td>35-50</td>
<td>1600</td>
</tr>
<tr>
<td>Chingmei</td>
<td>100-160</td>
<td>50-100</td>
<td>1800</td>
</tr>
<tr>
<td>Wuku</td>
<td>160-320</td>
<td>100-200</td>
<td>2000</td>
</tr>
<tr>
<td>Panchiao</td>
<td>320-400</td>
<td>200-250</td>
<td>2200</td>
</tr>
<tr>
<td>Basement</td>
<td></td>
<td></td>
<td>3000</td>
</tr>
</tbody>
</table>

Table 2. Events source Parameters used in this Study.

<table>
<thead>
<tr>
<th>Event No</th>
<th>Origin Time</th>
<th>Epicenter</th>
<th>Depth (km)</th>
<th>M_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1999 9 20 17:47:16</td>
<td>23.85N 120.82E</td>
<td>8.00</td>
<td>7.30</td>
</tr>
<tr>
<td>2</td>
<td>1999 9 20 17:57:15</td>
<td>23.91N 121.02E</td>
<td>2.23</td>
<td>6.47</td>
</tr>
<tr>
<td>3</td>
<td>1999 9 20 18:03:41</td>
<td>23.79N 120.88E</td>
<td>3.53</td>
<td>6.57</td>
</tr>
<tr>
<td>4</td>
<td>1999 9 20 18:05:53</td>
<td>23.95N 120.84E</td>
<td>19.58</td>
<td>6.01</td>
</tr>
<tr>
<td>5</td>
<td>1999 9 20 18:11:53</td>
<td>23.85N 121.06E</td>
<td>5.21</td>
<td>6.70</td>
</tr>
<tr>
<td>6</td>
<td>1999 9 20 18:16:16</td>
<td>23.84N 121.04E</td>
<td>3.54</td>
<td>6.66</td>
</tr>
<tr>
<td>7</td>
<td>1999 9 20 21:46:37</td>
<td>23.60N 120.82E</td>
<td>5.32</td>
<td>6.59</td>
</tr>
<tr>
<td>8</td>
<td>1999 9 22 00:14:41</td>
<td>23.83N 121.05E</td>
<td>7.5</td>
<td>6.80</td>
</tr>
<tr>
<td>9</td>
<td>1999 9 22 00:49:43</td>
<td>23.76N 121.02E</td>
<td>8.95</td>
<td>6.29</td>
</tr>
</tbody>
</table>
Fig. 1 Locations of the strong motion stations in Taipei area. Numbers indicate the station codes of TSMIP network. The dotted contours indicate the depth in meters to the base rock surface in the Taipei basin, from inner to outer each line shows the depth from 400 to 100 m, respectively. The black triangles indicate the downhole array sites.

Fig. 2 Locations of the epicenters that used in this study.
Fig. 3 Accelerograms of the September 20, 1999 Chi-Chi earthquake recorded at station TAP003.

Fig. 4 Accelerograms of the September 22, 1999 earthquake recorded at station TAP003.
Fig. 5 EW component accelerograms recorded in the Taipei basin area. The stations from bottom to top are located from south to the north direction. Unit in gals.

Fig. 6 Fourier amplitude spectra of the EW component accelerograms recorded in the Taipei basin.
Fig. 7 Mean spectral ratio of 8 aftershocks of Chi-Chi earthquake between TAP003 and TAP043 station pair. Figures include the results of two horizontal components and their RMS value. The shaded band represent ±1 standard deviation areas.
Fig. 8 Contours of the mean spectral ratio at 2 sec in the Taipei basin from the TSMIP records. The triangles and dotted contours are the same as those in Figure 1. The black triangles are stations that used in this analysis.

Fig. 9 Taipei basin Sungshan formation Bottom.
Fig. 10 The spectral ratio contour of Chi-Chi earthquake at 0.5 sec in the Taipei basin from the TSMIP records. The triangles and dotted contours are the same as those in Figure 1. The black triangles are stations that used in this analysis.

