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Foreword 

The Working Party on International Nuclear Data Evaluation Co-operation 
(WPEC) was established under the aegis of the OECD/NEA Nuclear Science 
Committee (NSC) to promote the exchange of information on nuclear data 
evaluations, validation and related topics. Its aim is also to provide a 
framework for co-operative activities between the members of the major 
nuclear data evaluation projects. This includes the possible exchange of 
scientists in order to encourage co-operation. Requirements for experimental 
data resulting from this activity are compiled. The WPEC determines 
common criteria for evaluated nuclear data files with a view to assessing 
and improving the quality and completeness of evaluated data. 

The parties to the project are: ENDF (United States), JEFF/EFF (NEA Data 
Bank member countries) and JENDL (Japan). Co-operation with evaluation 
projects of non-OECD countries, specifically the Russian BROND and Chinese 
CENDL projects, are organised through the Nuclear Data Section of the 
International Atomic Energy Agency (IAEA). 

The following report has been issued by WPEC Subgroup 24, whose 
mission was to review methodologies and develop tools for producing  
data uncertainties (covariance data) in the fast neutron energy region. 
These involve both least-squares procedures and, more recently, stochastic 
(Monte Carlo) techniques. Since all modern approaches depend on extensive 
usage of nuclear reaction modelling, consideration is given to recent 
attempts to determine the extent to which nuclear modelling deficiencies 
contribute to the uncertainty of contemporary nuclear data evaluation. 

The opinions expressed in this report are those of the authors only and 
do not necessarily represent the position of any member country or 
international organisation. 
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1. Introduction 

During the past decade, there has been a dramatic increase in the demand 
for evaluated nuclear data that are comprehensive in scope with respect to 
both materials and reaction processes included, and that provide some 
specification of estimated uncertainties in the results. This demand has 
come about because of a renewed interest in the nuclear power option as a 
means to satisfy the energy needs of society while at the same time 
limiting the emission of gaseous carbon compounds that may contribute 
significantly to global warming. The concern about data uncertainties is 
related to the need to ensure that nuclear power will be safe, reliable and 
economically competitive with other alternative energy options (e.g. wind, 
solar, geothermal, etc.). Modern nuclear systems analysis procedures are 
now able to accommodate nuclear data uncertainties thereby providing 
further stimulus for their provision. 

Along with the growing demand for evaluated nuclear data has come 
considerable progress in evaluation methodologies. Subgroup 24 of the NEA 
Working Party for Evaluation Co-operation (WPEC) was established in  
2006 in response to the need to further stimulate development of these 
methodologies as they apply to the fast neutron region, i.e. that energy 
region above the region dominated by resolved and partially resolved or 
fully unresolved resonances, and to document progress in this area. The 
evaluations in this region address cross-sections, particle emission angular 
distributions, nu-bar (for fission), and certain other observables which are 
generally considered to vary smoothly with incident neutron energy. These 
evaluations utilise input data from experiments as well as theoretical 
nuclear modelling to varying degrees depending on the circumstances. 

In the case of experimental data, there is the need to deal with 
discrepancies as well as statistical fluctuations that lead to results that 
generally depart from ideal smoothness. On the other hand, results from 
nuclear modelling generally suffer to varying extent from model deficiencies 
that can lead to a failure to agree both in shape and amplitude with 
corresponding measured values. These are not new problems, but recently 
greater attention has been paid to dealing with such practical issues. Part of 
this concern is related to the need, as indicated above, to provide fairly 
reliable (or at least plausible) estimates of uncertainty in the evaluated 
results. 
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Three decades ago, a major step forward in evaluation methodology for 
the fast neutron region was the widespread implementation of least-squares 
procedures (both ordinary and generalised) to merge various combinations 
of experimental and model-calculated nuclear data in performing the 
evaluations, as alternatives to older subjective methods that can best be 
described as “drawing eye-guides through available experimental data”. 
Many of these least-squares procedures are still in common use today. This 
subgroup summary report will not discuss the older manifestations of 
these venerable methods since they are very widely documented [1]. 
Instead, the newer approaches to nuclear data evaluation are emphasised. 
These involve both least-squares procedures and more recent approaches 
that involve stochastic (Monte Carlo) techniques. Also, consideration is 
given to recent attempts to determine the extent to which nuclear 
modelling deficiencies contribute to the uncertainty of contemporary 
nuclear data evaluation. 

The growing interest in nuclear data uncertainties has led to the 
organisation of two workshops under the auspices of this subgroup that 
were specifically devoted to the topic [2,3]. Reports from these workshops 
are given in the references. Although considerable material from these 
workshops is certainly included in this report, the present document is not 
just a summary of these earlier activities. However, the contributions 
herein may, in some cases, be composites of material taken from these 
presentations as well as other published sources. 
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2. Overview of covariance methodologies 

Covariances of nuclear data, in principle, can be obtained by sole analysis 
of experimental data if there are enough measurements to adequately define 
all reactions of interest in their respective energy ranges. Such analyses can 
be reinforced using an informative prior provided by the model calculations. 
The well known examples of such an approach are evaluations performed 
for a few structural isotopes by Vonach and Tagesen [4-7] within the 
framework of Bayesian statistics using the GLUCS [8] code. The resulting 
covariance matrices are almost diagonal with highly optimistic variances. 
The current exercise, in general, focuses on the contemporary methods 
that are contingent on the reaction theory modelling. These methods can 
be classified in three categories: i) deterministic [e.g. Kalman [9] filter 
closely related to the Generalised Least Square Method (GLSM)]; ii) stochastic 
ones that involve Monte Carlo calculations using random set of model 
parameters; iii) hybrid approaches that combine features of the deterministic 
and stochastic treatments. All these methods have their advantages and 
drawbacks and it is expected that all of them will play a role in future 
studies and practical evaluations of covariances. 

The deterministic methods are based on the Bayesian updating 
procedure and propagate nuclear model parameter uncertainties to the 
cross-sections. They require, generally, less sweeps of reaction calculations 
than Monte Carlo approaches, being thus more manageable than their 
stochastic counterparts. The major advantage of the deterministic methods 
is their capability to include experimental data and propagating 
experimental results and their uncertainties back to the reaction model 
parameters. In this sense, deterministic approaches constitute a 
comprehensive and powerful evaluation tool that allow to adjust model 
calculations to fit experimental data and produce recommended 
cross-sections producing simultaneously cross-section covariances, 
improved model parameters and parameter covariances. The drawbacks of 
the deterministic procedures are their implicit assumption of the linear 
dependence on the parameters and Gaussian distribution of the results. 
None of these conditions is actually fulfilled in the real evaluation practice. 
In addition, deterministic methods are not able to cope with the 
uncertainties of discrete quantities such as number of nuclear levels, spins 
and parities. 
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Stochastic methods are virtually not affected by the above-mentioned 
shortcomings of the deterministic methods. They do not require a priori 
assumptions regarding probability distribution of the result and can easily 
deal with the discrete quantities. The major drawback of the currently used 
methods is their inability of incorporating experimental data in a rigorous 
manner. Only the Universal Monte Carlo (UMC) approach, recently 
proposed by D. Smith, offers a possibility of including experimental data in 
a mathematically correct way. This formalism is, however, computationally 
intensive and has not yet been widely used for nuclear data evaluation. 

A simplified variant of the stochastic approach is being employed by 
the TALYS [13] team. First, the optimal set parameters, which reproduces 
experimental data, is searched. Then hundreds or thousands of reaction 
calculations with random sets of model parameters are performed and 
stored. The experimental data and their uncertainties are accounted for by 
accepting those calculations that are within a prescribed limit from the 
optimal cross-sections and rejecting all those which do not fulfil this 
condition. Standard statistical analysis can then be used on the accepted 
set of calculations to obtain cross-section as well as parameter covariances. 
The natural extension of this approach is to follow the reaction calculations 
with ENDF-6 formatting, processing and transport calculations to compare 
results directly with the integral experiments observables. Calculations of 
this type were successfully carried out by the TALYS developers. The 
approach offers several clear advantages: it eliminates non-linearity issues, 
and needs no new formats or processing capabilities, since basically no 
covariances are involved. It also ensures that the cross-section uncertainties 
follow common sense, since this is the way they were imposed. The latter 
advantage is at the same time the major formal drawback of the approach 
since, in spite of the advanced modelling and tremendous calculation effort 
involved, the actual uncertainties are essentially left to the ad hoc judgment 
of the evaluator. In addition, sensitivity profiles are neither being used nor 
readily available. 

Another stochastic approach is the Backward-Forward Monte Carlo 
(BFMC), which consists in two steps: the Backward Monte Carlo step, where 
the distribution of model parameters leading to observables consistent with 
the experimental data is obtained, and the Forward Monte Carlo step,  
where the distribution of model parameters is propagated to observables. 
Distributions of the latter are analysed to produce uncertainties and their 
correlations. The covariance matrix resulting from the BFMC procedure 
only reflects the experimental data used to constrain model parameter 
values as well as the response of the model to variations of model 
parameters. 

A hybrid approach that makes use of the GANDR code system has been 
proposed by A. Trkov [14]. Here, Monte Carlo reaction calculations with a 
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reaction model code (e.g. EMPIRE [15]) are used to produce informative 
cross-section prior and the related covariance matrix. Then, this prior is 
combined with the experimental data through the GLSM fitting. This 
compromise brings experimental data into analysis preserving some of the 
advantages of the stochastic methods (e.g. ability to consider uncertainties 
of the discrete quantities) but invokes a linearity assumption in the GLSM 
fitting phase and loses the possibility of providing feedback on the model 
parameters and their covariances. 

2.1 Uncertainty reduction by interpolation 

Discussions in this subsection are general, and the word “data” means any 
kind of nuclear data for which we are going to provide their covariances. 
However, the data here are often cross-sections, and their abscissa implies 
an incident neutron energy. 

The uncertainty (covariance) evaluation for nuclear data is primarily 
based on the experimental data and their uncertainties. One may also 
claim that the covariance evaluation can be done purely by the theoretical 
modelling. However, the model parameters are always tuned to reproduce 
experimental data available. In this sense the covariance evaluation still 
cannot be free from the knowledge provided by experiments. The covariance 
of experimental data includes statistical components and systematic 
components, and the systematic errors in the data bring correlations among 
the data points, not only within the same experiment but also between 
different experiments. 

The evaluation of covariance data for the evaluated nuclear data 
libraries consists of reallocation of the experimental covariances onto the 
evaluating data grid. The uncertainties on the data grid are determined by 
how the experimental covariances are interpolated; the data are averaged 
within a given energy interval, the data are expressed by a simple analytic 
form, or the data are fitted by the theoretical model. The covariance matrix 
obtained depends on this interpolation scheme. Figure 1 shows simple 
examples of correlation matrices for two different interpolation schemes. 
In the left plot, uncertainty in each interval is determined by both the 
uncertainties of the data and the number of data points in the interval.  
In case the data are not correlated, all the off-diagonal elements of the 
evaluated correlation matrix become zero. When the data are correlated, 
the correlation coefficients of the data are re-mapped onto the evaluation 
grids accordingly. The right plot shows the case when the data are fitted by 
a linear function. The linear function behaves like a seesaw, and a strong 
anti-correlation appears between both edges of the segment. 
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Figure 1: Uncertainties (top panel) and correlation  
matrices (bottom panel) for the evaluated data 

The left plot shows the case when the data are averaged within each  
energy interval. The right plot is the case of a linear function fitting. 

