

Progress in Am transmutation targets from EFTTRA

D. Haas, A. Fernandez (JRC-ITU)
D. Warin, J.-M. Bonnerot (CEA)
C. Garzenne (EDF)
W. Maschek (FZK)
F. Scaffidi-Argentina (JRC-IE)

F. Klaassen, R. Schram (NRG)

The EFTTRA Collaboration: 15 years from 1992 to 2006

- Goal: transmutation of long-lived FP and MA
- Tc-99 and I- 129 irradiations performed and reported
- Inert matrices selection and irradiations in Phenix and HFR
- Pre-selection of MgAl₂O₃ for Am targets transmutation
- Irradiations (Am) in HFR: T4 and T4bis (2 burn-up levels)
- Results not conclusive > Selection of Zirconia (once-through scenario) or MgO, Mo (multiple recycling scenario)
- Preparation of HELIOS irradiation in HFR
- Further developments

EFTTRA: a 15-years successful collaboration

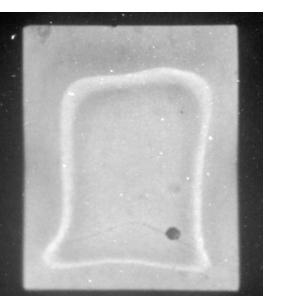
- Agreement on experimental programmes, seminars, publications
- Financing by the partners (case by case)
- Financial (partial) support through EC Framework Programmes:
- FP5 (EFTTRA T4)
- FP6 (EUROTRANS IP: HELIOS, BODEX)

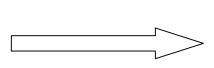
EFTTRA T4 and T4bis Objective

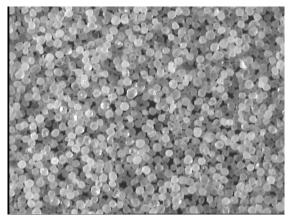
- MgAl₂O₃ spinel as IMF for **once-through transmutation**
- Development of Am spinel target fabrication
- First irradiation testing of Am spinel
- In-pile behaviour, transmutation demonstration
- Burn-up effect (two irradiation times)

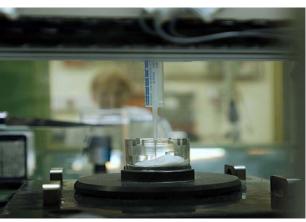
EFTTRA T4 and T4bis main conclusions

- Am spinel fabrication demonstrated, but improvements implemented (matrix powder infiltration instead of green pellet infiltration)
- Irradiation successful (up to 650 days): no failure, good pellet structure
- Very high gas production (mainly He), low release (low T°)
- Very large pellet swelling (gas bubbles)
- Am-Spinel chemical instability: formation of AmAlO₃




