

Design and R&D support of the XT-ADS Spallation Target Loop

Paul Schuurmans
on behalf of the XT-ADS spallation target design

Contents

- Conceptual properties
- Loop configuration
- Layout
- Spallation target
- Spallation loop components
- Conclusions

Spallation target function

- Target tasks & boundary conditions
 - ➤ Produce $\sim 10^{17}$ neutrons/s to feed subcritical core @ $k_{eff} \approx 0.95$
 - Accept 600 MeV x 2.5 mA proton beam (up to 4 mA for burn-up compensation)
 - > Evacuate deposited heat: 1-1.56 MW
 - Space limitation: three central assemblies in core: 96.2 mm fuel assembly pitch
 - ➤ Lifetime: > 1y
 - Flexibility in use (XT ADS purpose as experimental irradiation machine)

Target Design: Conceptual properties

- Windowless target
 - > Beam current density
- Vertical coaxial confluent LBE flow
 - > Space consideration
 - > Free surface formation
- Target inflow via 3-feeder design
- Off axis LBE servicing
 - > Leave top & bottom of core free
 - ⇒ Accessibility
 - Loop away from high radiation zone
 - ⇒ Lifetime

Loop configuration

LBE flow & cooling

- Forced convection (10-20 l/s)
- ightharpoonup T_{max(LBE surface)}=450°C; Δ T< 100 °C
- > Heat exchanger to main vessel coolant

Vacuum requirements

- ➤ Pressure above target <10⁻³-10⁻⁴ mbar
- Confinement of volatile spallation products

LBE conditioning

Corrosion inhibition, -Filtering

Service by remote handling

- Entire spallation unit removable from main vessel after core unloading
- Separate sub-unit with all active elements

Loop layout schematics: MYRRHA draft 2

Spallation target

Formation of target free surface

- Confluence of Vertical coaxial flow
- Level : balance inlet-outlet flow
- > Recirculation zone : in check
 - ♣ Level balance Δh_{max} =3 mm
- > Feedback necessary
 - ♣ LIDAR level detection
- Proton beam distribution
 - ♣ Avoid recirculation zone heating

Spallation target

- Flow detachment required for stability→ build into design
 - Void below target interface
 - inlet & outlet flow decoupled
 - allow sufficient space to accommodate beam-on beam-off volume change
 - ♣ LIDAR feedback can be slower
 - > LBE evaporation : OK
 - > Wall cooling: OK
- Increase target surface
 - Maximum use of 3 feeder lobes

Spallation target nozzle: next activities

- Improvement of flow stability
 - Feeder:
 Drag limitation vs
 accelerated flow
 - Position of detachment point vs confluence point
 - > Swirl
- Check different design options with CFD
- Flow experiments on selected designs

Spallation target: feeder head

- Design feeder head
- CFD simulations (V. Moreau CNRS, StarCD)
- Distribution plates
 - Destroy flow history
 - Homogeneous velocity distribution

Vacuum system: MYRRHA Draft 2

Vacuum duct

Cryopumps

- > 3 stage (H₂0, 77 K, 6K)
- Active inner surface
- > 10000 l/s pumping speed
- Hydraulically movable for regeneration

Turbo pump

> 400 l/s magnetic bearing

Sorption pumps

- Cooled zeolyte sorption (all condensables)
- Active Zr-V-Fe getter (H, D,T)
- > Batch-wise removal

Spallation target Vacuum system

- Target shell: UHV
 - leaktightness
 - Cleanliness
- Maintaining vacuum above target : OK
- Vacuum pump effect of flowing LBE
 - > diffusion of spallation products?
 - to be quantified
- Free surface 1 (top)
 - Focus on spallation product confinement
 - > Close off vacuum duct
 - Relax vacuum conditions (O 1 mbar)
 - ➤ Remove 6 K stage from cryopump →condensing station
- Regeneration during maintenance
 - Magnetic bearing Turbopump
 - Decay tank
 - Sorption pumps

Circuit pumps: MYRRHA Draft 2

MHD pump

- Fast regulator (little inertia)
- Modified "Megapie" type
 - lower slip ratio (LBE-field velocity match)
 - ♣ increased pump length (1.2 m)
- short active periods during transients

Main mechanical pump

- restore potential LBE energy ∆p=4.4 bar
- > driven by hydraulic drive
 - ♣ LBE from target loop
 - ♣ 10 kW canned electromotor, pump, turbine
- > LBE pump options
 - impeller : accelerating fluid
 - ♣ helix (screw-spindle) : volume displacement

Spallation target Components Circuit pumps

- Pump system
 - > Q = 10 20 I/s
 - total ∆p=4.4 bar
- Detached flow in nozzle
 - Fast regulator not required
- Active feeder line MHD pump
- Active return line pump
 - Mechanical
 - impeller : accelerating fluid
 - ♣ helix (screw-spindle): volume displacement
 - ♣ Hydraulic drive or long shaft
 - > MHD
 - **♣** Efficiency
 - ♣ Space (φ≈800 mm, L≈1000 mm)

Spallation target Components Conditioning unit

Oxygen control

- sensors
- Adding/removing oxygen (steady state)
 - continuous control via PbO pebble basket
 - most spallation products chemically reducing
 - exchange rate by temperature in conditioning vessel
- Gross Oxygen reduction
 - gas treatment in-vessel only off-line
 - separate conditioning tank (heating issue)

Filtering ?

- magnetic filtering before MHD pump
- pool-type filtering (surface accumulation)

Summary

- Conceptual design of XT-ADS spallation target loop
- Confirmation of MYRRHA draft 2 fundamental properties :
 - > no target window
 - compact vertical confluent flow for target formation
 - off-axis servicing
 - two pump uncoupled LBE pumping system
- Modifications to MYRRHA draft 2 :
 - boundary conditions
 - Spallation target nozzle : detached flow
 - > pumps system : active pump in feeder line
 - Vacuum system
- R&D Confirmation...