Emerging Lead-cooled Fast Reactor (LFR)
Professor Il Soon HWANG (Seoul National University, Korea)

INTERNATIONAL WORKSHOP ON ADVANCED REACTOR SYSTEMS AND FUTURE ENERGY MARKET NEEDS
OECD Conference Center, Paris, France
April 12, 2017
Enhanced Safety of Lead-cooled Fast Reactors derived from 80 reactor-year operating experiences of 15 reactors including seven (7) “Alfa Class Submarines”

Accident by
- Internal
- External

- Inert (no H2)
- Neg. Pressure
- FP Retention

B.P. = 1743 C
Nat. Circulation
\(\rho(\text{Pb}) \sim \rho(\text{UO}_2) \)

- Dry-out
- Melt-down

- Recriticality

- Hydrogen
- Explosion

- Off-site Rad.
- Release

Lead-Bismuth cooled reactor: Successful experiences of “Lira”

“Lira” (NATO name Alfa)
~ 41 knots (~76 km/hr)

GIF Roadmap 2013
Innovative and Ready Materials (FeCrSi, FeCrAl)

- Corrosion-resistant cladding on Code-Certified Materials
- S.G. Tubing → Double-wall → Leak-Before-Break (LBB)
- Coolant Chemistry Management (impurity, particles)
- Employing pure Lead (Pb) to suppress Polonium-210

Corrosion rate of test alloys in LBE at 600°C

- **11Cr (HT9)**
- **MIT**

Fe₃O₄ (Fe, Cr, Al)
(Cr, Al) oxide
Al₂O₃

11Cr-2.5Al-0.9Nb
(Alloy-1b, 1c, 1d)

14Cr-2.5Al-0.9Nb
(Alloy-1f)
Zero-radius Emergency Planning Zone (EPZ)

- Underground LFR ➔ Security and Seismic Resistance
- No Steam Generator Tube Rupture by Leak-Before-Break
- Main Steam Line Break ➔ Negative Reactor Pressure
- No Radiation Release ➔ All Coal Plant Sites are Suitable for LFR

Lucens UNPP (1969)

Solar & Wind Above Ground & On Harbor

Hybrid Modular Reactor Underground
Market Attractiveness of Underground LFR

- High Steam Temperature \rightarrow Coal Plant BOP can be Reused.
- Large Thermo-Mechanical Margin \rightarrow Load Follow for Renewables
- 30 year life for reactor and fuel \rightarrow No Refueling Cost
- Economies of Multiples & Low Financial Risk

Diagram: Serial Production and Economics (1)

- At least 15% for second-of-a-kind plant
- At least 5% for each n-th-of-a-kind plant

Mathematical representation for cost reduction:
- $\text{Cost} = f(\text{Plant number})$
- $\text{Demand} = \text{Supply SMR}$

Market Friendliness

Large Unit
Security, Safeguards, Sustainability & Wastes

- Underground Rugged Facility ➔ Security
- No On-site Refueling or Spent Nuclear Fuel Storage ➔ Safeguards
- Initial <20% U-235 ➔ Future Recycled TRU Fuel ➔ Sustainability
- Recycling: Future Multinational Cooperatives ➔ No HLW produced!

“CRADLE-TO-GRAVE”
- IFNEC (OECD/NEA-USA)
- INPRO (IAEA-RF)

Prof. Il-Soon Hwang (SNU) OECD Adv Rx Sys & Market April 2017