 (a) (b) 

 

The choice of interpolation function depends on how the cross-sections 
are evaluated. The interval-average is suitable if the cross-sections are 
grouped. The linear function might be appropriate when the cross-section 
varies rather smoothly within a given energy interval. One of the most 
natural choices is to use a nuclear reaction model, like the optical model 
and the Hauser-Feshbach model [11], because we empirically know that 
these models give a very reasonable fit to the observable quantities. 
Anyway, the evaluated covariances are a consequence of error propagation 
from the experimental data to the evaluation, although these are 
“collapsed” by the fitting function adopted. The different methods give 
different covariance matrices. 

2.2 Model parameter fitting 

When a nuclear reaction model analysis is performed to evaluate nuclear 
data, the interpolation is made with some theoretical background. The 
model includes the R-matrix theory for the resonances, the optical model 
for the total cross-sections and the differential elastic scattering, the 
Hauser-Feshbach model for the particle emission cross-sections, the 
Madland-Nix model [12] for the prompt fission neutron spectra, and so on. 
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Relying on our a priori knowledge, the model describes all observable 
quantities well, and the uncertainties in the model calculation are ascribed 
to the model parameters – resonance parameters, optical model potentials, 
level densities, etc. Correlations in the evaluated data exist even if 
experimental data are uncorrelated, because the model tells us that in 
general a physical quantity varies continuously. 

An example is shown in Figure 2. When a cross-section excitation 
function is expressed by a model f(E;p), where p is a parameter of the model, 
we can draw an error-band around the calculated cross-section by 
assuming the prior uncertainty of 10% on the parameter p (left panel of 
Figure 2). The evaluated covariance is a simple reflection of our current 
knowledge about p, and δp propagates to the calculated cross-sections 
through a sensitivity coefficient ∂σ/∂p. When an experimental data point is 
provided, one can squeeze δp by including this new experimental 
uncertainty. In this case we combine two pieces of information: a priori 
knowledge of the model parameter and the experimental data. 

Figure 2: Uncertainty extrapolation by using a  
nuclear reaction model with the Kalman code 

 

Normalise Here





UNIFIED MONTE CARLO APPROACH 

COVARIANCE DATA IN THE FAST NEUTRON REGION – © OECD/NEA 2011 19 

3. Unified Monte Carlo approach 

3.1 Introduction 

A “Unified Monte Carlo” (UMC) approach to fast neutron cross-section data 
evaluation that incorporates both model-calculated and experimental 
information in a consistent manner, and offers several advantages as 
compared to other contemporary methods, is described in this section. The 
technique is based on applications of Bayes’ theorem and the principle of 
maximum entropy as well as on fundamental definitions from probability 
theory. This section describes the mathematical formalism, discusses 
various related practical considerations, provides several numerical 
examples to illustrate the method, and offers some conclusions about the 
viability as well as the benefits and limitations of this method in realistic 
evaluation applications. 

3.2 General observations 

Nuclear data, such as neutron cross-sections, that are required for 
applications in nuclear science are rarely obtained directly from 
experiments or theoretical calculations. Instead, cross-section values 
extracted from formal evaluated nuclear data libraries are utilised. These 
evaluated results amount to best-estimate determinations of the physical 
parameters that are generally based on evaluator examination of all the 
pertinent information, including that derived from both measurements and 
theoretical modelling. Over the years, nuclear data evaluation methodology 
has evolved from largely subjective approaches to relatively rigorous 
analytical procedures that attempt to combine all the available information 
in a consistent manner to produce the recommended values. Most of the 
more recent approaches strive to minimise subjective biases while at the 
same time making optimal use of all pertinent information. Descriptions of 
various analytical techniques employed for nuclear data evaluation can be 
found in the extensive literature on this subject [16]. 

The present approach to generating evaluated cross-sections in the fast 
neutron region is based on Monte Carlo simulation rather than on purely 
deterministic analyses as is the case with several other contemporary 
methods. It is referred to as the Unified Monte Carlo (UMC) approach 
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because unlike other Monte Carlo techniques used in evaluating nuclear 
data it is capable of incorporating both experimental and theoretical 
information in a consistent (unified) manner within the framework of 
Monte Carlo simulation. 

Section 3.3 describes the mathematical formalism upon which the 
UMC approach is based and considers some practical issues associated 
with applying this method. Section 3.4 provides several detailed examples 
to illustrate the method and explore its potential as well as the limitations. 
Finally, Section 3.6 offers some conclusions about the viability of this method 
in realistic situations, based on experience acquired from the investigations 
that led to its development, points out some important advantages of this 
approach compared with other contemporary evaluation methods and 
suggests some areas for future investigation of the UMC approach. 

3.3 Formalism and some practical issues 

3.3.1 Basic concept 

The present method, like many others, finds its origins in Bayes’ theorem. 
This theorem is non-controversial and can be derived easily from the basic 
postulates of probability theory following some simple steps involving the 
algebra of probabilities [16,17]. Bayes’ theorem provides a rigorous procedure 
for learning from experience by establishing a simple formula that relates 
prior and posterior information. For the present purposes, we will express 
Bayes’ theorem in terms of probability density functions rather than actual 
probabilities. In the following discussion, items expressed in bold font 
represent vectors and matrices while those in ordinary font are scalars. The 
symbol “•” is used to represent vector (or matrix) multiplication. The 
symbol “×” signifies scalar multiplication; it is used only in situations 
where it is needed for clarity. 

Let yE represent a collection of measured (experimental) quantities 
with a corresponding covariance matrix VE that expresses their 
uncertainties as well as correlations. Let us suppose that there are n 
elements in the vector yE and n2 elements in the n × n matrix VE. VE must be 
a symmetric matrix, so the actual number of distinct elements in this 
matrix is n(n + 1)/2. It must also be a positive definite matrix. Furthermore, 
let σC represent a collection of quantities representing the prior information 
available before considering the experimental data. Usually, these prior 
results are calculated by means of nuclear modelling. The uncertainties 
and their correlations corresponding to these prior values are represented 
by a covariance matrix VC. We assume that there are m calculated 
quantities and that the corresponding covariance matrix has dimensions 
m × m. It must also be symmetric and positive definite. For convenience, we 
use the symbol σ to signify all the quantities being evaluated even though 
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this collection might include not just cross-sections but other observables 
as well (e.g. angular distributions). 

A method for generating VC by Monte Carlo simulation when the prior 
is based on nuclear modelling has been suggested by D. Smith and the 
concept is discussed in some detail in [18]. Basically, this approach involves 
use of Monte Carlo simulation to propagate uncertainties of the nuclear 
model parameters through to the computed physical observable quantities. 
We will not dwell on the matter of how nuclear model parameters and 
their uncertainties and correlations (if any are non-zero) are chosen to 
provide the most reasonable values for σC and VC. Thus, an evaluator 
generates prior estimates of the physical quantities by means of nuclear 
modelling and then “refines” the evaluation by incorporating experimental 
data in the evaluation procedure, through a merging process to be 
described in this section. If no relevant experimental data exist, then the 
evaluation will be based on nuclear modelling alone and the evaluator’s job 
is finished. 

In the present context, Bayes’ theorem is embodied in the following 
formula [16,17]: 

 ( ) ( ) ( )CCEE ,p,CLp VVy σσσσ 0=  (1) 

In this equation, p is the a posteriori (posterior) probability density 
function, p0 is the a priori (prior) probability density function, “L” is a 
likelihood function (also a probability density function), and “C” is a 
normalisation constant. This constant is chosen so that the following 
normalisation condition is satisfied: 

 ( ) =
S

dp 1σσ  (2) 

where dσ is a volume element (voxel) in the m-dimensional space of 
possible values for σ and S is the region of that space over which one must 
integrate in order to effectively achieve convergence. By convergence it is 
meant that increasing the size of S would not change the value of the 
integral in Eq. (2) significantly. In practice it is not necessary to know the 
value of C since it is essentially irrelevant to the procedures used for the 
Monte Carlo analysis. 

It is important to understand that while the components of σ are 
random variable arguments of the indicated functions, yE, VE, σC and VC are 
simply collections of fixed numbers insofar as the present evaluation 
procedure is concerned. Since σ is a vector, it has the following m 
components: σ1, σ2, …, σi, …, σm. The solution to the evaluation problem is 
completely embodied in the probability density function p(σ). In probability 
theory, the “best estimate” value for a random variable, e.g. in this case for 
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σi, is defined as its expectation value (better known as “mean value”) with 
respect to the associated probability density function. Therefore: 

 ( ) ( )m,idp
S

ii 1=σ=σ  σσ  (3) 

is the evaluated value that is sought for the variable σi. 

The same reasoning can be applied to generate a formula for 
determining elements of the evaluation solution covariance matrix Vσ: 

 ( ) ( ) ( )m,j,i,Cov jijiijji 1=σσ−σσ==σσ σV  (4) 

where <…> represents multivariate integration of the indicated quantities 
in the same manner as shown for σi in Eq. (3). Note that when i = j we 
obtain the variances from Eq. (4) while the off-diagonal elements (often 
referred to as “covariances”) are obtained when i ≠ j. 

Eqs. (1)-(4) provide all that is needed – at least conceptually – to 
perform an evaluation of the components of σ and determine the 
covariance matrix Vσ. 

It is crucial to know exactly what forms the functions p0 and L should 
take since without this knowledge numerical analysis is impossible. Bayes’ 
formula, i.e. Eq. (1), offers no specific guidance in this matter. Fortunately, a 
rigorous solution to this problem can be found in the pioneering work on 
information entropy by Shannon (in the 1940s), Jaynes (in the 1960s), and 
other statisticians of this period [16]. The principle of maximum 
(information) entropy states that if all we know about a collection of 
random variables can be summarised by giving their mean values and 
associated covariance matrix, then the best estimate for the form of the 
appropriate probability density function is a multivariate normal function 
(Gaussian). Thus, in our case we have the following expression for p0: 

 ( ) ( ) ( ) ( )[ ]{ }CC
T

CCC ~,p σσσσσσ −••−− −1
0 21exp VV  (5) 

By pursuing the same line of reasoning one is led to postulate the 
following expression for the likelihood function L: 

 ( ) ( ) ( ) ( )[ ]{ }EE
T

EEE ~,L yyyyVy −••−− −121exp Vσ  (6) 

In these formulas 1−
CV  and 1−

EV  are inverse matrices, “T” denotes the 

transpose of the indicated vector, and the symbol “~” indicates that the 
respective normalisation constants are not shown explicitly. They are 
actually not needed as is shown below. It is clear why VC and VE must be 
square, symmetric, positive definite matrices; they have to be inverted. The 
reason why “y” and “yE” appear in Eq. (6) rather than “σ”-type variables is 
that the relationship between the experimental data yE and the variables σ 
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to be evaluated may be indirect. For example, the experimental data may 
represent ratios of the variables to be evaluated or they may be integral 
quantities. In fact, it is appropriate to define y by the expression y = f(σ), 
where f represents a vector collection of m scalar functions f1, f2, …, fi, …, fm 
each of whose variables are one or more of the elements of σ. 

