

Overview of ITU work on inert matrix fuels

<u>A.Fernandez</u>, D. Haas, J.P. Hiernaut, R. Konings C. Nästren, H. Ottmar , J. Somers, D. Staicu

Institute for Transuranium Elements (ITU) Karlsruhe, Germany <u>http://www.jrc.org/</u>

http://itu.jrc.cec.eu.int/

<u>Outline</u>

- 1. Fuels for transmutation: state of the art
- 2. Fabrication process development at ITU
- 3. Fuel characterization and material properties
- 4. Fuels and targets irradiation programmes

2

Candidate fuels for transmutation

CERCER and CERMET : Effect of particle size

Microdispersed

Macrodispersed

<u>Outline</u>

- 1. Fuels for transmutation: state of the art
- 2. Fabrication process development at ITU
- 3. Fuel characterization and material properties
- 4. Fuels and targets irradiation programmes

Fabrication process development

Criteria :

- (a) Shielded installations \rightarrow remote handling
- (b) Automation \rightarrow use of robots
- (c) dust free
- (c) process simplification : minimises the (active) fabrication steps

hybrid process consisting of a combination of <u>sol gel</u> and <u>infiltration</u> techniques

Minor Actinide Laboratory

HOMOGENEOUS fuels & targets

Summary (I)

- Sucessful development of advanced fabrication processes, by a combination of
 - sol-gel
 - infiltration
 - and conventional blending techniques
 - For composites, the process has high flexibilities
 - to select the size and
 - volume of the ceramic phase, and
 - the actinide content in the ceramic phase.
- Excellent homogeneous dispersion of the ceramic phase (fuel-bearing phase) in the metal

<u>Outline</u>

- 1. Fuels for transmutation: state of the art
- 2. Fabrication process development at ITU
- 3. Fuel characterization and material properties
- 4. Fuels and targets irradiation programmes

Calorimetry: Am content determination

	%weight Americium (gravimetry)			%Am (calorimetry)	
Infiltration	1 ^{s†}	2 nd	3 rd		
FUTURIX 5	12.56	17.33		17.57	
PuO ₂					
FUTURIX 6	15.44	27.94	30.69	30.07	
$Pu_{0.30}Zr_{0.70}O_2$					

Excellent agreement between gravimetry and calorimetry!!

11

Laser flash for thermal properties

Pyrometer

- high measurement precision for diffusivity $(\pm 1\%)$
- simultaneous measurement of α and C_p (±5%)
- highly localised measurements possible
- samples with irregular shapes can be used

Laser flash thermal conductivity measurements

Vaporisation behaviour: Knudsen cell

Vaporisation behaviour

$\underline{CERMET} (Pu_{0.225}Am_{0.240}Zr_{0.534})O_{2-x}-Molybdenum$

Outline

- 1. Fuels for transmutation: state of the art
- 2. Fabrication process development at ITU
- 3. Fuel characterization and material properties
- 4. Fuels and targets irradiation programmes

Joint Research Centre

SMART irradiation in HFR

SMART-1 : $(Pu_{0.090}Zr_{0.757}Y_{0.153})O_{1.92}$

Solid Solution

SMART-2: SSL + ($Pu_{0.241}Zr_{0.631}Y_{0.128}$) O_{2-x} Composite, microdispersed (60-80 μ m)

End of irradiation: mid 2007 PIE in ITU

FUTURIX irradiation in Phenix (within IP EUROTRANS, US DOE, CEA, JAEA)

- $Pu_{0.8}Am_{0.2}O_{2-x}$ Molybdenum and $(Pu_{0.225}Am_{0.240}Zr_{0.534})O_{2-x}$ -Molybdenum
- High quality pellets fabricated: meeting all specifications for Phenix

HELIOS irradiation in HFR Petten (within IP EUROTRANS, CEA, NRG)

Fabrication of four fuels and pins for irradiation in HFR-Petten

Fuel	Compound	Am content*	Pu content*	Particle size	Density
		g·cm³	g·cm³	μm	%TD
HELIOS 2	ZrYAmO ₂	0.76			
HELIOS 3	ZrYPuAmO ₂	0.76	0.42		 00.5
HELIOS 4	ZrYAmO2 + Mo	0.76		80-100	90±5
HELIOS 5	PuAmO ₂ + Mo	0.32	1.28	20-150	

Homogeneous and CERMET pellets fabricated by a combination of sol-gel, infiltration and mechanical mixing

INNOVATION: Addition of Carbon to the sol-gel feed solution

- improve pellet microstructure
- increase porosity (higher Am content by infiltration)

HELIOS irradiation in HFR Petten (within IP EUROTRANS, CEA, NRG)

Addition of Carbon to the sol-gel feed solution

improve pellet microstructure

increase porosity (higher Am content by infiltration)

Collaborations