EFTTRA-T4(bis) pellets: green pellet infiltration

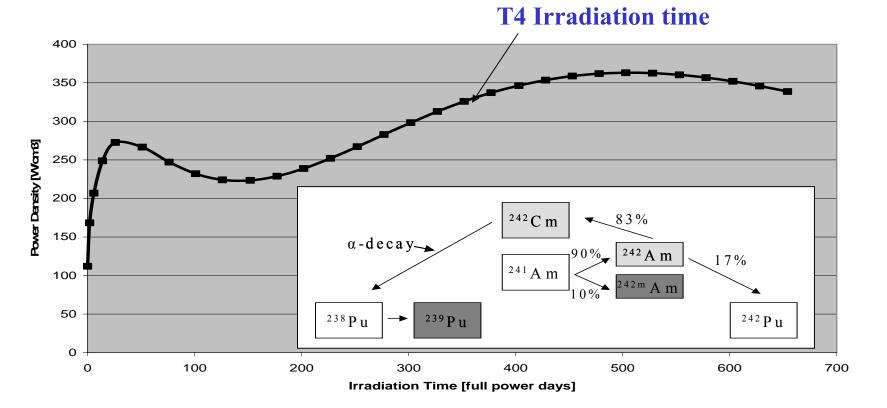

HELIOS: sol-gel beads infiltration


Inhomogeneous Am distribution in spinel

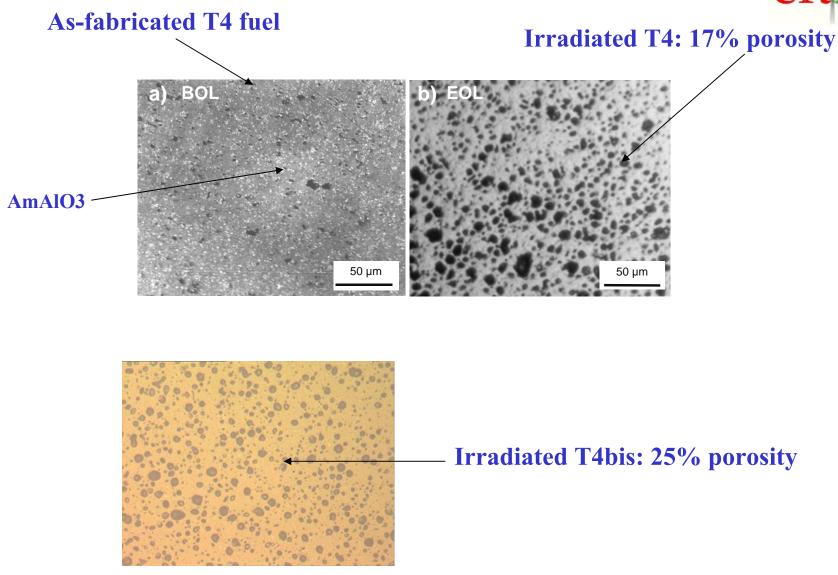
Solid-solution formation in the sintered pellet

MA-Laboratory

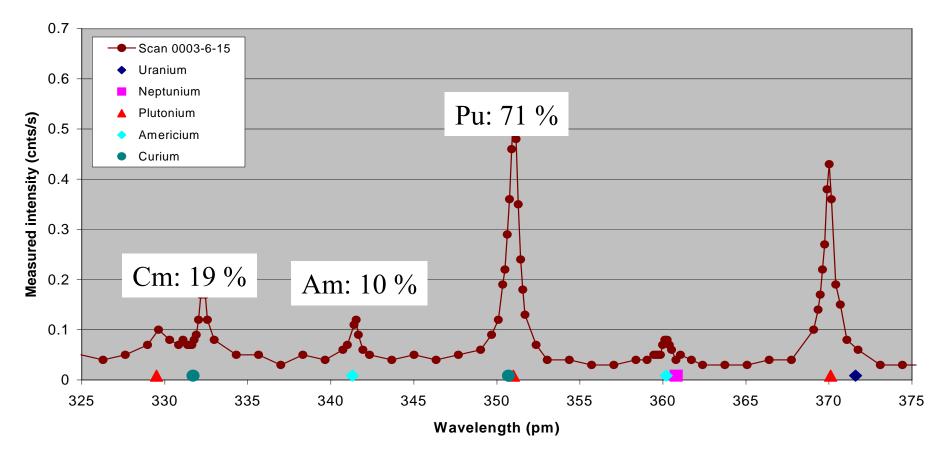
ettra


EFTTRA T4 and T4bis main conclusions

- Am spinel fabrication demonstrated, but improvements implemented (matrix powder infiltration instead of green pellet infiltration)
- Irradiation successful (up to 650 days): no failure, good pellet structure
- Very high gas production (mainly He), low release (low T°)
- Very large pellet swelling (gas bubbles)
- Swelling also due to n-damage
- Am-Spinel chemical instability: formation of AmAlO3

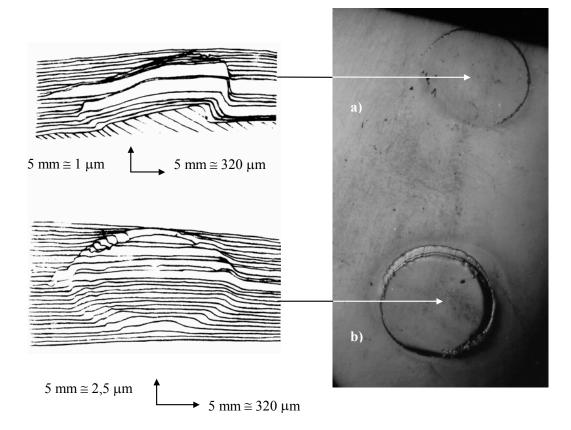

Power density in the EFTTRA T4bis irradiation

The two maxima are due to formation and fission of Am-242m and Pu-239, respectively. The EFTTRA T4 irradiation showed a similar power profile, but it did not reach the second maximum due to the shorter irradiation time.