While the conditions that lead to a multivariate normal probability 
density function for both the prior and likelihood distributions are 
relatively common ones, it should be noted that other functions may be 
more appropriate in applications where alternative information is available, 
e.g. as shown below and as is mentioned in [16]. For example, if there are 
estimates of the mean values but no uncertainty information, then an 
exponential function should be used. Another example might be that both 
central values and covariance matrices are available but the uncertainties 
are very large. Under these conditions, lognormal distributions should be 
used rather than normal distributions [19]. Lastly, if the experimental 
information is based entirely on raw detectors counts, then a Poisson 
distribution might be appropriate for the likelihood function. 

When Eqs. (1), (5), and (6) are combined, one obtains the expression: 

 ( ) ( ) ( ) ( ){ } ( ) ( ){ }[ ]{ }CC
T

CEE
T

E~p σσσσσ −••−+−••−− −− 1121exp VyyVyy  (7) 

Once again, the implied normalisation constant is omitted for the 
reason mentioned above. Although it is not relevant to the present 
derivation, it is interesting to note that if we were to assume that the best 
solution for the evaluation corresponds to values of the components of σ 
that maximise p(σ), then we would require that: 

 ( ) ( )[ ] ( ) ( )[ ] imumminCC
T

CEE
T

E =−••−+−••− −− σσσσ 11 VyyVyy  (8) 

However, this would be an appropriate assumption only if p(σ) is a 
multivariate normal distribution with respect to the variables σ [16]. 
Acceptance of this assumption leads directly to the well-known generalised 
least-squares (GLS) formalism [16,17]. 

Eq. (7), combined with Eqs. (2), (3) and (4) provides a way to carry out 
the numerical analysis required to produce an evaluation based on a direct 
consideration of the underlying probability density function. The difficulty 
in applying this approach lies in the need to find a viable way to compute 
multi-dimensional integrals. This is a formidable challenge to deterministic 
numerical computation when even a few variables are involved and probably 
impractical when many variables have to be considered as is the case for a 
typical evaluation. However, such calculations should be amenable to 
analysis by Monte Carlo simulation, at least to precisions which, in 
principle, are limited only by the number of traced histories. This is one of 
the premises upon which the present method is based. 
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3.3.2 Some practical considerations 

The following issues must be considered in practical applications of the 
UMC method: convergence of the numerical analysis, the compatibility of 
prior and experimental information, the independence of prior and 
experimental data, appropriate preparation of the measured data, and the 
consistency of prior and experimental information. 

The input experimental and model-calculated information must be 
compatible. In setting up an evaluation exercise an evaluator needs to 
establish grid points (or node points) that define the scope of the evaluation. 
These grid points are characterised by such parameters as incident neutron 
energy, particle emission angle, etc. The situation is unambiguous for 
model-calculated prior results since they can be generated in a 
straightforward manner for all selected node points. For experimental 
results the situation is murkier. There are two issues involved. As indicated 
above, there is a reason why prior and posterior (solution) quantities are 
labelled “σ” while “y” is used to designate experimental results. The 
experimental results may be more complicated than simple cross-sections. 
Consider a particular example. Among the experimental data included in 
vector yE, suppose one particular component, say yE7, corresponds to a 
measured differential cross-section ratio involving cross-sections associated 
with grid points 6 and 18. We then require that y7 = f7(σ) = (σ6/σ18). This must 
be reflected in the explicit expression for p(σ). Another issue to consider is 
that to be perfectly compatible all input experimental information must be 
adjusted to correspond to the selected grid points. An example will clarify 
this point. Referring to the discussion above, let us suppose that the 
neutron energy corresponding to grid point 6 is 5 MeV while that for grid 
point 18 is 14 MeV. Then y7, as defined above, is meant to represent a ratio 
corresponding exactly to these two energies. However, let us suppose that 
the measured value yE7 actually corresponds to a ratio involving 
experimental energies 4.9 MeV and 14.1 MeV. Then, it is necessary to adjust 
the measured value yE7 as needed so that it is compatible with y7. These 
details are not unique to the present method. In principle, they need to be 
considered in order to apply correctly any of the more commonly used 
evaluation techniques, including the ordinary or generalised least-squares 
(GLS) methods. 

The formalism for the UMC method described in Section 3.2 requires 
that the prior information and the experimental information that are to be 
merged to generate an evaluation be independent. Therefore, it is important 
that the selection of nuclear model parameters and their uncertainties be 
influenced as little as possible by experimental data relevant to the specific 
nucleus for which the evaluation in question is being carried out.  
A reasonable way to achieve an adequate degree of independence is for the 
choice of nuclear model parameters used to generate the prior to be guided 
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by global considerations, e.g. by knowledge gained from consideration of a 
wide range of nuclei across the Periodic Table rather than strictly by 
narrow regional or local nuclear model behaviour. 

The need to adjust experimental data so that they will correspond to 
calculated values at the selected grid points has been mentioned above.  
It is also necessary to be concerned with the actual quality of the 
experimental data used in an evaluation, regardless of the method used to 
perform the evaluation. Poor quality experimental data and incomplete or 
improperly constructed covariance matrices can thwart the evaluation 
process and lead to erroneous results. The need for weeding out bad data, 
applying adjustments for changes in measurement standards, possibly 
enhancing some unrealistically small uncertainties assigned by original 
authors and other routine data “adjustment” steps is widely acknowledged 
by evaluators as absolutely necessary if one is to obtain reasonable 
evaluated results. 

The last practical issue to be discussed is that of data consistency.  
By examining the data “consistency”, we are studying the relative scatter  
of the results that are to be used in an evaluation. In the generalised 
least-squares (GLS) formalism it is well known that there exists a chi-square 
test of input data consistency that can be applied before the GLS analysis is 
performed [16,17]). Since this test involves only the input data it seems 
reasonable to consider applying it in the present UMC methodology as well. 
The formula used in this test of consistency is as follows: 

 ( ) ( ) ( ) ( )[ ] n.f.o.d EEq
T

E qyVVqy −•+•−=χ −12  (9) 

This expression and some of the quantities appearing therein require 
some explanation. In the present formalism, the degrees of freedom (d.o.f.) 
are just the number of experimental data values n. The quantities yE and VE 
require no explanation; they are defined above. The vector q is the 
collection of n calculated equivalents to the measured data based on prior 
values of the variables to be evaluated (not on solution values), i.e. on σC 
and VC. In other words, q = f(σC). Furthermore, Vq is an n × n covariance 
matrix which is computed by propagating the errors of σC, as reflected in 
the covariance matrix VC, through to Vq via the functional relationships 
represented by f. It is clear from Eq. (9) that the matrix Vq + VE needs to be 
inverted so it must first be tested for positive definiteness. Eq. (9) provides a 
means to compute the scatter of the experimental data relative to 
equivalent calculated values (the word “equivalent” is significant here), 
scaled by the combined uncertainties of the experimental and calculated 
results. The general rule to follow is that when χ2/(d.o.f.) = 1, then the 
uncertainties in the evaluated results generated by the UMC method ought 
to be accepted as they are. However, if χ2/(d.o.f.) is significantly larger than 
unity, one might consider enhancing all the evaluation solution 
uncertainties by the factor (χ2/(d.o.f.)) without altering the correlations [16]. 



UNIFIED MONTE CARLO APPROACH 

26 COVARIANCE DATA IN THE FAST NEUTRON REGION – © OECD/NEA 2011 

3.3.3 “Brute Force” (BF) Monte Carlo approach 

We now turn attention to the issue of Monte Carlo simulation to evaluate 
the integrals mentioned earlier in this section. This is at the heart of the 
UMC technique. 

Let us imagine pursuing K Monte Carlo histories. For each history a 
potential solution vector σk(k = 1,K) is generated. Each component of this 
vector is selected at random from its associated uniform distribution 
independently from all the others. A typical sampling range would be 
defined by: 

 ( )K,k;m,imaxiikmini 11 ==σ≤σ≤σ −−  (10) 

Expressed another way, σik is generated using the following formula: 

 ( ) ( )ikminimaximiniik RN×σ−σ+σ=σ −−−  (11) 

where (RN)ik represents a real random number uniformly selected from the 
interval (0,1). The indicated intervals define a unique “rectangular” region S 
in m-dimensional space with volume V(S) given by the formula: 

 ( ) ( )minimaxim,iSV −−= σ−σΠ= 1  (12) 

The “size” of this sample space must be finite and it is determined in 
terms of the metric Ψ[(Vc)ii]1/2 where Ψ > 0 can be varied to test for the 
convergence. 

Since the evaluation process is based on Eqs. (2), (3), (4) and (7) we 
proceed next to specify forms for these equations that are amenable to one 
type of Monte Carlo analysis which will be referred to henceforth in this 
section as the “Brute Force” (BF) Monte Carlo method. The equivalent of 
Eq. (3) is: 

 ( )[ ] ( )[ ] ( )m,ipp kK,kkikK,kKi 111 =ΣσΣ=σ == σσ  (13) 

while in the same fashion the equivalent to Eq. (4) is: 

 ( ){ } ( ){ } ( )m,j,iV,Cov
KjKiKjiKijKji 1=σ×σ−σσ=σ=σσ  (14) 

To avoid confusion, we note that: 

 ( )[ ] ( )[ ] ( )m,j,ipp kK,kkjkikK,kKji 111 =ΣσσΣ=σσ == σσ  (15) 

The expressions found in the denominators of Eqs. (13) and (15) are 
there to ensure proper normalisation. The index K that appears as a 
subscript in Eqs. (13), (14) and (15) suggests that the values determined 
using these equations will depend quite strongly on the chosen number of 
histories K, at least for relatively small K. In fact, for small K the results are 
essentially meaningless. However, as K becomes large it is anticipated that 
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these quantities should converge toward the values that would be obtained 
if the corresponding numerical integrations were actually performed as 
originally indicated in Eqs. (2),(3) and (4). How large does K have to be to 
achieve acceptable convergence? This can only be ascertained from 
experience. This BF Monte Carlo approach has been demonstrated to work 
very well in other types of analyses of complex nuclear systems with many 
variables, so it seems reasonable to apply it to the evaluation of nuclear 
data provided that convergence is achieved; however, that may be costly of 
both time and computer power. 

