9th IEMPT, Nimes, France, 25-29 September 2006

Current Status on Development of P & T in Korea

Eung Ho Kim

Korea Atomic Energy Research Institute

Background

- Korean Nuclear Fuel Cycle Concept, KIEP-21
- Timeline of Korean P & T Developments
- Current Achievements of P & T R&D
- Future Plan for KIEP-21
- International Collaboration

Conclusion

Backgrounds

Energy Status in Korea

- Korea is importing about 97% of total energy
- Energy security becomes the most critical issue for the sustainable economic development

□ Nuclear power generation and cumulated spent fuel

- PWR 16 units + CANDU 4 units
- 17.7 Gwe
- About 40% share
- 7,962 te (as of Dec. 2005), 19,324 te (by 2020)

□ Korea has no fixed policy for spent fuel management

Decision of AEC on Spent Fuel Management, Dec 2004

- Storage of spent fuels at nuclear power plant sites until 2016
- -By expanding interim storage capacity
- -By studying continuous R & D on spent fuel management technologie "Non-proliferation Nuclear Fuel Cycle"
- R & D studies on promising fuel cycle technologies are being carried out: DUPIC, ACP and pyropartitioning for transmutation in either SFR or ADS
 *DUPIC (Direct Use of PWR spent fuel In CANDU reactors), ACP (Advanced spent fuel Conditioning Process)

KIEP-21 ... Korean Nuclear Fuel Cycle Concept (KAERI Proposal)

"K: Korean, I: Innovative, E: Environmentally friendly, P: Proliferation resistant, 21: 21st C"

Schematic Process Diagram of KIEP-21

Timeline of Korean P & T Development

- **1991** : Launched DUPIC feasibility study (Korea-Canada-US joint program)
- 1997 : Launched revised 10 Year Med- and Long-Term Nuclear R&D Program
 DUPIC/P&T/ACP
- **2000** : Manufactured DUPIC fuel pellets and test pins using PWR spent fuel
- **2001** : Started oxide electrolytic reduction and metal electrorefining studies
- □ 2005 : Successfully demonstrated DUPIC pellet fabrication with high burnup fuel (65,000 MWd/tU)
 - : Constructed ACP Demonstration Facility (ACPF, 20 kgHM/batch)
 - : Set-up 1 kgU/batch scale of uranium electrorefinning system
 - : Performed conceptual design of sub-critical reactor (HYPER) for transmutation
- **2006** : Agreed partnership in pyro and SFR under GNEP
 - : Carrying out conceptual design of KALIMER-600 for transmutation
 - : Planning next 10 year Med-and Long Term Nuclear R & D Program

DUPIC/Pyroprocess/SFR(KALIMER-600)

Major Achievements in 1997~2006

DUPIC Fuel Performance Evaluation

- **1998 Installation of DFDF**
- **1999 Joint Determination (JD)**
- 2000 Fabrication of DUPIC Pellets and Rods
 - High-Power Irradiation Test at HANARO
- 2002 High-Burnup Irradiation Test
- 2004 Instrumentation Irradiation Test at HANARO
- 2005 DUPIC Fuel Fabrication Using High-Burnup Spent PWR Fuel

OREOX Powder

DUPIC Pellets

Remote Welding of Rod

Irradiation Rig

HANARO Irradiation

Post-Irradiation Exam.

DUPIC Fuel Development Facility (DFDF)

Milestones of ACP Development

Lab-scale ACPF

20 kgHM/batch Demonstration Process

- **Remote Operation and Maintenance**
- Interface Systems between Process Steps
- Performance Evaluation of Process Systems

Working Area

Inside Process Hot Cell

Main System of ACPF

Pyro P&T

Electrorefining

- Mock-up for U Electrorefining Experiments
 - ► 1 kgU/batch scale
 - ▶ U electrorefiner & cathode processor

U-deposited Cathode

Electrorefiner

Cathode Processor

Example of Innovative Electrorefining Development

Existing Cathode

- Necessity of scrapper to recover uranium dendrite during electrorefinning
- Occurrence of operation discontinue due to sticking between uranium dendrite and scrapper
- Impediment of high-throughput operation

Graphite Cathode

- Keeping a relatively clean surface during electrorefinning without scrapping
- Spontaneously felling down uranium deposit into the collector

Experimental Results by Using Graphite Cathode

- Graphite Cathode for High-throughput Electrorefining
 - Self-scrapping of the deposited uranium dendrite
 - Improving current efficiency and continuity of an operation

Graphite Cathode

a)100mA/cm² b)70mA/cm² c)140mA/cm² d) 177mA/cm²

- The morphology of U deposit was not changed with current density
- The recovered deposit was metallic U, but little contamination(300ppm) of C was detected
- The effect of the minute C is not clear, but the carbon might be cleaned by using yittrium during casting(2UC+Y→2U+YC₂, YC₂ will be floated on the U melt)