NEA P&T Exchange Meeting, Nimes, September 2006

T4bis Electron Probe Micro-Analysis

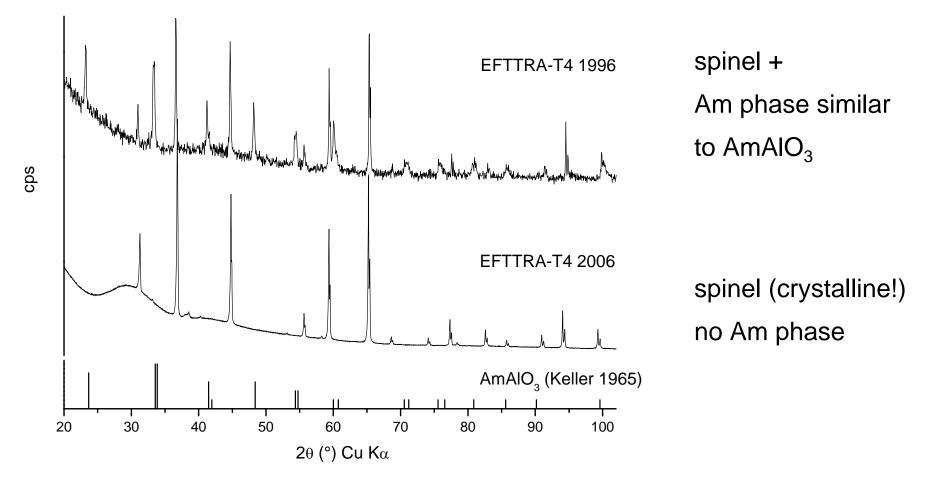
Composition of the 50% actinides remaining in the fuel


EFTTRA T4bis Profilometry and X-ray image

NEA P&T Exchange Meeting, Nimes, September 2006

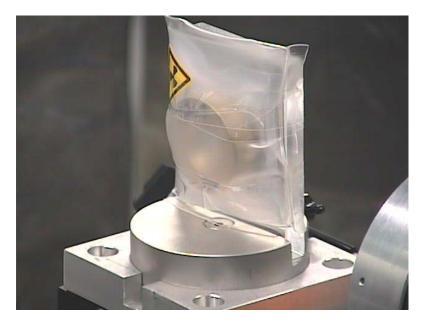
ef**t**tra

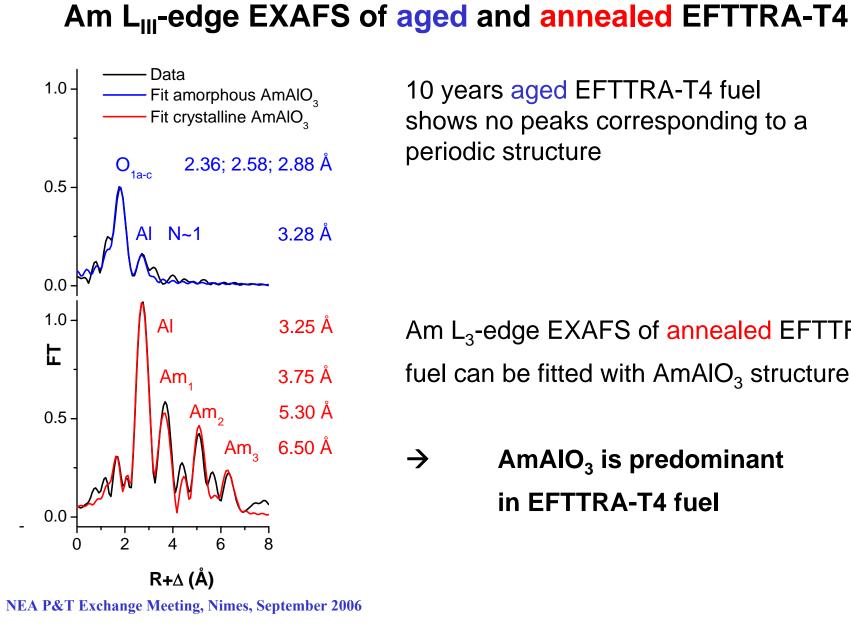
Profilometry and optical micrograph of an MgAl2O4 single crystal <110> orientated irradiated with iodine ions of 72 MeV energy. The respective fluences are 1015 for a) and 1017 ions/cm2 for b). The optical micrograph shows clearly the irradiated area poping out from the original crystal surface.



