Contents

1. Introduction
2. Major Safety Design Characteristics
3. Summary
1. Introduction

- Technology Overview
- APR1400 Development
- Evolutionary Technology Development
- Design Goals
Evolutionary Advanced Light Water Reactor Technology

- Offering significant advances in safety and economics
- Design addresses the expectation of utilities for ALWR
- Design complies with up-to-date regulatory requirements of Korea and US and IAEA requirements
- Severe accident mitigation design features
- Eight units, four in Korea and another four in the UAE, currently under construction
Strategy

- Design adopting evolutionary improvement strategy based on proven standard/reference design
- Incorporate advanced design features to enhance safety and operational flexibility
- Optimize design for economic improvement
- Compliance with the Utility Design Requirements (domestic & world-wide)
 - Proven Technology
 - Constructability
 - Regulatory Stabilization
 - Maintainability

Clean Nuclear, Safety First!

NSSS Division
Evolutionary Technology Development

APR 1400
- 1,400 MWe
- Under Construction
- SKN # 3, 4, SUN # 1, 2, BNPP 1, 2, 3, 4
- System 80+
 (CE, 1300MWe)

OPR1000
- 1,000 MWe
- In Operation
 - YGN #5, 6 ('02/'02)
 - UCN #5, 6 ('04/'05)
 - SKN #1, 2, SWN #1
- Under Commissioning Test
 - SWN #2

Improved OPR1000
- 1,000 MWe
- In Operation
 - YGN #5, 6 ('02/'02)
 - UCN #5, 6 ('04/'05)
- Under Commissioning Test
 - SWN #2

NSSS Design
- Palo Verde #2 (CE, 1300MWe)

Core Design
- ANO #2 (CE, 1000MWe)

EPRI URD

ADF/PDF Latest Codes & Standards

OPR1000 : Optimized Power Reactor 1000

APR1400 : Advanced Power Reactor 1400
Design Goals

- **Safety**
 - Core Damage Frequency < 10E-5/RY
 - Containment Failure Frequency < 10E-6/RY
 - Seismic Design Basis : 0.3 g
 - Occupational radiation exposure < 1 man·Sv/RY

- **Performance**
 - Thermal Margin > 10 %
 - Plant Availability > 90 %
 - Unplanned Trip < 0.8/RY

- **Economy**
 - Plant Capacity (Gross) : 1,455 MW_e
 - Plant Lifetime : 60 years
 - Refueling Cycle : ≥ 18 months
 - Construction Period : 48 months (N-th Unit)
2. Major Safety Design Characteristics

- Improved Thermal Margin
- Advanced Fuel Technology
- Enhanced Reliability of Safety Systems
- Digital I&C System
- Severe Accident Mitigation
- Protection Against External Hazards
Improved Thermal Margin

Reactor Coolant System

- Thermal Power: 4,000 MW
- Designed with increased thermal margin

- Reactor Vessel
 - 4 train DVI
 - Low RTNDT
 - ERVC

- Pressurizer
 - Large volume
 - 4 POSRVs

- Steam Generator
 - Plugging Margin: 10%
 - Tube Material: I-690

- Reactor Coolant Pump
 - Rated Flow: 7.67 m³/s

- Integrated Head Assembly
Major Improvement

- Increased thermal margin of larger than 10%
- High burnup of 55,000 MWD/MTU
- Improved neutron economy
- Improved seismic resistance
- Improved the resistance against fretting wear
- Debris-Filter Bottom Nozzle
- Improved Fuel Productivity

/http://www.knfc.co.kr/
Enhanced Reliability of Safety Systems

- **Safety Injection System**
 - 4 independent trains, Direct Vessel Injection
 - Water source: In-containment Refueling Water Tank
 - Fluidic Device for effective use of coolant

- **Auxiliary Feedwater System**
 - Diversity in component design: turbine driven and motor driven pumps
 - Turbine drive pump can provide cooling water without the supply of AC power

- **Enhanced Physical Separation**
 - Four-quadrant arrangement of safety systems
MMIS and I&C System

- Digital technology & data communication network
- Proven, Open & standard architecture
- Defense against common mode failure
 - Diversity between DCS and PLC
 - Reactor trip: PPS, DPS, Manual PPS Actuation
 - Alarm & Indications: IPS, QIAS-N, Diverse Indication
- Operability & Maintenance
 - Auto test, Self-diagnosis
- Computerized Procedure System
- V&V for Human Factors Engineering Design
Advanced design features for the prevention and mitigation of severe accidents

- Safety Depressurization & Vent System
- Hydrogen Control System
- Large reactor cavity & corium chamber
- Cavity Flooding System
- In-Vessel Retention & Ex-Reactor Vessel Cooling System
- Emergency Containment Spray Backup System
- Equipment survivability assessment
Protection against External Hazard

- **Design consideration for external hazards**
 - Natural disasters: earthquake, floods and site specific conditions
 - Man-made hazards: aircraft crash, fire, etc.

- **Post-Fukushima safety enhancement**
 - Installation of an Automatic Seismic Trip System
 - Reinforcement of waterproof functions
 - Reinforcing design basis of the emergency diesel generator and AAC
 - Countermeasures to address loss of cooling in the spent fuel pool
 - Installation of an external injection flow path for emergency cooling
 - Securing mobile generator and batteries
3. Summary

- APR1400: Safe, Reliable Technology
- ALWR Technology Development in Korea
APR1400, Evolutionary ALWR
- Advanced design features for safety enhancement
- Design features for severe accident mitigation
- Enhanced economics via uprated power, longer design life, longer fuel cycle, performance improvement and enhanced constructability
- 4 units currently under construction in Korea and another four units in the UAE

Proven technology minimizes technical and licensing uncertainties
- Proven by operation of reference technology
- Proven by licensing approval
- Proven by R&D programs

Technology development is continuously underway for further safety improvement.
ALWR Technology Development with Safety Improvement

<table>
<thead>
<tr>
<th>Reactor Model</th>
<th>OPR1000</th>
<th>APR1400</th>
<th>APR+</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Commercial</td>
<td>1995</td>
<td>2015</td>
<td>~ 2025</td>
<td>~</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>1000 MWe</td>
<td>1400 MWe</td>
<td>1500 MWe</td>
<td>1000~1500 MWe</td>
</tr>
<tr>
<td>Design Life</td>
<td>40 yrs</td>
<td>60 yrs</td>
<td>60 yrs</td>
<td>80 yrs</td>
</tr>
<tr>
<td>CDF</td>
<td>$< 1 \times 10^{-4}$/RY</td>
<td>$< 1 \times 10^{-5}$/RY</td>
<td>$< 1 \times 10^{-6}$/RY</td>
<td>“Zero” Severe Accident</td>
</tr>
<tr>
<td>CFF</td>
<td>$< 1 \times 10^{-5}$/RY</td>
<td>$< 1 \times 10^{-6}$/RY</td>
<td>$< 1 \times 10^{-7}$/RY</td>
<td></td>
</tr>
<tr>
<td>Main Safety Systems</td>
<td>Active</td>
<td>Active</td>
<td>Active + Passive</td>
<td>Fully Passive</td>
</tr>
</tbody>
</table>
Thank you!