Thus, we see that the UMC evaluation method amounts to employing 
Bayes’ theorem and the principle of maximum entropy, along with the 
given prior and measured values and their covariance matrix elements as 
constants, to generate a posterior probability density function p for the 
random variables σ that correspond to the evaluation in question. The 
evaluated values < σ > are the first moments (or mean values) of the 
probability density function p while the elements of the solution covariance 
matrix Vσ are derived from the second moments of p. The integrals 
required to determine the mean values and the covariance matrix elements 
can be estimated by the BF Monte Carlo simulation rather than by 
deterministic numerical computations if a sufficient number of “histories” 
is considered. 

The UMC method will not succeed unless the quantities computed by 
BF Monte Carlo simulation using Eqs. (12),(13) and (14) actually converge to 
stable values as K becomes large. Therefore, it is essential to test 
convergence by examining the trend of all expressions of the form < … >K 
(or ratios of these quantities) as K becomes large. Rather than using 
sophisticated tests, simple plots of < … >K versus K may suffice in many 
instances. Another convergence issue involves ensuring that these sums 
converge to values close to the true value of the multivariable integrals that 
are being estimated. In the BF Monte Carlo method, this requires that the 
“volume” V(S) of the sampling space S be sufficiently large and all 
encompassing of the majority of the “strength” reflected in the posterior 
probability function. In particular, one needs to be certain that it is large 
enough so that outside region S the magnitude of the posterior probability 
density function p, and contributions to the indicated integrals, are 
vanishingly small. More precisely, we require that if a sampled vector σk is 
not contained in S, then p(σk) ≈ 0. Of course, one could ensure this by 
choosing S to be very large. 

However, the penalty to pay for such a conservative choice in the BF 
Monte Carlo method is that K would also need to be extremely large in 
order to achieve acceptable convergence. This, in turn, could lead to 
excessively long computation times. Clearly, a trade-off between the sizes 
of S and K is needed. Experience will have to be the guide in dealing with 
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this issue. Finally, it is certain that a wide dynamic range of real number 
values will be encountered in computations of the p(σk) weighting factors. 
Therefore, a high degree of numerical precision is essential when performing 
realistic BF Monte Carlo evaluations if one aims to achieve accurate results 
that are not afflicted by numerical round-off effects. 

3.3.4 The Metropolis Monte Carlo approach 

The “Brute Force” (BF) Monte Carlo approach described above was the first 
method we considered in demonstrating the UMC technique, and it is the 
easiest approach to understand. However, it is probably not the best one.  
It was soon discovered in considering the examples chosen for our work 
that this method is very inefficient. Therefore, a second method, known as 
the Metropolis sampling technique [20], was considered. The Metropolis 
(METR) algorithm was first introduced by Metropolis, et al. [21] and later 
generalised by Hastings [22]. It was designed to sample from complicated, 
high-dimensional probability density functions (PDF) that are difficult or 
inefficient to deal with directly, e.g. such as those encountered in applying 
the UMC method. The random sampling of states by the BF Monte Carlo 
approach is very inefficient since the PDF encountered in typical evaluation 
scenarios tend to be fairly localised in the m-dimensional solution space. 
This is especially true when accurate and consistent experimental data are 
involved. This leads to a substantial reduction of the significant integration 
volume so it is essential to apply an importance sampling method  
to suppress random sampling of the far more numerous irrelevant 
configurations while achieving the same level of accuracy over the whole 
cross-section energy range. 

In Bayesian applications the normalisation factor is usually difficult to 
compute in the BF Monte Carlo method other than by the sampling 
procedure described above, so the ability to produce a sample without 
knowing the constant of proportionality is also a significant advantage of 
METR. The generated sequence can be used in a Markov chain Monte Carlo 
simulation to compute moments of the distribution such as the integrals 
described above. 

The METR algorithm generates a Markov chain in which each state 
x(t + 1) depends only on the previous state x(t). The algorithm uses a 
“proposal density” Q(x), which depends on the current state x(t), to generate 
a new proposed sample x′. The proposal, usually called a “move”, is 
accepted as the next value x′ = x(t + 1) if it satisfies the probability condition 
P(x(t + 1)) > γ P(x(t)), with γ being a random number between 0 and 1. If the 
proposal is rejected, the current x(t) is kept, i.e. x(t + 1) = x(t). 

There are no specific rules for selection of the “proposal density” 
although this procedure is a key to convergence of the Markov chain. This 
idea is applied here as follows: The model average values and standard 
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deviations are taken to be σCi and [(Vσ)ii]1/2, respectively. Thus, a Metropolis 
“move” is defined by: 

 ( ) ( ) ( )[ ] 2112 iiCVtxx δ−γ+=′  (16) 

Here, x(t = 0) = σC and δ signifies a “step” of the move in the 
m-dimensional space. The Markov chain is expected to start from a 
random initial value x(t = 0). This algorithm is then applied again and again 
(for many iterations) until the initial state is “forgotten”. The final outcome 
must not depend on the choice of initial state. The samples which are 
discarded in the conduct of this procedure are known collectively as 
“burn-in”. 

In this investigation, 10% of the requested total number of samples 
were treated as “burn-in”. The Metropolis “move” usually has to be tuned 
during the burn-in period. In our applications of this approach the move 
step parameter δ was tuned by finding a corresponding “acceptance rate”. 
This represents the fraction of proposed samples that were accepted in a 
window of the last “N” samples. 

The desired acceptance rate depends on the target distribution and, 
again in our case, on the chosen step δ. As δ increases, the new point x′ in 
the multi-dimensional space is located “further” from the previous point x(t) 
and the acceptance ratio decreases. It has been shown theoretically that 
the ideal acceptance rate is approximately 23% for an N-dimensional 
Gaussian target distribution similar to most of the studied PDF. 

If the step δ is too small the chain will “mix” slowly, i.e. the acceptance 
rate will be too high. Then, the sampling path will wander randomly 
around the variable space “slowly” and converge “slowly” to the desired 
solution. This limit was not encountered, even for steps as small as 2% of 
the model uncertainty [(Vσ)ii]1/2, i.e. for δ = 0.02. On the other hand, if the 
step δ is too large the acceptance rate will be very low because the 
proposals are likely to venture into regions of much lower probability 
density so that P(x(t + 1))/P(x(t)) >> 1. At some point in this process the step 
becomes so large that P(x(t + 1))/P(x(t)) ≈ 0 and the chain will not move at all 
from its initial point. We found that this usually happens for step 
parameter values δ > 1. 

The moments of the PDF are calculated from the sampled Monte Carlo 
chain {x(t)} regardless of whether a move is accepted or not. Along the way, 
some consecutive sampled points x(t) are skipped to avoid the possibility of 
introducing biases resulting from short-term correlations. Since METR 
Monte Carlo is known to be much more efficient and computationally 
faster than BF Monte Carlo sampling for localised probability distributions 
such as those usually involved in UMC, it was our goal to confirm that it 
can be applied with confidence in UMC analyses. 
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3.4 Examples 

In evaluating nuclear cross-section data one encounters directly measured 
cross-sections, cross-section ratios and integral data. Included are data 
with large errors and small errors, strong and weak correlations and 
discrepant values. Prior cross-sections σC from nuclear modelling usually 
exhibit strongly correlated uncertainties, but the possibility of vanishing 
correlations has been considered for completeness. 

We have examined four distinct scenarios of hypothetical experimental 
data representative of what might be observed in realistic evaluation 
problems: i) directly measured cross-sections; ii) included cross-section 
ratios; iii) included integral data; iv) data sets with values having very large 
errors (non-normal probability distributions). Each case is discussed 
separately below. For most cases, 3.6 × 107 histories were traced in the BF 
simulations while 3.6 × 106 histories were traced in METR simulations. As is 
shown below, this was found to be adequate in most cases. 

3.4.1 Direct cross-section data 

If there is a one-to-one relationship between model-calculated and 
experimental data, e.g. if what are calculated and measured are both 
comparable cross-sections (the same can be said for angular distributions 
and other observables), it can then be shown that Eq. (7) is a true normal 
distribution with a solution mean-value vector and covariance matrix that 
correspond exactly to the well-known generalised least squares (GLS) 
solution [16,17]. Therefore, applying the UMC method to examples of this 
nature tests its validity through comparisons with the corresponding GLS 
solution. The first set of hypothetical data to be considered here is shown 
in Table 1. Strong correlations were assumed for the prior values. They 
corresponded to 0.95 for adjacent nodes and no less than 0.7 for the most 
widely separated nodes. The word “Node” is used here to represent an 
integer index value that uniquely identifies the prior and experimental 
values that are being compared. In a more realistic situation the word 
“Node” would most likely be replaced by “Energy”, and specific energies 
would be given instead of integer index values. The experimental 
correlations are: C(3,1) = C(1,3) = 0.20 and C(5,2) = C(2,5) = 0.80, with all 
others being zero. 

In this data set there is no experimental value for Node 7. This is often 
the case for real evaluations since nuclear-model results can be obtained 
for all established node points, but this is not always possible in 
experiments. BF simulations were performed for ψ = 0.50, 0.75, 1.00, 1.50, 
1.75, 2.00, 2.50, 3.00 and 3.50. The solution mean values agreed with 
corresponding GLS values for all node points to < 1.5% provided that ψ was 
in the range 1.00 to 2.50. The best result was obtained with ψ = 1.5 (< 0.5%  
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Table 1: Prior and experimental values (standard deviations in brackets) 

Node 
Prior value  

(error) 
Expt. value  

(error) 
1 210.0 (30%) 205.6 (30%) 
2 040.0 (30%) 039.3 (2%)0 
3 020.0 (30%) 026.0 (30%) 
4 010.0 (30%) 14.0 (5%) 
5 007.0 (30%) 06.7 (3%) 
6 006.0 (30%) 008.5 (50%) 
7 006.0 (30%) No data given 

 

difference). Poorer agreement for smaller and larger values of ψ is attributed 
to either incomplete integration (smaller ψ) or poor statistics (larger ψ). Poor 
statistical precision is a consequence of excessive sampling in regions of 
very low probability. The agreement is not quite as good (< 3% difference 
for the best case of ψ = 1.50) in standard deviation comparisons with GLS.  
In practice standard deviations need not be known as precisely as mean 
values. 

With METR, the best solutions for mean values were obtained with 
δ = 0.15 (< 0.2% difference), although acceptable agreement was found for δ 
between 0.02 and 0.75. Only for δ ≥ 1 was the agreement with GLS less 
satisfactory (but still within 3%). Computation times for METR were usually 
≈ 100 times faster than BF. 

Two additional sets of calculations were performed within the present 
category. One involved prior results with 30% uncertainty but zero 
correlations and the second involved 5% prior value uncertainties and the 
strong correlations indicated above. Results qualitatively similar to those 
described above were obtained, but there were some differences in the 
details as follows. Poorer agreement with GLS was observed for a prior with 
30% uncertainties and no correlations. The best agreement was found with 
ψ = 2.00 for BF (< 1.2% difference) and δ = 0.75 for METR (< 0.5% difference). 
The outcome was comparable for the standard deviation determinations.  
In the case of 5% uncertainties with strong correlations for the prior, the 
comparisons with GLS were exceptionally good. The best agreement 
(< 0.05% difference) for BF was obtained with ψ = 2.00 while the best 
agreement for METR (< 0.02% difference) was obtained with δ = 0.75. This 
level of agreement appears to be well within the anticipated statistical 
precision of these MC simulations algorithms. Although the details are not 
discussed here, the comparative agreement between MC and GLS for the 
correlation coefficients was quite adequate in all cases. 