Strategy of Waste Salt Treatment

Cumulative Release Fraction of Cs during Voloxidation

Removal of Sr from Waste LiCI Salt by Precipitation

Removal of Rare earth Elements from Waste LiCI-KCI Salt by Oxidation

Objective of this study

To remove rare earths as a precipitate by the reaction with oxygen gas

Equipment

-The oxygen bubbling through the salt containing rare earth in an alumina crucible -The loaded salt: 207 g (LiCl- 44.2wt.%)

Operating Conditions

-Contents of RE: 2.8 %-Y, 3.0%-Ce, 2.5%-Nd, 6.0%-Pr, 6.5%-La, 5.5%-Gd -Operation temperature: 723 – 1023 K -Oxygen flow rate: 1.5 *l*/min -Measurement of RE contents in the salt by ICP

- Experimental content
- -Identified the produced precipitates by XRD
- -Established precipitation mechanisms
- -Calculated Precipitation-Conversion yields with an variance of temperature and time
- -Evaluated oxydation-precitation kinetics

•Oxygen sparger : 7cm I.D.(1mm I.D. hole size ×10)

Precipitation Yields of Rare Earth Elements

Precipitation yields of RECl₃ (O, flow rate: 1.5 *l/min*, *Time: 7 hours*)

T(K) RECl ₃	723	823	923	1023
YCl ₃	56.87	71.76	98.08	99.91
LaCl ₃	33.26	63.44	86.42	94.39
CeCl ₃	99.87	> 99.98	> 99.98	> 99.98
PrCl ₃	55.08	87.84	99.94	> 99.98
NdCl ₃		99.77		99.91
GdCl ₃		95.68		> 99.89

Precipitation yields of each element
-All of rare earths: precipitation yield of higher than 99 %
-Ce: over 99 %, irrespective of temperature
-La recovered to less than 95 %, compared to others

phase separation

precipitates

Schematic Diagram for Waste Salt Recycle

SFR-KALIMER-Development Plan

Objective

-Pool-type Sodium-cooled Fast Reactor

-PHTS (Primary Heat Transport System)

-IHTS(Intermidiate Heat Transport System)

-Fuel Type: U-TRU-Zr metal fuel

-Reactor design life time: 60 years

-SGS(Steam Generation System)

KALIMER-600 Steady State Heat Balance

힌국얾지릐연구소

600MWe TRU Transmutation Core Design

- Metal fuels with recycle of transuranics by pyroprocessing
- Enhanced proliferation resistance by removing blanket assemblies
- □ Core design studies for TRU transmutation
- □ Transmutation of TRUs produced by 2 LWRs of the same power and cycle length

Thermal Output (MWth)	1,523
Active Core Height (cm)	90
Equivalent Active Core Diameter (cm)	483.8
Average Breeding Ratio	0.6562
Cycle length (EFPM)	11
Fuel Batches	6
Fuel Composition	U-TRU-10Zr
TRU in Heavy Metal (%)	34.2
Burnup Reactivity Swing (pcm)	3014
Average Core Power Density (W/cc)	223.8
Power Peaking Factor (BOEC/EOEC)	1.509/1.479
Average Discharge Burnup (MWD/kg)	121.7
Peak Fuel Discharge Burnup (MWD/kg)	181.7
Peak Fast Neutron Fluence (10 ²³ n/cm ²)	3.83
Effective Delayed Neutron Fraction	0.00312
Sodium Void Worth (pcm)	821

Future Plan for KIEP-21

Phase IV Phase V '11 '12 '16 **'07 Eng-scale Optimization of Eng-scale Pyroprocess scale-up** processes & equipment mock-up demo. demonstration Process Optimization Process Modular • Electrolytic reduction • Integrated cathode • High-throughput system electrorefiner • High-throughput High • LCC electrowinner electrorefining system throughput Continuous Salt/Cd • Head-end process • Salt waste recycle distillation system **Eng-scale Simple Design** • Head-end process **PYRO-Eng-scale** pyroprocess System Engineering • Cs/Sr recovery PROCESS mockup facility Safeguards technology Easv (ESPF) • Remote technology System Engineering operational • ESPF safeguards • Waste handling • Evaluation of Remotization Minimum proliferation-• Process waste handling waste resistance & storage • ESPF design & Safeguardable construction Conceptual design of core and reactor system Advanced **SFR** Advanced R & D: improvement of economics, safety and metal fuel (KALIMER) **Conceptual**

Basic Key Technology Development: computational tools and sodium technology

SFR

Design

International Collaboration

- Recently, Korea has been focusing on the development of a pyroprocess, by targeting a reduction of the volume, heat load and toxicity of the spent fuel and its application to the GEN-IV reactor systems through recycling and transmutation to close the fuel cycle
- The KIEP-21 based on pyroprocessing technology is expected to meet the challenges and will be harmonized with the GEN-IV reactor system development schedule
- This program will be continue through the long-term nuclear R & D plan of Korea by 2016
- International collaboration is essential and expected for the timely implementation of the pyroprocessing and transmutation technologies.

