

Stefan Hirschberg :: Laboratory for Energy Systems Analysis :: Paul Scherrer Institut

Consequences of accidents in the energy sector

OECD NEA International Workshop, Paris, 20 January 2016

Energy Infrastructure Accidents - Technological

Factors increasing societal vulnerability towards accident and catastrophe hazards:

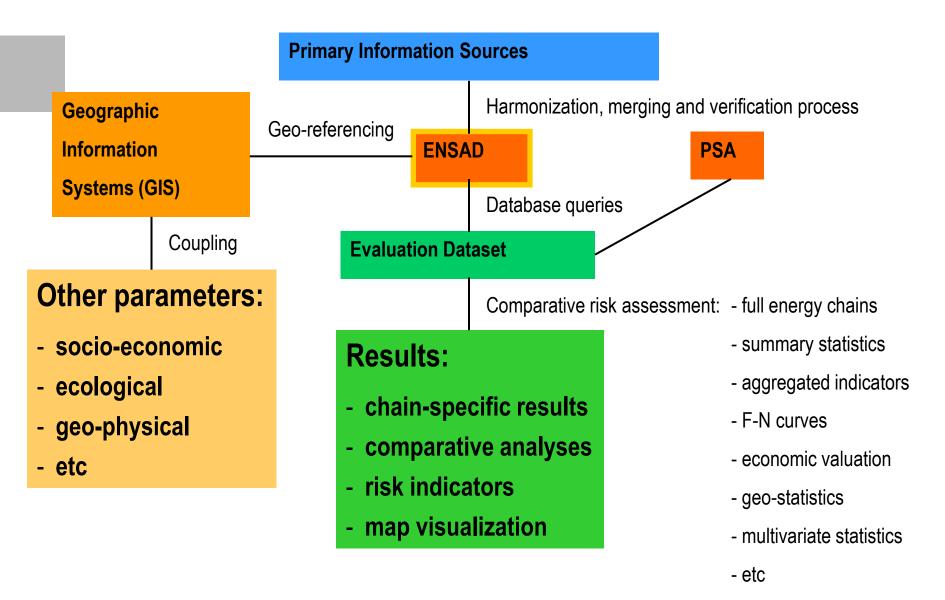
Urbanization



Industrialization

Development of coastal

and other risk-prone areas



Complex inter-related

infrastructures

Methodological Framework

Severe Accident Definitions

Consequence indicator	ENSAD	Sigma	EM-DAT	NatCat	WOAD
Fatalities	≥ 5	\geq 20 (dead or missing)	≥ 1 0	> 20	≥1
Injured persons ≥ 10		≥ 50	aff.	-	-
Evacuees	≥ 200	\geq 2000 (homeless)	aff.	-	-
Extensive ban on consumption of food	yes	-	-	-	-
Release of hydrocarbons	≥ 10000 t	-	-	-	≥ 1000 t
Enforced clean up of land and water area	\ge 25 km ²	-	-	-	-
Economic loss	\geq 5 million USD(2000)	\geq 82.2 million USD(2007)	-	> 50 million USD (2007)	-

Sigma: sigma insurance research (Swiss Re)

EM-DAT: The International Emergency Disasters Database (Centre for Research on the Epidemiology of Disasters, CRED)

NatCat: Natural Catastrophes Service (Munich Re)

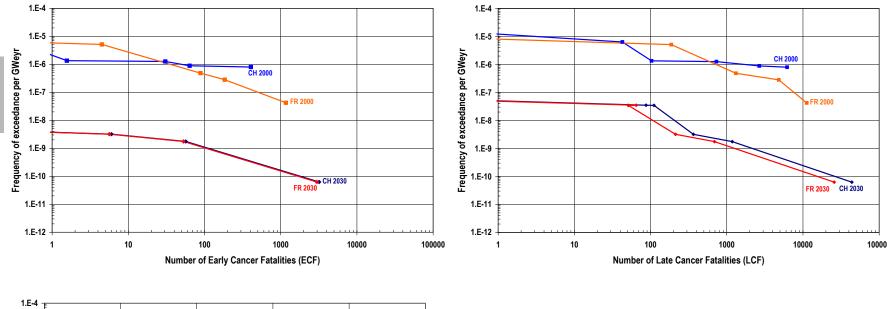
WOAD: Worldwide Offshore Accident Databank (Det Norske Veritas, DNV)

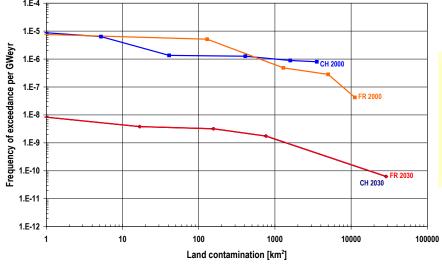
Severe Accidents and Natural Disasters

Severe Accidents with at least 5 fatalities (1970-2008)