EFTTRA T4 and T4bis main conclusions

- Am spinel fabrication demonstrated, but improvements implemented (matrix powder infiltration instead of green pellet infiltration)
- Irradiation successful (up to 600 days): no failure, good pellet structure
- Very high gas production (mainly He), low release (low T°)
- Very large pellet swelling (gas bubbles)
- Swelling also due to n-damage
- Am-Spinel chemical instability: formation of AmAlO₃


X-ray diffraction of EFTTRA-T4 fuel


EXAFS measurement

- annealing at 1600°C in Ar/H₂
 (as for production in 1996)
- about 60 mg Am-spinel powder in a steel shielded Plexiglass cuvette
- measurement at INE Beamline at the Ångströmquelle Karlsruhe, ANKA

- → EXAFS provides information of local atomic structure:
- interatomic distance
- coordination number
- type of atom in coordination shells
- disorder

10 years aged EFTTRA-T4 fuel shows no peaks corresponding to a periodic structure

- Am L₃-edge EXAFS of annealed EFTTRA-T4 fuel can be fitted with AmAIO₃ structure
 - AmAIO₃ is predominant in EFTTRA-T4 fuel

General conclusion related to the use of spinel as IMF

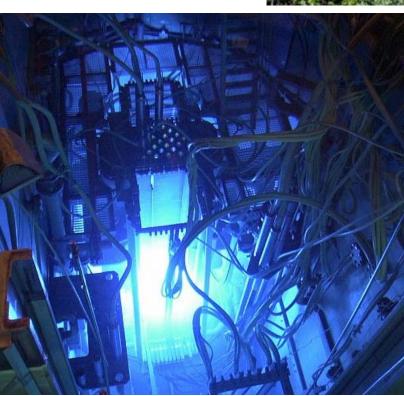
- Conclusion based on T4+T4bis + other experiments in HFR and Phenix
- At low temperature, He retention leading to swelling
- At high temperature He release, but chemical instability
- Study started of a more stable IMF (once-through): Y-stabilised Zirconia
- Additional investigation of MgO and Mo for recycle strategies
- Need of irradiation experiments: HELIOS in HFR

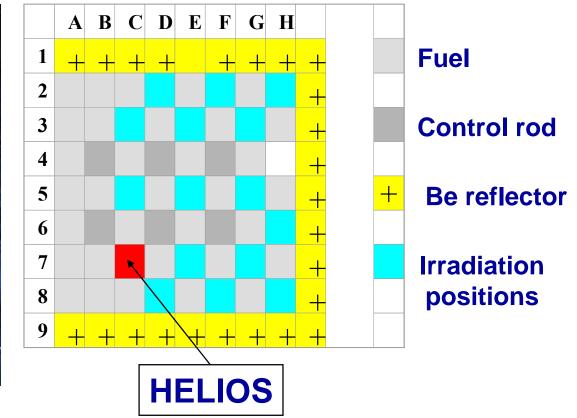
EUROTRANS IP (FP6) Irradiation Tests

FUTURIX: irradiation test in Phénix of TRU-fuels under EFIT relevant conditions

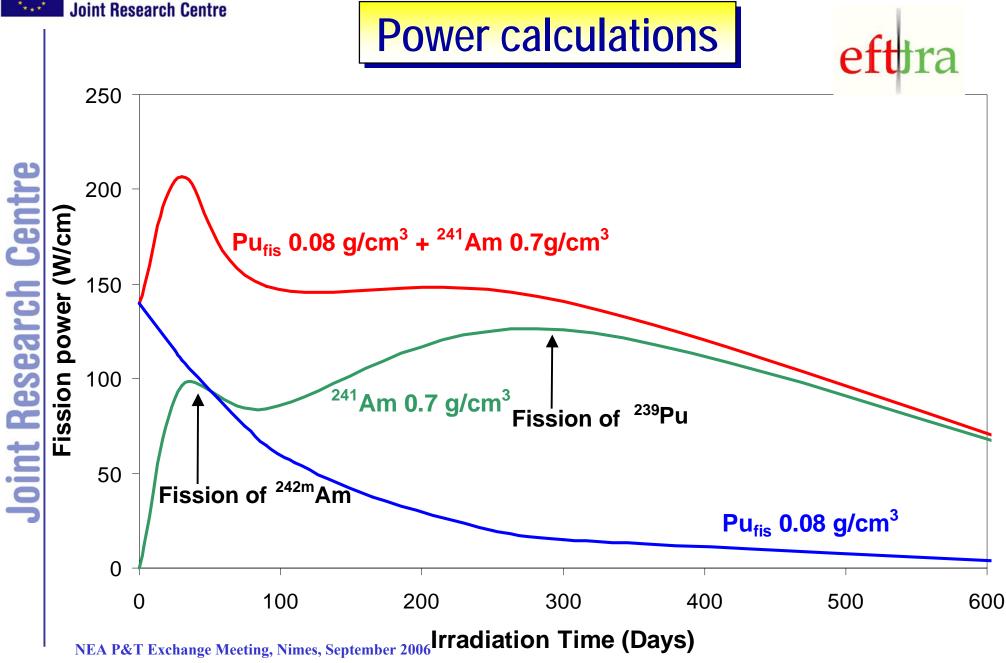
BODEX: irradiation test in HFR to study the helium buildup and release from inert matrixes for IMF's