Fig. 11 The spectral ratio contour of Chi-Chi earthquake at 2 sec in the Taipei basin from the TSMIP records. The triangles and dotted contours are the same as those in Figure 1. The black triangles are stations that used in this analysis.

Fig. 12 The mean spectral ratio contour of Chi-Chi earthquake aftershocks at 0.5 sec in the Taipei basin from the TSMIP records. The triangles and dotted contours are the same as those in Figure 1. The black triangles are stations that used in this analysis.

Fig. 13 The mean spectral ratio contour of Chi-Chi earthquake aftershocks at 2 sec in the Taipei basin from the TSMIP records. The triangles and dotted contours are the same as those in Figure 1. The black triangles are stations that used in this analysis.
G. List of Participants

AUSTRIA
Dr. Helmut WENZEL Tel: +43 1 8946021
Managing Director Fax: +43 1 8946170
VCE Holding GmbH Eml: wenzel@vce.at
Hadikgasse 60
1140 Vienna

CANADA
Mr. Andrei BLAHOIANU Tel: +1 (613) 947 0591
Canadian Nuclear Safety Commission (CNSC) Fax: +1 (613) 995 5086
P.O. Box 1046 - Station B Eml: blahoiu@cnsc-ccsn.gc.ca
280 Slater Street
Ottawa, Ontario, K1P 5S9

Mr. Medhat ELGOHARY Tel: +1 (905) 823 9060 X2135
Manager of Civil Engineering Fax: +1 (905) 855 9470
AECL Eml: elgoharm@aecl.ca
2251 Speakman Drive
MISSISSAUGA, Ont L5K 1B2

Prof. Ahmed GHOBARAH Tel: +1 (905) 525 9140 EXT 24913
Department of Civil Engineering Fax: +1 (905) 529 9688
1280 Main Street W. Eml: ghobara@mcmaster.ca
Hamilton, Ontario L8S 4L7

CZECH REPUBLIC
Dr. Dana PROCHAZKOVÁ Tel: +420 974 819 879
Ministry of Interior Fax: +420 974 819 962
Fire and Rescue Service of the CR Eml: dana.prochazkova@sujb.cz
General Directorate
Kloknerova 26, P.O.B. 69
148 01 PRAHA 4

FINLAND
Dr. Pentti E. VARPASUO Tel: +358 10 45 32223
Fortum Engineering Ltd. Fax: +358 10 45 92223
POB 10, 00048 Fortum, Eml: pentti.varpasuo@fortum.com
Rajatorpantie 8, Vantaa
FIN-01019
FRANCE

Dr. Catherine BERGE-THIERRY
Engineer - Seismologist
Institut de Protection et de Sécurité Nucléaire (IPSN/SERED/BERSSIN)
B.P. 6
92265 Fontenay-aux-Roses

Mr. Marc BOUCHON
IRSN/DES/SAMS
77-83 Avenue du Général de Gaulle
B.P. 17
92265 Fontenay-aux-Roses

Mr. Michael BRUN
INSA de Lyon
URGC Structures
Batiment 304
20 avenue Albert Einstein
69621 Villeurbanne

Dr. Claude DUVAL
EDF Pôle Industrie
EDF/SEPTEN
12-13 Avenue Dutriez
69628 VILLEROYBANNE Cedex

Mr. Pierre-Alain NAZE
Engineer
EDF-SEPTEN
12-14 Avenue Dutriéz
69628 Villeurbanne Cedex

Mr. Nebojsa ORBOVIC
IRSN/DES/SAMS
77-83 Avenue du Général de Gaulle
B.P. 17
92265 Fontenay-aux-Roses

Mr. Pierre SOLLOGOUB
Commissariat à l'Énergie Atomique
D.E.N./SACLAY
DM25/SEMT/EMSI (Bt 603)
91191 GIF_SUR_YVETTE Cedex