	OECD		EU 27		non-OECD	
Energy chain	Accidents	Fatalities	Accidents	Fatalities	Accidents	Fatalities
Coal	88	2313	45	989	164 1440 (a)	8153 25'821 (a)
Oil	179	3383	64	1236	351	19'376
Natural Gas	109	1257	37	366	78	1554
LPG	60	1880	22	571	69	2796
Biogas	—	_	_	—	2	18 (c)
Hydro	1	14	1	116 (b)	12	30,007 (d)
Geothermal	_	_	_	—	1	21 (e)
Wind (f)	54	60	24	24	6	6
Nuclear	—	_	—	—	1	31 (g)

(a) First line: coal non-OECD without China; second line: coal China

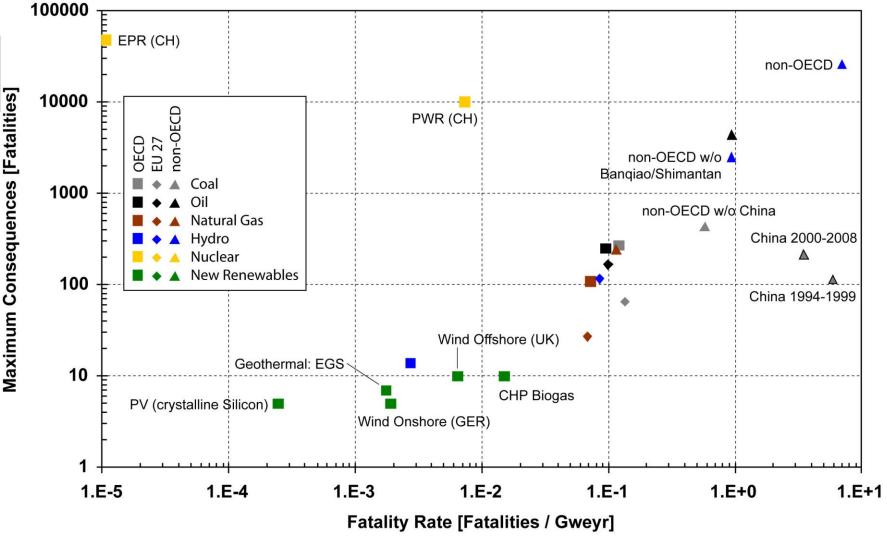

(b) Belci dam Romania (1991)


- (c) Waste gas (13 fat., China, 2004), wastewater (5 fat., Pakistan, 2008)
- (d) Banqiao and Shimantan dam failures alone caused 26'000 fatalities
- (e) Guatemala (1991)
- (f) Only small accidents

Burgherr et al., 2010

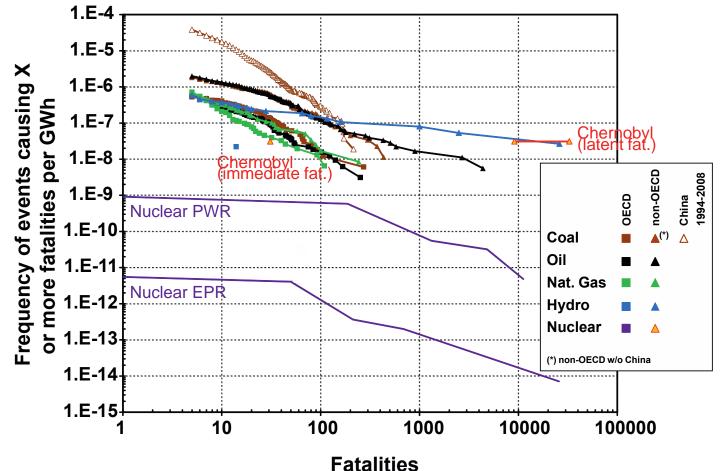
PAUL SCHERRER INSTITUT

Current NPP vs. EPR (2030)



- The results indicate that the expected risks for the EPR are significantly lower compared to currently operating plants.
- On the other hand, maximum consequences could substantially increase for EPR.