From these examples, we confirm that UMC yields results which 
compare favourably with the GLS results for direct cross-section data, as 
anticipated. Since the GLS method is much more straightforward and less 
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computationally intensive than the UMC method, it is clearly the preferred 
approach for merging model-calculated and experimental results when 
only direct cross-sections are involved. 

Additional calculations were performed using a typical case in this 
category to explore the path to convergence for both BF and METR in 
applying UMC. Calculations were made with various numbers of sampling 
histories ranging from 103 to 108. Comparisons were then based on plotting 
the obtained chi-square values versus numbers of histories for BF and 
METR in comparison to the constant GLS value. 

The superiority of METR convergence to the BF approach is dramatic as 
can be seen in Figure 3. The chi-square values from each MC approach 
eventually converged to a common chi-square value (that of GLS) after  
108 histories. However, while the METR results are clearly fully converged 
after ≈ 105 histories, the BF results are seen to still fluctuate considerably 
even after 107 histories. 

Figure 3: Comparison of Brute Force (BF) and  
Metropolis (METR) chi-square convergence 

 

3.4.2 Inclusion of cross-section ratio data 

When experimental cross-section ratio data are included in an evaluation, 
the PDF is no longer normal with respect to the solution variables σ. The 
PDF is therefore “skewed” and its peak location is no longer identical to the 
mean value location as it is for a Gaussian PDF. Then, GLS will yield an 
approximate solution while the UMC solution should approach the true 
solution (consistent with the UMC assumptions stated above) to a precision 
allowed by the chosen MC simulation procedure. 

The example considered here has two node points. Two prior 
cross-sections were assumed along with their errors and correlation. 
Furthermore, two experimental values were considered, one is an explicitly 
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measured cross-section for Node 1 and the second a ratio of the 
cross-section for Node 2 to that of Node 1, as shown in Table 2. This 
problem was analysed by GLS, BF and METR. Several combinations of data 
input values, errors and correlations were considered in this example. 

Table 2: Prior and experimental values (standard deviations in brackets) 

Node 
Prior cross-sections

(error) 
Expt. data  

(error) 

1 210.0 (30%) σ1 = 205.6 (30%) 

2 032.0 (30%) Exp. ratio = σ2/σ1 

 

The experimental ratio value was taken to be either 0.209 (discrepant) 
or 0.15 (consistent), with 1%, 5% or 30% error, and uncorrelated to the Node 1 
cross-section. The prior values were assumed to be either uncorrelated or 
0.95 correlated. The agreement between the BF and METR simulations was 
generally very good (within < 1%). Only for one extreme case (denoted 
henceforth as “ExC”) involving 1% experimental ratio error and a 0.95 
correlation for the prior data did the BF and METR results differ noticeably 
(by ≈ 5%). This difference is likely due to deficiencies in the BF simulation 
(e.g. incomplete integration and/or inadequate convergence). 

Since the METR calculations have been shown to be robust, efficient 
and more reliable than BF, the discussion here focuses on comparisons 
between METR and GLS for all cases. 

First, we considered the case where the experimental ratio value is 
discrepant (ratio = 0.209) compared to the prior information. If 1% error is 
assumed for this ratio, with 0.95 correlated prior values, the GLS and UMC 
solution values differ by ≈ 30% (“ExC”). A projection plot of the prior and 
experimental PDF for “ExC” was generated along with the composite PDF. 
The experimental component is very obviously skewed. It was seen that in 
“ExC” the composite PDF for UMC peaks at a location quite different from 
the two peaked component PDF. Increasing the ratio error to 5% while 
retaining 0.95 prior correlation reduces the differences between UMC and 
GLS to ≈ 20%. 

Eliminating the model correlation leads to differences between GLS 
and UMC of < 2%. An increase of the experimental ratio error to 30% results 
in negligible differences (0.1%) between GLS and UMC solutions, even for the 
case of a 0.95 prior correlation. If a consistent (non-discrepant) experimental 
ratio value is used (ratio = 0.15), the differences between GLS and UMC are 
< 3% in all cases, but these are real differences that would be absent if no 
ratio data were included. 

Thus, inclusion of ratio data can lead to major differences between 
UMC and GLS solutions, especially if the ratios are accurate and discrepant 



UNIFIED MONTE CARLO APPROACH 

34 COVARIANCE DATA IN THE FAST NEUTRON REGION – © OECD/NEA 2011 

and the prior values are strongly correlated. Both GLS and UMC strive to 
“fit” accurately known information and to preserve “stiffness” imposed by 
strong prior correlations. Even when GLS and UMC yield very different 
solutions, the ratios calculated from them usually agree quite well if the 
experimental ratio error is small. 

3.4.3 Inclusion of integral cross-section data 

In order to examine the effect of integral cross-section data, a seventh 
experimental value was added to the problem described in Section 3.4.1 
(Table 1). This hypothetical integral cross-section was assumed to be a 
spectrum average of cross-sections for all seven nodes. The weights 
assumed for Nodes 1 through 7 were: 0.1, 0.2, 0.3, 0.2, 0.1, 0.05 and 0.05, 
respectively. A total of eight configurations were considered in which the 
prior correlations as well as prior errors were varied: strong or zero 
correlation and either 5% or 30% error. The integral value experimental 
error was assumed to be small in all cases (2%). GLS and UMC calculations 
were performed (both BF and METR). METR agrees closely with the GLS for 
both mean values and standard deviations. Small differences were seen 
between BF results and the other approaches, probably due to inadequate 
convergence of BF runs for 3.6 × 107 histories (e.g. see Figure 3). 

Thus, we conclude that if the experimental data consist only of direct 
cross-sections and linearly weighted averages (“spectrum-average”) UMC 
(METR) can be used reliably while GLS provides equally acceptable solutions. 

3.4.4 Logarithmic transformation of data 

When data errors exceed 30%, random sampling might produce non-physical 
negative values in the UMC method. One way to avoid this would be to 
transform all “real” space data to natural logarithmic (ln) values, and 
assume these values to be normally distributed (lognormal distribution) for 
sampling purposes. Logarithmic transformations will transform ratio data 
to linear data since ln (x/y) = ln (x) – ln (y). This approach is used by Kawano, 
et al. in the GLS code SOK [10]. 

It is therefore apparent that if only direct cross-sections and ratios are 
included in the evaluated data, the corresponding probability distribution 
for logarithmically transformed variables should be normal. The GLS 
solution in the space of logarithmically transformed variables will then be 
comparable to the UMC solution, but these solutions could very well differ 
from those performed in “real” (untransformed) space. 

To explore this issue, eight GLS and UMC (only METR) calculations were 
performed. Four of these were in “real” space and four in logarithmically 
transformed space. Two of these considered direct cross-sections and two 
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node points having modest (5%) or large (50%) errors for both the prior 
values and two equivocally accurate direct experimental cross-sections.  
A 0.95 correlation was assumed for the prior values and a 0.50 correlation 
for the experimental data. GLS and UMC agree very well for these cases. 

The case “ExC” described above was considered next. GLS and UMC 
produced results differing by ≈ 30% as mentioned earlier. If the variables 
are logarithmically transformed, the GLS and UMC solutions agree quite 
well. However these results are consistent with the GLS solution in “real” 
space which is believed to be wrong, according to the underlying 
assumptions of UMC. 

Finally, an additional case was analysed by GLS and UMC in both “real” 
and logarithmically transformed space. It was assumed that the prior 
errors were 60%, and that they were correlated by either 0.95 or zero. The 
outcome was similar to that just described except the discrepancy for  
0.95 correlation was ≈ 8% (rather than ≈ 30%). This might be expected 
considering the greater breadth, and hence overlap, of the component PDF 
mentioned above. It was also seen that a BF sampling exercise yielded 12% 
negative values for 60% prior error whereas METR produced negligible 
negative values in “real” sampling space. 

We conclude from this that logarithmic transformation of variables 
(either with GLS or UMC) does not circumvent the erroneous biases that 
can occur when ratio data are considered. Only UMC, applied in “real” 
space, will then yield proper solutions. 

3.5 Practical implementation of the UMC approach 

The UMC approach has been implemented in a computer system BEKED 
[Die BEwertung der KErnDaten (Evaluation of nuclear data)] recently 
developed at Karlsruhe Institute of Technology (KIT, FZK). Covariance 
matrices for cross-sections predicted by nuclear models are obtained using 
the Monte Carlo method described in Ref. [25]. The generation of 
covariances involves: i) definition of the best set of parameters for the best 
nuclear models used for the cross-section calculation; ii) definition of 
uncertainties of model parameters; iii) Monte Carlo generation of N input 
data sets for the selected models; iv) model calculations with randomised 
input files; v) calculation of covariance matrices Cov for particular reactions 
using standard expression: 

 ( )( )
=

− σ−σσ−σ=
N

k
jjkiikij NCov

1
00

1  (17) 

where σik is the cross-section corresponding to the i-th primary neutron 
energy in the k-th Monte Carlo history, σi0 is the cross-section obtained 
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using the “best” set of model parameters as described below. The 
corresponding correlation matrix is equal to: 

 ( ) 21−×= jjiiijij CovCovCovC  (18) 

The quality of the data evaluation especially at the absence of 
measurements can be improved by their use for calculations of various 
methods or nuclear models, e.g. models for the description of nuclear level 
density. Results of such calculations should be presented as the statistically 
weighted sum of values obtained in different sets of calculations. In this 
case the value of σi0 is calculated as follows: 

 ( ) ( )
=

σ=σ
M

m
m,imi w

1
00  (19) 

where σi,0(m) is the cross-section calculated for the i-th neutron energy using 
the “best” set of parameters of the nuclear model m selected for 
calculations, e.g. the level density model, wm is the statistical weight of the 
m model obtained from the comparison of the cross-sections calculated 
using this model and experimental data [26], M is the number of models 
applied in the calculations. 

The input data for adopted models are generated using Monte Carlo 
method taking into account the relative weights w(m). The procedure also 
includes the variation of parameters of the optical and pre-equilibrium 
models. Uncertainties of nuclear model parameters used in covariance 
calculations are obtained from the available information, as shown in 
Figure 4 in the case of the level density generalised superfluid model. The 
relative errors of the asymptotic value of the level density parameter were 
obtained using available experimental data [27]. 

Using BEKED the computation of covariances can be performed with 
TALYS [28], ALICE/ASH [29], ECIS [30], CASCADE [31] and other codes. 
Figure 5 shows the example of correlation matrices for the inelastic 
scattering of neutrons from the 52Cr obtained using TALYS and ALICE/ASH 
codes. This interesting comparison demonstrates that the overall structure 
of the two correlation matrices is quite similar in spite of the differences in 
the reaction modelling. The two matrices differ, however, in details, which 
reflects the fundamental fact that covariances are related to the method 
employed in the evaluation. 