Mr. Philippe VOLANT
Institut de radioprotection et de sûreté nucléaire
77-83 Avenue du Général de Gaulle
B.P. 17
92262 Fontenay-aux-Roses Cedex

Tel: +33(0)1 46 54 86 71
Fax: +33 (0)1 46 54 81 30
Eml: catherine.berge@irsn.fr

Tel: +33 (0)1 58 35 77 04
Fax: +33 (0)1 58 35 10 14
Eml: marc.bouchon@irsn.fr

Tel: +33 (0)4 72 43 89 72
Fax: +33 (0)4 72 43 85 23
Eml: michael.brun@insa-lyon.fr

Tel: +33 (0)4 72 82 74 40
Fax: +33 (0)4 72 82 77 13
Eml: claude.duval@edf.fr

Tel: +33 (0)4 72 82 73 50
Fax: +33 (0)4 72 82 77 07
Eml: pierre-alain.naze@edf.fr

Tel: +33(0)1 58 35 73 28
Fax: +33(0)1 58 35 10 14
Eml: nebojsa.orbovic@irsn.fr

Tel: +33 (0) 1 69 08 27 16
Fax: +33 (0) 1 69 08 83 31
Eml: pierre.sollogoub@cea.fr

Tel: +33 (0)1 58 35 77 24
Fax: +33 (0)1 58 35 81 30
Eml: philippe.volant@irsn.fr
GERMANY
Mr. Josef JONCZYK
Gesellschaft fuer Anlagen- und Reaktorsicherheit
Schwertnergasse 1
50667 Koeln
Tel: +49 221 2068 749
Fax: +49 221 2068 9905
Eml: jon@grs.de

Dr. Gunter LEYDECKER
Head of Branch engineering Seismology
Federal Institute for Geosciences and
Natural Resources Stillweg 2
D-30655 HANNOVER
Tel: +49 (0511) 643 2867
Fax: +49 (0511) 643 2868
Eml: guenter.leydecker@bgr.de

ITALY
Dr. Lamberto D'ANDREA
SOGIN S.p.A.
Via Torino 6
00184 Rome
Tel: +39 (0) 6 83 04 03 50
Fax: +39 (0) 6 83 04 04 74
Eml: dandrea@sogin.it

Mr. Luca MARTINELLI
Politecnico di Milano
Tel: +39 (02) 2399 4247
Fax:
Eml: martinel@stru.polimi.it

Dr. Fabrizio MOLLAIOLI
Assistant Professor
Dipart. Di Ingegneria Strutturale e Geotecnica
Prima Facoltà di Architettura "L. Quaroni"
Università di Roma "La Sapienza"
Via Gramsci 53 - 00197 ROMA
Tel: +39 (06) 49919186
Fax: +39 (06) 3221449
Eml: fabrizio.mollaioli@uniroma1.it

Prof. Giuliano Francesco PANZA
Università di Trieste
Dipartimento di Scienze della Terra
Via Weiss, 1
I-34127 TRIESTE
Tel: +39 (0)40 6762117
Fax: +39 (0)40 6762111
Eml: panza@dst.univ.trieste.it

Ing. Giuseppe PINO
Agenzia per la Protezione dell'Ambiente e per i
Servizi Tecnici (APAT)
Nuclear and Radiological Risk
Via Vitaliano Brancati 48
I-00144 ROMA
Tel: +39 06 5007 2307
Fax: +39 06 5007 2941
Eml: gpino@apat.it

Dr. Tito SANO
ANPA/DISP
Via Vitaliano Brancati 48
00144 ROMA
Tel: +39 06 50 07 2823
Fax: +39 06 50 07 2941
Eml: tsano@tiscalinet.it
JAPAN
Dr. Yoshimitsu FUKUSHIMA
Tel: +81 (0)3 3508 8809
Izumi Research Institute
Fax: +81 (0)3 3508 2196
Shimizu Corporation
Eml: yf@ori.shimz.co.jp
Fukoku-seimei Bldg
2-2-2 Uchisaiwai-cho
Chiyoda-ku, Tokyo 100-0011

