Disposal of high-level radioactive waste and spent nuclear fuel in engineered facilities, or repositories, located deep underground in suitable geological formations is being developed worldwide as the reference solution to protect humans and the environment both now and in the future. An important aspect of assessing the long-term safety of deep geological disposal is developing a comprehensive understanding of the geological environment in order to define the initial conditions for the disposal system as well as to provide a sound scientific basis for projecting its future evolution. The transport pathways and mechanisms by which contaminants could migrate in the surrounding host rock are key elements in any safety case. Relevant experiments in laboratories or underground test facilities can provide important information, but the challenge remains in being able to extrapolate the results to the spatial and temporal scales required for performance assessment, which are typically tens to hundreds of metres and from thousands to beyond a million years into the future. Profiles of natural tracers dissolved in pore water of argillaceous rock formations can be considered as large-scale and long-term natural experiments which enable the transport properties to be characterised.
The CLAYTRAC Project on Natural Tracer Profiles Across Argillaceous Formations was established by the NEA Clay Club to evaluate the relevance of natural tracer data in understanding past geological evolution and in confirming dominant transport processes. Data were analysed for nine sites to support scientific understanding and development of geological disposal. The outcomes of the project show that, for the sites and clay-rich formations that were studied, there is strong evidence that solute transport is controlled mainly by diffusion. The results can improve site understanding and performance assessment in the context of deep geological disposal and have the potential to be applied to other sites and contexts.