Figure 6 shows examples of correlation matrices calculated for proton 
production cross-sections and yields of 24Na in the p + 56Fe reaction at 
incident proton energies up to 1 GeV. The cross-section calculations were 
performed using intranuclear cascade evaporation model implemented in 
the CASCADE code [31]. 
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Figure 4: The relative error of asymptotic values of nuclear level density 
parameters in generalised superfluid model obtained in Ref. [27] from the 

analysis of experimental data. The average value δaasymp/aasymp is 0.042. 

 

Figure 5: Comparison of correlation matrices for the 52Cr(n,n′)  
reaction cross-section obtained using nuclear models  

implemented in TALYS (left) and in ALICE/ASH code (right) 
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Figure 6: Correlation matrices for proton (left) and 24Na (right)  
production cross-sections in the interaction of protons with 56Fe  

calculated using intranuclear cascade evaporation model [31] 

 

3.5.1 Use of experimental data 

The evaluation of cross-sections and covariances with the BEKED code can 
be performed using the unified Monte Carlo approach [23] or the 
generalised least-squares method [24]. In the former case the following 
expressions are used: 
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where k index refers to the k-th Monte Carlo history, σik is selected 
randomly using the uniform probability distribution: 

 ( ) ( ) ( )( )minmaxmin iiiik σ−σξ+σ=σ  (22) 

with ξ being a random number between 0 and 1 and: 

 ( ) ( ) ( ) ( ) ( )[ ]( )calccalc
T

calc
T VV.p σ−σ××σ−σ+σ−σ××σ−σ−∝σ −− 1

exp
1

expexp50exp  (23) 

where V is the covariance matrix, index exp corresponds to experimental 
data while calc to results of model calculations. 
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3.6 Conclusions 

The Unified Monte Carlo (UMC) method has been demonstrated to yield 
evaluated results with values that are close to those provided by the 
Generalised Least Squares method (GLS) in situations where the conditions 
are consistent with the approximations inherent to the GLS approach.  
In other instances, the UMC method yields results that differ from GLS. 
Then, the UMC methods are likely to yield better solutions. The lognormal 
function, transformed to normal by use of a logarithmic transformation of 
variables, can be used to good advantage in both UMC and GLS applications. 
It has been demonstrated that the exponential and uniform distributions 
tend to be problematic and should probably be avoided in evaluation 
applications. 

The Metropolis Monte Carlo technique has been demonstrated to be 
superior to the Brute Force Monte Carlo approach in all situations owing to 
the fact that it converges far quicker to the correct results. So far, however, 
the only practical implementation of the UMC is the Brute Force approach 
described in the previous subsection. Additional work is required to 
develop the Metropolis approach which would greatly facilitate practical 
use of UMC in routine estimation of nuclear reaction covariances. The 
results reported so far indicate that such an approach may be practical 
even in more complex situations. 

A final, related consideration stems from the fact that the experimental 
data available in the EXFOR archival system often have errors and/or lack 
uncertainty information. The UMC method requires this detailed uncertainty 
data to perform properly. Hopefully, the database of experimental reaction 
data will eventually improve with time, and the errors in older data sets 
will be cleaned to a large extent. These advances will surely help in any 
future attempts to use the UMC method for routine production of evaluations. 
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4. Conventional Monte Carlo approaches 

In this section we describe formulations of the Monte Carlo method, which 
compared to the UMC, invoke less rigorous procedures for including 
experimental data. In spite of this imperfection, these formulations were 
extensively and successfully used to produce numerous files with 
covariances. 

4.1 TALYS-MC approach 

4.1.1 Filtered Monte Carlo method 

The Monte Carlo method implemented at NRG basically concerns the idea 
of Smith [18] applied to TALYS. The method is based on nuclear model 
uncertainties only, in which the nuclear model parameter uncertainties are 
chosen such that the existing experimental uncertainties (or rather, spread 
of experimental results) are reproduced as well as possible. In addition, for 
nuclear data library production further “unphysical” adjustment of 
uncertainties may be applied, awaiting more successful, or at least rigorous, 
methods as UMC. 

The basis of the method is to let TALYS perform many calculations, 
whereby each time all L elements of the parameter vector p


 are randomly 

sampled from a normal distribution with a specific width Δpl for each 
parameter pl, i.e.: 

 ( ) ( ) L,l,ppp ll
k

l 10 =Δ±=  (24) 

where we have added a superscript (k) to denote the k-th TALYS run, i.e.: 

 ( ) ( )( )kk T p
 =σ  (25) 

where σ  is the “cross-section” vector. The initial set of input parameters, 
the central values, is denoted as ( )0p


 and the corresponding initial 

calculated cross-section vector as ( )0σ . This initial set can represent e.g. the 
best possible fit to experiment, or a global calculation. After the initial 
calculation, the first set of random parameters ( )1p


 will lead to a set of 

cross-sections ( )1σ  that is different from ( )0σ . From the results, we can 
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obtain the single covariance matrix element ( ) ( )( ) ( ) ( )( )0101
jjii σ−σσ−σ  which is a 

measure of the change of σj relative to the change of σi. In a Monte Carlo 
approach, as a single covariance matrix element alone is rather meaningless, 
since all parameters are simultaneously sampled from a random distribution, 
and no significant information is available after one run. However, after 
performing many calculations, all statistical information like average 
values, uncertainties and covariance matrices will gradually become 
available. The average covariance matrix for cross-sections is given by: 

 ( ) ( )( ) ( ) ( )( ) N,j,i,
K

V
K

k
j

k
ji

k
iij 1

1

1

00 =σ−σσ−σ= 
=

 (26) 

where K is the total number of TALYS runs needed for statistical convergence. 
Similarly, the average relative covariance matrix for cross-sections can be 
obtained: 

 ( ) ( )( ) N,j,i,VR jiijij 100 =σσ=  (27) 

The average calculated cross-sections are: 

 ( ) N,i,
K

K

k

k
ii 1

1

1

=σ=σ 
=

 (28) 

for which one would expect that ( )0
ii σ≈σ  for all elements i. The square root 

of the diagonal elements of the relative covariance matrix R represents the 
uncertainty. Hence, the final calculated cross-sections together with their 
uncertainties can be expressed as: 

 ( ) N,i,Riiii 11final =±σ=σ  (29) 

We can construct similar statistical quantities for the L model 
parameters that we use in every run, such as the average covariance matrix 
for model parameters: 
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while the average model parameters are: 

 ( ) L,l,p
K

p
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k

k
ll 1

1

1
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 (31) 

where we should obtain ( )0
ll pp ≈ . The final model parameters with their 

uncertainties are: 

 ( ) L,l,Rpp P
llll 11final =±=  (32) 
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Of course, Eqs. (30)-(32) are meaningless when we take uncorrelated, 
randomly sampled parameters as a starting point: after enough iterations, 
we will simply obtain as a result what we put in, provided the random 
generator is reliable. The parameter covariance matrix will be Plm = 0 for 
l ≠ m, since we assume to have no a priori knowledge of the correlation of the 
model parameters. Also, Eq. (32) becomes equal to Eq. (24). The statistical 
expressions for the model parameters do however become meaningful 
when we introduce parameter correlations and these emerge naturally 
when we take experimental data into account. 

As mentioned before, we use the collection of experimental data as a 
visual guide to obtain realistic results, i.e. we do not literally include them 
in the optimisation scheme. To obtain the final cross-section uncertainties 
and the parameter correlations, we use a simple binary reject/accept method: 
we put an uncertainty band around the best, or global, data set ( )0σ , such 
that the available scattered experimental data falls more or less inside this 
uncertainty band. We then ensure that our initial parameter uncertainties 
produce cross-section uncertainty bands that are somewhat larger than 
those indicated by the experimental data. If the calculated cross-sections of a 
random TALYS run all fall inside the experimentally determined uncertainty 
band we accept the input parameter set, otherwise we reject it. We generally 
aim for an accept/reject ratio of 1:3. After enough iterations, a full parameter 
covariance matrix is obtained, which now includes off-diagonal correlations 
since only certain combinations of nuclear model parameters led to results 
that were accepted. Simultaneously, the entire cross-section covariance 
matrix is available. 

We have applied the random covariance method consistently for the 
construction of the TENDL library [33], but also for in-depth evaluations, 
such as for all Pb and Bi isotopes [34]. The final parameter uncertainties 
used for our 206Pb evaluation are given in Table 3. It is interesting to compare 
them with the global parameter uncertainties of Table 4, which are used if 
no experimental data is available. To obtain realistic uncertainties for 206Pb, 
i.e. smaller than global uncertainties because experimental data is available, 
some of the parameters were reduced with respect to the global parameters. 

4.1.2 Total Monte Carlo 

With the Monte Carlo covariance method, a single ENDF-6 covariance data 
file is created by averaging the hundreds to thousands of complete nuclear 
data sets coming from TALYS or other codes, see the box at the lower left 
hand side of Figure 7. An alternative approach is to take the effect of a 
single random sampling of nuclear model parameters all the way to the 
end, i.e. to create one ENDF-6 file per random set of input parameters, 
process it and perform an applied calculation. This process is depicted in 
Figure 8. In other words, every random cross-section curve is stored in a  
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Table 3: Uncertainties of some nuclear model parameters  
for 206Pb, given as fraction (%) of the absolute value 

Consult Ref. [35] for a detailed description of these parameters 

Parameter 
Uncertainty  

(%) 
Parameter 

Uncertainty
(%) 

Parameter 
Uncertainty  

(%) 

rV 01.5 nd1  09.4 Γγ 50.0 

aV 02.0 nd2  10.  a (207Pb) 04.5 

nv1  01.9 nd3  09.4 a (206Pb) 06.5 

nv 2  03.0 rSO 09.7 a (205Pb) 06.5 

nv 3  03.1 aSO 10.0 σ2 19.0 

nv 4  05.0 n
sov 1  05.0 gπ (207Pb) 06.5 

nw1  09.7 n
sov 2  10.0 gν (207Pb) 06.5 

nw 2  10.0 n
sow 1  20.0   

rD 03.5 n
sow 2  20.0   

aD 04.0 M2 21.0   

 

Table 4: Global uncertainties of some nuclear model  
parameters, given as fraction (%) of the absolute value 

Consult Ref. [35] for a detailed description of these parameters 

Parameter 
Uncertainty  

(%) 
Parameter 

Uncertainty
(%) 

Parameter 
Uncertainty  

(%) 

rV 02.0 nd1  10.0 Γγ 50. 

aV 02.0 nd2  10.0 a 07. 

nv1  02.0 nd3  10.0   

nv 2  03.0 rSO 10.0   

nv 3  04.0 aSO 10.0 σ2 30. 

nv 4  05.0 n
sov 1  05.0 gπ (207Pb) 07. 

nw1  10.0 n
sov 2  10.0 gν (207Pb) 07. 

nw 2  10.0 n
sow 1  20.0   

rD 04.0 n
sow 2  20.0   

aD 04.0 M2 25.0   
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Figure 7: Flow chart of automated, reproducible evaluation process 

 

Figure 8: Total Monte Carlo: Loop over all  
basic physics and application software 
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different ENDF-6 file, while every ENDF-6 file is complete for all quantities, 
i.e. MF1-15 are used. This approach was later coined (by Mike Herman) 
“Total” Monte Carlo and is an interesting alternative to uncertainty 
propagation with perturbation and covariance software. The general 
principle [36], could easily be applied in criticality studies [37], safety 
coefficients for fast reactors [38] and fusion [39]. 