Mr. Rikiro KIKUCHI
Tel: +81 3 4514 56 16
JNES
Fax: +81 3 4514 5609
Shuwa-Kamiyacho bldg 2F
Eml: r-kikuchi@jnes.go.jp
3-13, 4 chome Toranomon, Minato-ku
TOKYO 105-0001

Dr. Yoshio KITADA
Tel: +81 3 4511 1812
Senior Researcher and Senior Officer
Fax: +81 3 4512 2599
Safety Analysis and Evaluation Division
Eml: kitada-yoshio@jnes.go.jp
Japan Nuclear Energy Safety Organization (JNES)
Fujita Kanko Toranomon Bldg. 7F,
3-17-1 Toranomon

Mr. Takaaki KONNO
Tel: +81 3 3581 9841
Secretariat of Nuclear Safety Commission
Fax: +81 3 3581 9836
Cabinet Office
Eml: tkonno@op.cao.go.jp
Technical Counsellor
3-1-1 Kasumigaseki, Chiyoda-ku
Tokyo 100-8970

Mr. Kazuyoshi KUDO
Tel: +81 3 5841 8251
Associate Professor
Fax: +81 3 5841 5809
Earthquake Research Institute
Eml: kudo@eri.u-tokyo.ac.jp
University of Tokyo
1-1-1, Yaa
Bunkyo-ku, Tokyo

Mr. Shizuo NODA
Tel: +81 3 4216 4992
Tokyo Electric Power Inc.
Fax: +81 3 4216 4967
Eml: noda.s@tepco.co.jp
Earthquake Engineering
Nuclear Power Engineering Dept
1-3 Uchisaiwai-cho, 1-chome, Chiyoda-ku
Tokyo 110-0011

Mr. Keiichi OHTANI
Tel: +81 + 81 298 56 6234
Project Director
Fax: +81 + 81 298 52 8512
Eml: ohtani@bosai.go.jp
National Research Institute for
Earth Science & Disaster Prevention
3-1 Tennodai, Tsukuba
Ibaraki 305-0006
Prof. Heki SHIBATA
Visiting Research Fellow of
National Research Inst. for Earth Science
and Disaster Prevention, NIED
1-5-203 Sakurajosui 4
Setagaya - TOKYO 156-0045

Mr. Kenji TAKASHIMA
Nuclear and Industrial Safety Agency
Ministry of Economy, Trade
and Industry (METI) Tokyo

Tel: +81 29 863 75 65
Fax: +81 29 852 8512
Eml: iitsuka@bosai.go.jp

KOREA (REPUBLIC OF)
Dr. Chang-Hun HYUN
Research Project Manager
Korea Institute of Nuclear Safety
P.O. Box 114
Yusung, Taegon
KOREA, 305-600

Mr. Jong-Rim LEE
Korea Electric Power Research Institute
KEPCO
103-16 Munji-Dong
Yusong-Gu
305-380 Taegon

Mr. Yong IL LEE
Seismic Specialist
Korea Power Engineering Company (KOPEC)
360-9 Mabuk-ri - Guseong-eup
Yongin-si
Kyeonggi-do 449-713

Netherlands
Mr. Jan BROEZE
Ministry of Housing, Spatial planning
and Environment
8, Rijnstraat
P.O. Box 16191
2500 BD Den Haag

Tel: +31 70 339 4083
Fax: +31 70 339 1887
Eml: jan.broeze@minvrom.nl

New Zealand
Mr. Mark STIRLING
Seismic Hazards Scientist
Institute of Geological and
Nuclear Sciences
Lower Hutt

Tel: ++64 4 5704 794
Fax: ++64 4 570 1440
Eml: m.stirling@gns.cri.nz
NEA/CSNI/R(2003)18

SPAIN
Mr. Francisco BELTRAN
Ingeniería IDOM Internacional, S.A.
Jose Abascal 4
28003 Madrid
Tel: +34 (91) 4441 150
Fax: +34 (91) 4473 187
Eml: fbg@madrid.idom.es