HELIOS: irradiation test in HFR to study the in-pile behaviour vs temperature of U-free Am targets




HFR-Petten

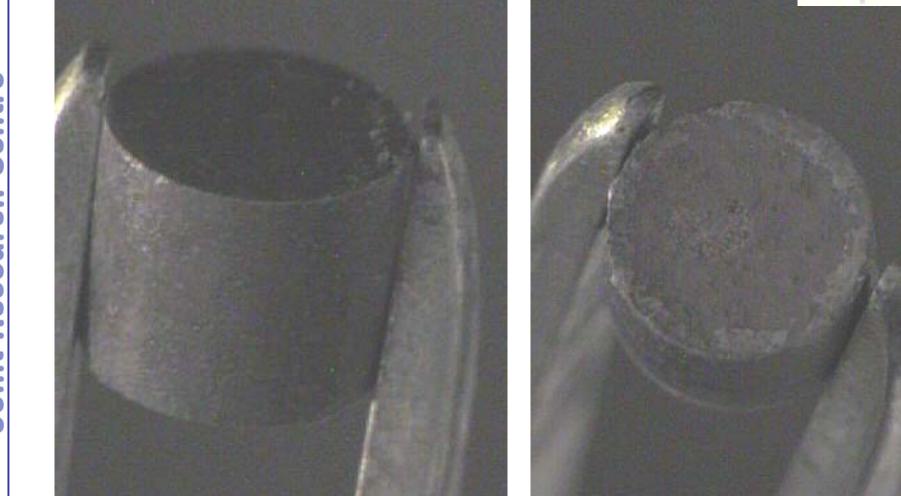
Joint Research Centre


HELIOS test matrix

	Pin Nr	Composition	Micros
ntre			
Cel	1	Am ₂ Zr ₂ O ₇ +MgO	10-
earch	2	(Am,Zr,Y)O ₂	S sol
Rese	3	(Am,Pu,Zr,Y)O ₂	S sol
Joint	4	(Zr,Am,Y)O ₂ +Mo	60-1 max 3

Pin Nr	Composition	Microstructure	As-fabricated density [g/cm ³]		Fuel Manufacturer	Fuel Type	Remarks
			²⁴¹ Am	Pu _{tot}			
1	Am ₂ Zr ₂ O ₇ +MgO	10-50 μm	0.7	0	CEA	Cer Cer	
2	(Am,Zr,Y)O ₂	Solid solution	0.7	0	JRC-ITU		Instrumented with Central TC
3	(Am,Pu,Zr,Y)O ₂	Solid solution	0.7	0.39	JRC-ITU		Instrumented with Central TC
4	(Zr,Am,Y)O ₂ +Mo	60-120 μm max 30 vol%	0.7	0	JRC-ITU	Cer Met	
5	(Pu,Am)O ₂ +Mo	40-150 μm max 30 vol%	0.3	1.2	JRC-ITU	Cer Met	

Estimated temperatures


Pin	Composition	Pu-content [g/cm ³]	Am-content [g/cm³]	Max Power [W/cm ³]	Linear Power [W/cm]	T _{central} [ºC]	Calculated with power [W/cm ³]
1	$Am_2Zr_2O_7 + MgO$	0	0.7	240	56	741	300
2	(Am,Zr,Y)O ₂	0	0.7	170	40	811	230
3	(Pu,Am,Zr,Y)O ₂	0.39	0.7	740	170	1439	787
4	(Am,Zr,Y)O ₂ + Mo	0	0.7	250	58	687	300
5	(Pu,Am)O ₂ + Mo	1.2	0.3	1600	370	1477	2020

> Onset of He release: \approx about 550 °C

NEA P&T Exchange Meeting, Nimes, September 2006

(Am,Zr,Y)O₂ pre-fabrication tests eft

Sintered density > 90%TD

NEA P&T Exchange Meeting, Nimes, September 2006

HELIOS Status

- HELIOS irradiation shall start in 2007 in the HFR and last for about 1 year (i.e. 10 HFR cycles)
- Fuel production and hardware procurement & manufacturing underway
- Predicted temperatures in the fuels are acceptable (slightly lower than aimed)
- Destructive PIE's results shall be available in 2009

Future EFTTRA plans

- Complete HELIOS experiment within EUROTRANS IP
- Integrate the results within other experiments: BODEX
- Demonstrate the high Am transmutation capability of Zirconia IMF with a 5-years irradiation in HFR: HELIOSbis (not decided – funding dependent
- Looking at the feasibility of Cm transmutation in once-through mode