A final, important, point to note here is that the Monte Carlo covariance 
route (Figure 7) and the Total Monte Carlo route (Figure 8): i) benefit from 
the same advantages such as the ability to handle non-linearities, etc.; 
ii) suffer from the same shortcomings at the front end of our scheme, such as 
the absence of a rigorous formalism of including experimental uncertainties 
(UMC). Hence, if UMC or another improvement is implemented at the front 
end of our cross-section uncertainty propagation system, it will consistently 
improve both routes. Independent of this degree of sophistication is our 
belief that if the results of the two routes differ, it is the covariance route 
which needs to come up with an explanation. 

4.2 Backward-Forward Monte Carlo approach 

With increasing reliance on nuclear models like TALYS [13] or EMPIRE [15] 
to produce evaluated data, there is a quest for a methodology to evaluate 
the covariance data that closely reflects the methods used for evaluating 
the data itself. For example, the continuum region of the 238U and 239Pu 
JEFF-3.1 [40] file was evaluated using the so-called “all-model” methodology, 
where all the cross-sections originate from one TALYS calculation with 
model parameters adjusted in order to account for the available relevant 
experimental data [42]. The Backward-Forward Monte-Carlo (BFMC) 
methodology, described in [41], was designed to stay close to the “all-model” 
evaluation procedure, so that the associated uncertainties truly reflect the 
uncertainties stemming from the evaluation methodology. The BFMC 
method relies on the sampling of model parameter space, and on the use of 
generalised χ2 estimator to quantify the likelihood of each model calculation 
result with respect to a given set of experimental constraints. The derived 
model parameter distribution is then sampled and the image of that 
sampling through the model code is analysed in terms of covariance matrix, 
which quantifies the uncertainties associated with the evaluated data. 

The BFMC method rests on the assumption that the uncertainties 
associated with the evaluated data come from a poor knowledge of the 
model parameter, whose values must be adjusted in order to account for a 
body of experimental data. In this method, the model error component 
stemming from the inability of the model to account for all the experimental 
data is neglected. Therefore, the covariance matrix resulting from the BFMC 
procedure only reflects the experimental data used to constrain the model 
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parameter values as well as the response of the model to variations of 
model parameters. The BFMC method consists in two steps: the Backward 
Monte Carlo step, where the distribution of model parameters leading to 
observables that are consistent with the experiential data is obtained, and 
the Forward Monte Carlo step, where that distribution of model parameters 
is propagated in order to obtain a sampling of observables, which is 
analysed in terms of mean vector and covariance matrix. As indicated by 
the Monte Carlo name, the BFMC method represents the model parameter 
and observable probability distribution functions (PDF) by their Monte Carlo 
sampling. 

4.2.1 Backward Monte Carlo 

For a n-dimensional model parameter { }np,,p 1 , an N-sized, uniform and 
uncorrelated sampling { } N,,inp,,p  11 =  can be built. For each sample, 

{ }inp,,p 1 , one can associate the sample { }ims,,s 1  of the m observable 

produced by using that model parameter sample as input for the model.  
In order to quantify the distance between the calculated observables sample 
{ }ims,,s 1  and the vector of comparable experimental data { }me,,e 1 , the 

generalised χ2 is used as an estimator: 

 ( )( ) ( )
=′

′
− ′−′ν−=χ

m,,l,l
lllllli sese

1

12  (33) 

In Eq. (33), ν is the covariance matrix associate with the experimental 
data set used to constrain the model parameter space. Thus, for each value 
of the index i, we associate the model parameter { }inp,,p 1 , its image 

{ }ims,,s 1  through the model code, and the estimator 2
iχ  the distance 

between that observable sample and the selected set of experimental data 
{ }me,,e 1 . That 2

iχ  can then be introduced in a likelihood function that will 

weight the { }inp,,p 1  sample more when the associated observables 
{ }ims,,s 1  are close to the experimental data. As in [41,43], the selected 

function is: 
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where 2
minχ  represents the minimal value of 2

iχ over a whole sampling 

(which must be large enough for 2
minχ  to be a good approximation of the true 

minimum), and C a normalising constant. The use of the non-rigorously 
derived form for the likelihood function can be justified as an attempt to 
take into account the defaults of the model and not to attribute to the 
parameters, a minute weight originating from model defects. 
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The weighted sampling of the model parameters can then be analysed 
in terms of a mean vector p and covariance vector P. The ith element of the 
mean vector pi = < pi > is bult as follows:  

 Σ ==

=
N,,i

ii

iN,,i

i pw
w

Pp
 11

1
 (35) 

and the matrix element Pij of P is written [using the notations of Eq. (35)]: 

 ( )( )jjiiij ppppP −−=  (36) 

At this step, we have obtained the mean and covariance matrix of a 
sampling of a PDF of model parameters which produce a sampling of 
physical observables that is consistent (in the χ2 sense) with the 
experimental data. 

Before going on to the forward step, let us interpret what is done in the 
Backward Mont Carlo step. The Backward step can be interpreted as a 
Bayesian-like calibration of the model parameter space, with experimental 
constraints in the physical observables space. In such an interpretation, the 
prior would be the uniform and uncorrelated PDF of the model parameter, 
and the likelihood function given in Eq. (34) from the generalised χ2 of Eq. (33). 

4.2.2 Forward Monte Carlo 

The Forward Monte Carlo step is more straightforward than the Backward 
one: a given PDF of model parameters is sampled, and its image through 
the model is a sampling of the distribution of observables that represents 
both the response of the model to parameter variations and the 
experimental data set that was used to constrain the PDF of model 
parameters. 

Starting from the p mean vector and P covariance matrix of the 
distribution resulting from the Backward Monte Carlo, and G a sampling of 
a N-dimensional multivariate unit Gaussian distribution, a sampling of the 
Backward Monte Carlo parameter distribution is produced: 

 ( ) pGPp,pf n +=1  (37) 

from each { }inp,,p 1  sample obtained in this way, the associated 
observables { }ims,,s 1  can be calculated though the model. That sampling 

of the observables can again be analysed in terms of a mean vector s and 
covariance matrix S. This S is the covariance matrix of the evaluated data 
we are looking for. 
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4.2.3 Set-up of the BFMC procedure 

In order to set up the BFMC method, several choices need to be made. 
Those choices will be illustrated by the evaluation of n+239Pu covariances 
that are proposed for the next version of the JEFF file. 

The model code used was TALYS [13]. The energy mesh on which 
model calculations are performed must be chosen in a way that 
compromises between the calculation time and matching the experimental 
data mesh. A 50 point mesh is chosen between 1 keV and 20 MeV. A cubic 
interpolation algorithm used to evaluate the calculated values at the 
precise experimental energies is also chosen. 

The differential experimental data used to calculate the value of the 
generalised χ2 [e in Eq. (33)] must be selected among the known “good” data 
sets. It is sometimes averaged over energy, in the case of high resolution 
data at lower energy which exhibit resonant behaviour that continuum 
models (like those of TALYS) are unable to reproduce. The data is also 
sometimes down-sampled to allow for a closer match between the 
calculation mesh and the experimental mesh. For n+239Pu, the final data 
consists of four (n,γ) data sets with 37 total experimental points, seven (n,f) 
data sets with 210 points (after averaging and down sampling), three (n,2n) 
data set with 31 points and one (n,3n) data set with 1 point. 

The experimental covariance matrix ν entering Eq. (33) must be 
evaluated by analysing the original papers for each of the chosen data sets, 
including correlation within and among data sets. 

The calculation of the keff in the JEZBEL [44] integral experiment is 
linearised and that value is integrated to the generalised χ2 [Eq. (33)] 
representing the experimental constraints to the model parameter values. 

Since it is not practical to sample over more than 450 adjusted model 
parameters [45] for the evaluation of 239Pu neutronic cross-sections in the 
continuum, a subset of “dominant” model parameters is chosen. At this 
point, two types of criteria were used to select parameters. The first one is 
obviously being “dominant” (defined as having a large and global influence 
on calculated cross-sections over a large energy range). The second one has 
to do with the computational feasibility of the model parameter sampling. 
For example, sampling from the parameters associated with dispersive 
optical model potential (OMP) would cause calculation time in excess of 
five hours per sample. Excluding these parameters bring the calculation 
time down to six minutes per sample. Therefore, OMP parameters were not 
sampled, and this constitutes a major limitation of that work on n+239Pu 
covariances. Nine model parameters were selected: the inner fission barrier 
heights for the 237,238,239,240Pu compound nuclei, the level density parameters 
for the 237,238,239,240Pu compound nuclei and the total gamma decay width for 
the 240Pu compound nucleus. 
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The prior distribution of model parameters was chosen to be centred 
on the values used in the evaluation [45], and given a uniform sampling 
relative range of 10% for barrier heights, 20% for level density parameters 
and 30% for the total gamma decay width. 

The sampling size for the Backward Monte Carlo is 10 000 samples, and 
5 000 samples for the Forward step. 

The above choices totally determine the outcome of the BFMC process 
which is then automated to run on a computer. 

4.2.4 Results 

The result of the Backward Monte Carlo process consists in the vector of 
the mean values as well as the covariance matrix of the sampled parameter 
set, conditioned by the set of experimental constraints. In the case of 
n+239Pu, the vector of mean parameter values resulting from the BMC step 
comes in perfect agreement (within standard deviations) with the prior 
values, confirming the original good optimisation of the parameter values 
used in the evaluation. 

The relative standard deviations associated with inner fission barrier 
heights are small (always less than 1%) down to 0.1% for the barrier height 
of the 240Pu compound nucleus. For level density parameters, relative 
standard deviations range from 3% to 8%, and for the gamma total width it 
is of the order of 5%. The correlation matrix associated with the BMC 
covariance matrix exhibits very low correlations between parameters, 
except for the correlation between the level density parameters of the 239Pu 
and 240Pu compound nuclei. Finally, it must be stressed that the BMC 
solution for the model parameter distribution is conditional to the more 
than 450 un-sampled model parameters, and that it is not likely to be the 
absolute optimal choice of model parameters. 