Mr. Jose G. SANCHEZ-CABANERO
Division of Geosciences
Consejo de Seguridad Nuclear
Justo Dorado, 11
28040 Madrid
Tel: +34 91 346 0228
Fax: +34 91 346 0588
Eml: jsc@csn.es

TURKEY
Prof. Polat GULKAN
Dept. of Civil Engineering,
Middle East Technical University
TR-06531 Ankara
Turkey
Tel: (312) 210 2446
Fax: (312) 210 1193 or 210 1328
E-mail: pgulkan@ce.metu.edu.tr

Dr. Serhat ALTEN
Turkish Atomic Energy Authority
Head of Section for Security Analyses in the Dept.
of Nuclear Safety, Turkiye Atom Enerjisi Kurumu
Eskisehir Yolu, 9.km
Ankara 06535
Tel: +90 (312) 287 2071 ext: 18 19
Fax: +90 (312) 285 9055
Eml: salten@taek.gov.tr

Dr Guler KOKSAL
Director
Turkish Atomic Energy Authority
Cekmece Nuclear Research and Training Center
P.O. Box 1 Kucuk Cekmece
Istanbul
Tel: +90 212 548 22 23
Fax: +90 212 548 4050
Eml: koksalg@nukleer.gov.tr

Prof. Dr. Tuncay TAYMAZ
Istanbul Technical University
Head of Seismology Section
faculty of Mines
Maslak - 80626
Istanbul
Tel: +90 212 285 6245
Fax: +90 212 285 6201
Eml: taymaz@itu.edu.tr

UNITED KINGDOM
Mr. John DONALD
Health and Safety Executive
Nuclear Safety directorate
H.M. Nuclear Installations Inspectorate
St. Peter's House, Stanley Precinct,
Bootle, Merseyside L20 3 LZ
Tel: +44 151 951 3848
Fax: +44 151 951 4163
Eml: john.donald@hse.gsi.gov.uk
Mr. John MILLS
Babtie Group

UNITED STATES OF AMERICA
Prof. John ANDERSON
Director
Seismological Laboratory MS/174
University of Nevada
Reno, NEVADA 89557

Mr. Mehmet CELEBI
Research Civil Engineer
USGS (MS977)
345 Middlefield Road
Menlo Park
California 94025

Dr. Nikolaos SIMOS
Scientist
Brokhaven National Laboratory
Bldg. 475B
Upton, N.Y. 11973

Dr. John STAMATAKOS
Senior Research Scientist
Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78238

International Organisations

International Atomic Energy Agency, Vienna
Prof. Pierre LABBE
International Atomic Energy Agency
Division of Nuclear Installation Safety
Wagramer Strasse 5
Postfach 100
A-1400 Vienna

OECO Nuclear Energy Agency, Issy-les-Moulineaux
Mr. Eric MATHET
OECD-NEA
Nuclear Safety Division
Le Seine St-Germain
12 bd des Iles
F-92130 ISSY-LES-MOULINEAUX

Tel: +1 775 784 4965
Fax: +1 775 784 4165
Eml: jga@seismo.unr.edu

Tel: +1 (650) 329 5623
Fax: +1 (650) 329 5143
Eml: celebi@usgs.gov

Tel: +1 631 344 7229
Fax: +1 631 344 7650
Eml: simos@bnl.gov

Tel: +1 (210) 522 5247
Fax: +1 (210) 522 5155
Eml: jstam@swri.edu

Tel: +43 1 2600 22664
Fax: +43 1 26007
Eml: p.labbe@iaea.org

Tel: +33 1 4524 1057
Fax: +33 1 4524 1110
Eml: eric.mathet@oecd.org
Commission of the European Communities Joint Research Centre, Ispra
Mr. Vito RENDA
Deputy Head of Unit
European Commission, Joint Research Centre
Institute for the Protection and
Security of Citizen
European Laboratory for Structural