First preliminary results of the adjustment exercise using ASPIS Fe88 and SNEAK-7A/7B k_{eff} & β_{eff} benchmarks

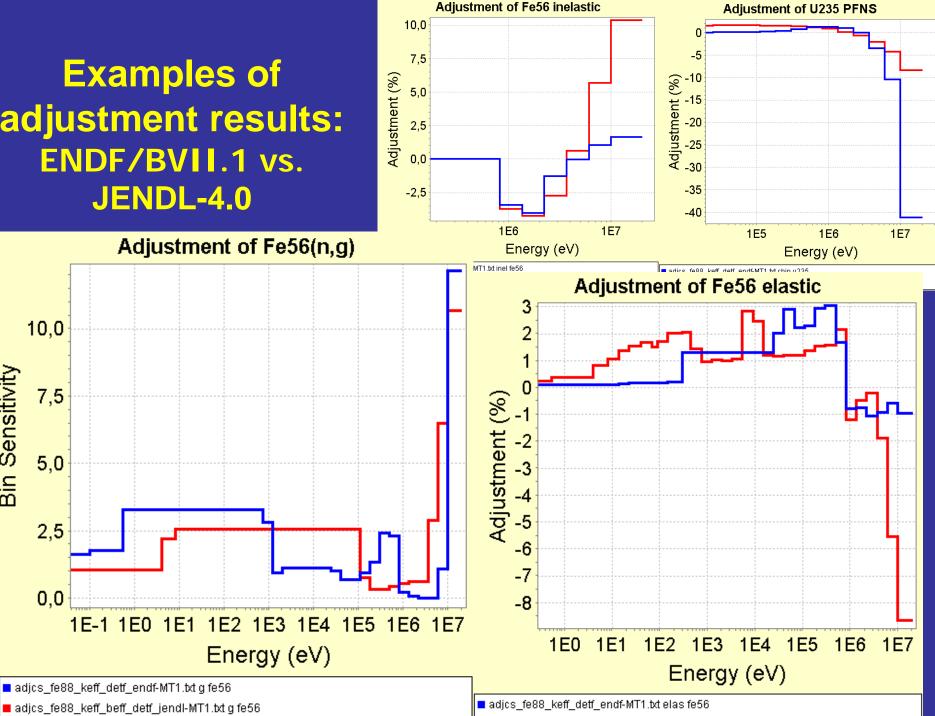
I. Kodeli, L. Plevnik (JSI, Ljubljana, Slovenia)

WPEC-SG39 Meeting, Dec. 1, 2016

PURPOSE

- ND validation and adjustment exercise involving different (other than k_{eff}) benchmarks providing a complementary view and wide scope validation:
 - Critical benchmarks
 - Kinetics measurements
 - Shielding benchmarks

I. Kodeli, Sensitivity and Uncertainty in the Effective Delayed Neutron Fraction (β_{eff}), *Nucl. Instr. & Methods in Phy. Res. A* **715** (2013) 70-78


ASPIS IRON-88 – computational vs. experimental uncertainties

Reaction		∆ C (%)				
		$\Sigma_{ m tr}$ (ENDF/B7.1)	σ _{SAD} (P _N) (EFF-2.4)	$\Sigma_{\sf d}$ (IRDFF)	Total	∆ E (%)
³² S(n,p)	A7	9.3	1.3	~3	9.9	6.5
	A12	19.4	2.2	3.5	19.8	6.5
	A14	24.0	2.5	3.5	24.3	8.6
¹¹⁵ ln(n,n')	A7	10.1	0.6	~2	10.3	4.5
	A11	15.1	0.9	~2	15.5	4.7
¹⁰³ Rh(n,n')	A7	5.7		~1	5.8	5.1
	A11	18.5		~1	18.5	5.1
²⁷ Al(n,a)	A7	12.4	3.4	~0.5	(12.9)	4.7
¹⁹⁷ Au(n,γ)	A7	10.0	0.1	0.2	10.0	4.2
	A11	8.8	0.1	0.2	8.8	4.2
	A14	8.0	0.1	0.2	8.0	4.2