Hirschberg et al., 2008


Severe accident fatality rates and maximum

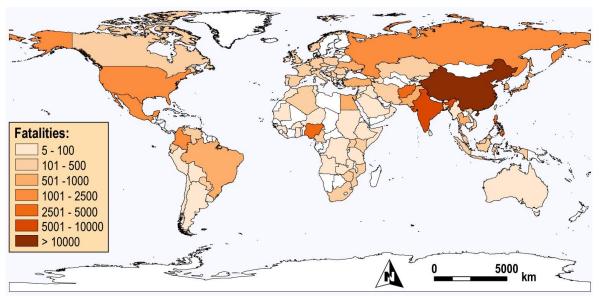
Burgherr et al., 2011

FEI Frequency-consequence curves for full energy chains in OECD and non-OECD countries (1970 – 2008)

PAUL SCHERRER INSTITUT

Hirschberg et al., 2015




Health Effects of Technologies for Power Generation: Normal Operation, Severe Accidents & Terrorist Threat

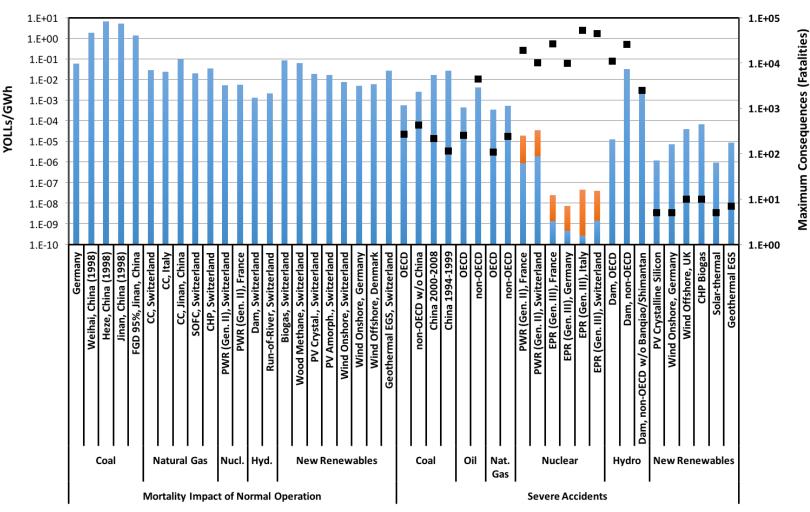
Addressed questions:

- How large are health effects associated with various electricity generation technologies and fuel cycles?
- How do health risks from normal operation compare with those resulting from accidents and hypothetical terrorist attacks?

Methodological Frameworks

Mortality Impact of Normal Operation Severe Accidents **Primary Information Sources** Emissions Dispersion Impacts Valuation & Chemical Harmonization, merging and verification process Emissions from Geographic Geo-referencing Reactions operating Information **ENSAD PSA** Impacts on human Systems (GIS) plant health. Database gueries E.g., change of crop yields, buildings, External costs Coupling **Evaluation Dataset** land, ecosystems, .. pollutant or Emissions from concentrations indicators Other parameters: Comparative risk assessment: - full energy chains rest of chain - socio-economic - summary statistics **Results:** - aggregated indicators ecological - F-N curves chain-specific results geo-physical - economic valuation Other flows: comparative analyses etc - geo-statistics Life Cycle Land use risk indicators - multivariate statistics Resource use Inventory map visualization - etc **Terrorist Threat** Terrorism risk = Frequency of planning Probability that it can be Consequences Х х a similar attack implemented Historic evidence of Detailed analysis of Physical analysis of attack on similar target potential attack consequences -Time -Immediate fatalities (Frequency) -Resources -Latent fatalities Probability of terrorist -Know-How Land contamination groups targeting this -Countermeasures -... specific country -... х

Probability that is target


is considered

Example: Comparison between Mortality Impact of Normal Operation and Severe Accidents

Latent Maximum Consequences

Conclusions on health effects of accidents

- **General:** State-of-the art approaches to comprehensive comparative assessment of the various contributions to health risks of energy systems established and applied showing strong dependence on technologies, location and operational environment.
- Normal operation risks: Renewables and nuclear mostly exhibit very good performance with hydro being the best option; coal ranks mostly worst while performance of natural gas is mixed. Fatality rates due to normal operation are much higher than the corresponding rates due to severe accidents.
- Severe accidents risks: Lowest fatality rates apply to hydro and nuclear in OECD countries though in both cases events with very low frequency can lead to quite extreme consequences.
- **Terrorist threat risks:** Frequency of a successful terrorist attack with very large consequences is of the same order of magnitude as can be expected for a disastrous accident in the respective energy chain.
- Limitations: Choice of reference technologies, geographical coverage, treatment of health impacts of climate change, treatment of morbidity, treatment of uncertainties, solar PV and deep geothermal accident risks, cyber risks and implementation of terrorist risk assessment.