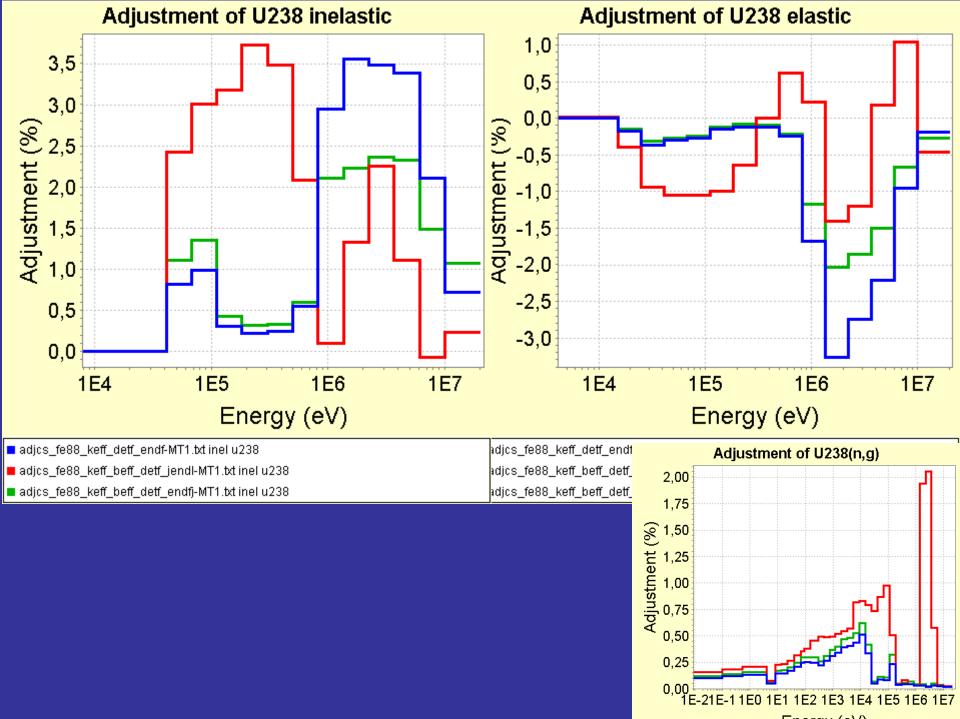
FILES PREPARED

- Benchmarks/responses considered:
 - FLATTOP-Pu, SNEAK-7A & -7B: k_{eff} and β_{eff} ,
 - **ASPIS-FE88**: reaction rates ¹⁹⁷Au(n, γ), ³²S(n,p), ¹⁰³Rh(n,n'), ¹¹⁵In(n,n'), ²⁷Al(n, α)
- Cross-section sensitivity profiles to:
 - Isotopes: U-234, -235, -238, Pu-239, -240, -241; O-16, Fe-56,
 - Reactions: σ_t , σ_{el} , σ_{inel} , σ_c , ν_p , ν_d , χ , P₁(elastic), (n, α) for O-16; detector responses to be included,
 - 33 ECCO energy group structure,
- C/E values and uncertainties: ∆E (systematic & statistical) and ∆C (M/C statistics),
- Infinite diluted cross-sections from ENDF/B-VII.1 in 33 groups.

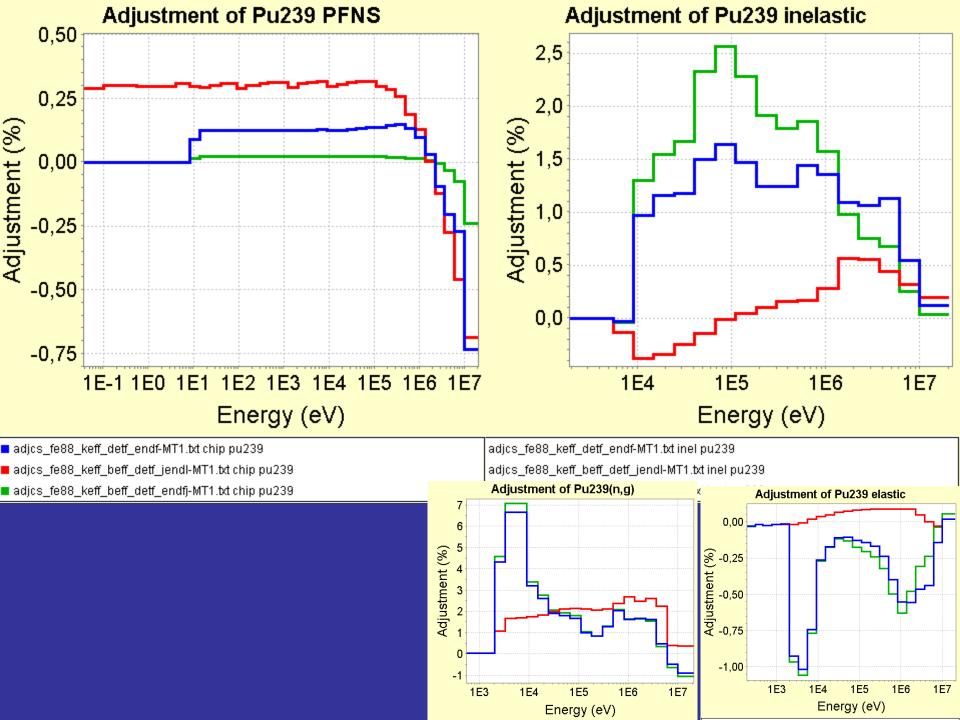
Examples of adjustment results: ENDF/BVII.1 vs. **JENDL-4.0**

adjcs fe88 keff beff detf jendl-MT1.txt q fe56

10,0


7,5

5,0


2,5

0,0

Bin Sensitivity

Conclusions

- Use of kinetics measurements and shielding benchmarks in addition to critical benchmarks is suggested for ND validation & adjustment since providing a complementary view and wider scope validation;
- Sensitivity profiles, C/E values and the corresponding uncertainties available from NEA in 33-groups for FLATTOP-Pu, SNEAK-7A & 7B and ASPIS-Fe88 benchmarks.
- For validation and demonstration purposes the adjustment exercise was performed using ENDF/B-VII.1 and JENDL-4.0 covariances.