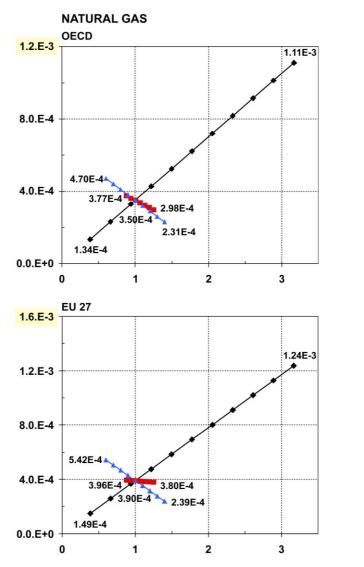
Damage costs and external costs of non-nuclear accidents Underlying monetary values and parameters

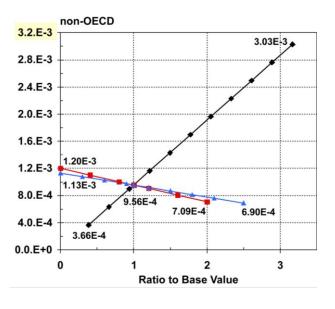
Monetary values	€ (2002)			
Mortality valuation: Value of Statistical Life (VSI	1'045'000			
Morbidity (typical injury)	70'000			
Evacuation (fixed costs per household)	old) 144			
Degree of internalisation	OECD	Non-OECD		
Occupational fatalities/damages	80 %	50 %		
Public fatalities/damages	50 %	20 %		
Average number of people per household	2.5	4.4		
Efficiency				
Coal	40 %			
Oil	31 %			
Natural gas	53 %			

Damage and External Costs of Severe Accidents with Fatalities

Value of Statistical Life = 1.045 million €; reference coal, oil & natural gas plants have efficiencies of 41%, 30% & 53%

Energy chain	Reference countries	Damage costs in €-Cents(2002)/kWh _e			External costs in €-Cents(2002)/kWh _e			
		Occupa- tional	Public	Total	Occupa- tional	Public	Total	
Coal	OECD	1.7E-3	1.2E-5	1.7E-3	3.4E-4	6.1E-6	3.5E-4	
	non-OECD w/o China	6.5E-3	4.3E-5	6.5E-3	3.2E-3	3.5E-5	3.3E-3	
	China (1994-1999)	1.2E-2	ng³	1.2E-2	6.1E-3	ng ³	6.1E-3	
Oil	OECD	9.9E-4	9.0E-4	1.9E-3	2.0E-4	4.5E-4	6.5E-4	
	non-OECD	1.8E-3	1.1E-2	1.3E-2	9.1E-4	8.7E-3	9.6E-3	
Natural Gas	OECD	2.2E-4	4.4E-4	6.6E-4	2.2E-4	2.2E-4	4.4E-4	
	non-OECD	3.3E-4	5.9E-4	9.2E-4	1.6E-4	4.7E-4	6.3E-4	
Hydro	OECD	ng³	4.1E-5	4.1E-5	ng ³	2.0E-5	2.0E-5	
	non-OECD	ng³	1.2E-1	1.2E-1	ng ³	9.8E-2	9.8E-2	
	non-OECD w/o Banqiao/Shimantan	ng³	1.6E-2	1.6E-2	ng ³	1.3E-2	1.3E-2	
Nuclear	OECD ^{1,4}	ng³	ng³	ng³	ng ³	ng ³	ng³	
	non-OECD ²	5.7E-4	ng ³	5.7E-4	2.9E-4	ng ³	2.9E-4	


¹ Based on PSA for Swiss NPP Muehleberg ² Based on


² Based on Chernobyl accident ³ ng = no

³ ng = negligible

⁴ Damage costs for Muehleberg including latent fatalities and non-health effects estimated at 1.2E-3 \$-Cents/kWh_e

Burgherr, Hirschberg& Spada, 2013

External costs in EUR cents per kWh of severe (\geq 5 fatalities) accidents in the natural gas chain (1970–2008) for OECD, EU 27, and non-OECD countries. In addition to central values, sensitivities are also shown for VSL (value of statistical life) and different degrees of internalization (Int) for occupational (Occ) and public (Pub) fatalities. Since maximum y-axis values are partially different, they are shaded in light yellow

- Cost of accidents are highly uncertain, incomplete and probably mostly underestimated.
- Dominance of natural catastrophes.
- Coal accidents seldom affect the public.
- Aggregated costs of small accidents can be very large.
- Degree of internalization of accident damages strongly varies.
- Nuclear accidents are difficult to evaluate in terms of costs particularly due to long-term contamination and public perception.
- Dealing with indirect effects of nuclear accidents has strong subjective components including establishment of scope and boundaries for the analysis.
- Which accidents should be modelled full spectrum, selected, severe but not worst, extreme?
- Including probabilistic perspective on nuclear accidents is a must.