Once the mean vector and covariance matrix of model parameters 
obtained from the Backward step are introduced in the Forward step, a 
sampling of observables is obtained and its mean vector and covariance 
matrix can be calculated. The mean vector and diagonal part of the 
covariance matrix are shown in Figure 9 and compared to the experimental 
data which was used to constrain the model parameter distribution. 
Inspection of Figure 9 allows to visually check that the error bands provide 
a good representation of the experimental values, their dispersion and their 
error bars. It should be noted that at energies higher than 14 MeV, the 
evaluated (n,2n) cross-sections and error band do not overlap with the 
experimental data. Excluding the possibility of experimental errors, that 
difference can be attributed to two possible causes: it is either a 
manifestation of missing an important parameter in the sampled  
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Figure 9: Comparison between mean cross-section vector (solid lines)  
and error band (dotted lines) for the n+239Pu reaction with the  
corresponding experimental data (symbols with error bars) 

 

parameter set, or a defect of the model itself. This points to a limitation of 
the current BFMC method: it does not take into account and quantify the 
influence of model defects. 

The uncertainties associated with the capture cross-section can be 
seen to be ranging from 20% to 60%, between 1% and 10% for the inelastic 
cross-section, of the order of 25% for the (n,2n) cross-section, and 45-50% 
for the (n,3n) channel. The standard deviation of the fission cross-section is 
of the order of a few per cents, with a sharp minimum (0.6%) right above 
1 MeV, in the region where the JEZEBEL spectrum is maximal, and a 
maximum at the opening of the (n,2n) channel. 

Examining the off-diagonal parts of the BFMC covariance matrix reveals 
other interesting features. Figure 10 show the in-channel correlation matrix 
for the (n,γ), (n,f) and (n,2n) channels. Although only in-channel correlations  
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Figure 10: Incident neutron energy-dependent BFMC  
correlation matrices for 239Pu(n,γ), 239Pu(n,f) and 239Pu(n,2n) 
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are shown, cross-channel correlation matrices are also produced by the 
BFMC process. In the figure, the capture cross-section is obviously strongly 
correlated across the whole energy range, a behaviour that is characteristic 
of model-driven covariance matrices. Examination of the correlation matrix 
of the fission cross-section reveals that the 1 MeV to 20 MeV energy spread 
partitioned into three distinct ranges, corresponding to the first, second 
and third fission chances. Each of these three energy ranges exhibits strong 
correlations within that range and strong anti-correlations with the 
neighbouring ranges. Like the capture cross-section, that behaviour is 
characteristic of a model-driven covariance matrix. Finally, the correlation 
matrix of the (n,2n) cross-section exhibits a similar behaviour to that of  
the fission channel. While some may view the characteristic stiffness 
model-driven behaviour as undesirable, it can be argued that since the 
BFMC process closely follows the procedure used by some evaluators in the 
evaluation process, the end result of the BFMC procedure provides a 
realistic assessment of the uncertainties associated with that evaluated 
data. Nevertheless, as evidenced by the problem of too-narrow uncertainties 
for the (n,2n) channel above 14 MeV, the BFMC method is still missing a key 
ingredient, namely the quantification of model defects, and the inclusion of 
that component is also likely to alter the overall shape of the correlation 
matrices. 

In [43], the case of neutron-induced reactions on 89Y has been used for 
a comparison between the covariances produced by the BFMC process and 
those resulting from the GNASH-Kalman method. That comparison showed 
that the covariance matrices produced with these two methods are relatively 
similar, although sizable differences (up to a factor of two) were observed 
for standard deviations. 

4.3 EMPIRE-MC + Generalised Least Squares approach 

The Hybrid method MC+GLSQ is similar to the UMC (Chapter 3) and Filtered 
Monte Carlo (Section 4.1.1) approaches as concerns dealing with modelling 
uncertainties to estimate the model prior. However, experimental data are 
incorporated into the evaluation by the GLSQ method, which combines 
properly-weighed experimental and model covariance matrices. As discussed 
above, such a method had been demonstrated to be equivalent to the UMC 
method as long as we are dealing with measurements of cross-sections but 
not their ratios [20]. 

4.3.1 EMPIRE-MC 

The Monte Carlo (MC) method can be used in EMPIRE in the fast neutron 
region to generate model covariances. Its application to determination of 
covariances for the nuclear reaction observables is very transparent [47]. 
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First, model input parameters that play a significant role in defining reaction 
observables of interest are identified. Uncertainty of those parameters is 
usually taken as recommended in RIPL [50]. Scaling (normalisation) 
parameters can also be introduced to consider model defects. Then, the 
EMPIRE code is run a number of times with relevant input parameters being 
drawn randomly within the assumed limits around the central (optimal) 
values of the parameters. Typically, a Gaussian distribution is used for 
drawing but there is also a provision for the uniform one. Each such 
calculation covers the desired incident energy range and produces a full set 
of cross-sections, spectra, angular distributions and other observables. 
Standard statistical methods are used to obtain mean values and 
covariances (first and second moment of the distribution) for the calculated 
quantities automatically including cross-reaction correlations. The same 
approach can also be used for estimating cross-correlations between any 
two quantities. 

The MC calculations are conceptually straightforward and free of 
certain simplifying assumptions, e.g. the assumption of a linear response of 
the observables to the variation of parameters, which is inherent in the 
Kalman method. There is no need for a preliminary sensitivity calculation 
and the computing time is independent of the employed number of model 
parameters. These advantages come at a price – the number of required 
calculations is in the range of hundreds and the convergence of the results 
has to be demonstrated. Furthermore, the model-based covariances obtained 
with the MC method constitute a reliable benchmark for validating faster 
but linear-model calculations with the Kalman code. 

4.3.2 EMPIRE-MC + GLS 

The EMPIRE-MC method has no provision for incorporating experimental 
data; the uncertainties and correlations depend only on the assumed 
uncertainties of the model parameters and model defects. However, the 
thus-obtained covariance matrix can be used as a prior in a full analysis by 
the generalised least-squares method, taking experimental data and their 
uncertainties rigorously into account. 

This method was employed in recent IAEA evaluations to stochastically 
generate a set of prior cross-section values and their covariance matrix using 
the nuclear modelling code EMPIRE (EMPIRE-MC). This prior information 
was then combined deterministically with available experimental data using 
the GANDR system [14,88-90] to provide the final evaluations (e.g. evaluation 
of neutron-induced reactions on tungsten isotopes [56]). Such an approach 
properly combines all non-linearities from the model with experimental 
data including both experimental uncertainties and correlations. 
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5. Deterministic EMPIRE-Kalman approach 

The Kalman filter technique is used both in the resonance and in the fast 
neutron region. It is based on minimum variance estimation and naturally 
combines covariances of model parameters, of experimental data and of 
cross-sections. This universality is a major advantage of the method. 
Kalman uses measurements along with their uncertainties to constrain 
covariances of the model parameters via the sensitivity matrix. Then, the 
final cross-section covariances are calculated from the updated covariances 
for model parameters. This procedure consistently accounts for the 
experimental uncertainties and the uncertainties of the model parameters 
ensuring that the final cross-section uncertainties are at least as good as 
the smaller of the two. 

The key ingredient of the method is the sensitivity matrix, which 
represents complex nuclear reaction calculations. If we denote the 
combination of nuclear reaction models as an operator M̂  that transforms 
the vector of model parameters p into a vector of cross-sections σ(p) for a 
specific reaction channel, then the sensitivity matrix S can be interpreted 
as the linear term in the expansion of the operator M̂ : 
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We use “hat” to stress that M̂  is the operator rather than a matrix.  
In practice, the elements si,j of the sensitivity matrix are calculated 
numerically as partial derivatives of the cross-sections σ at the energy Ei 
with respect to the parameter pj: 
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In case of covariance determination, the initial values of the 
parameters, p0, are already optimised, i.e. when used in the model 
calculations they provide the evaluated cross-sections. Their covariance 
matrix P0 is assumed to be diagonal while the uncertainties of the 
parameters are estimated using systematics, independent measurements 
or educated guesses. The model-based covariance matrix (prior) for the 
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cross-sections, C0, can be obtained through a simple error propagation 
formula: 

 T
00 SSPC =  (40) 

where superscript T indicates a transposed matrix. 

The experimental data, if available, are included through a sequential 
update of the parameter vector p and the related covariance matrix P as: 
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Here: 

 ( ) 1exp
11

−
++ += nnn CCQ  (42) 

where n = 0,1,2,… and n + 1 denotes update related to the sequential 
inclusion of the (n + 1)th experimental data set. In particular, the subscript 
1 ≡ 0 + 1 denotes updating model prior (n = 0) with the first experiment. 
Vector pn+1 contains the improved values of the parameters starting from the 
vector pn, and Pn+1 is the updated covariance matrix of the parameters pn+1. 

The exp
1+nC  is the cross-section covariance matrix for the (n + 1)th experiment. 

The updated (posterior) covariance matrix for the cross-sections is obtained 
by replacing P0 with Pn+1 in Eq. (40): 

 T
11 SSPC ++ = nn  (43) 

The updating procedure described above is often called Bayesian, 
although Eqs. (40)-(43) can be derived without any reference to the Bayes’ 
theorem as shown in Ref. [52]. 

The experimental covariance matrix, exp
nC , is usually non-diagonal, 

due to the correlations among various energy points Ei. Assuming that 
systematic experimental uncertainties are fully correlated, the matrix 
elements are expressed through the statistical, expsta

nσΔ , and systematic, 
expsys
nσΔ , experimental uncertainties. This yields: 

 ( )( ) ( )( )2expsta2expstaexp
inini,in EEc σΔ+σΔ=  (44) 

and, for i ≠ k: 

 ( ) ( )knink,in EEc expsysexpsysexp σΔ×σΔ=  (45) 

An important technical issue, which has to be addressed in most of the 
covariance methods, is ensuring that the energy grid, Ei, for the model 
calculations and experimental data is the same to enable matrix operations 
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in Eqs. (40)-(43). In the Kalman code this is achieved by bi-spline interpolation 
of model cross-sections and sensitivity matrices. 

The above description can easily be generalised to account for 
correlations among different experiments. To this end one should construct 
a single vector containing all experimental points and the related covariance 
matrix, which now may contain blocks correlating different experiments. 
Only one update is needed in such a case but the covariance matrices are 
much bigger (in the current implementation of the Kalman filter the 
model-based covariance matrix is expanded to match the experimental one). 

The quality and consistency of the evaluated cross-sections can be 
assessed by scalar quantity: 

 ( )( ) ( ) ( )( )
=

−
σ−σσ−σ=χ

N

n
nnn

1

N
exp1expT

N
exp2 pCp  (46) 

where pN is the final set of model parameters corresponding to the 
inclusion of N experiments. A value of χ2 per degree of freedom exceeding 
unity indicates underestimation of the evaluated uncertainties. It is a fairly 
common practice to multiply such uncertainties by a square root of χ2 per 
degree of freedom to address this issue. 

The evaluator may choose to perform a sequential update using 
experimental data for several/all reactions or just for a single one. In the 
former case, all considered reactions are correlated and unique set of 
parameters along with the related covariance matrix are produced. On the 
other hand, poor experimental data in one reaction channel can negatively 
influence predictions for other channels. 

We note that EMPIRE-Kalman system is a general and powerful tool for 
evaluation of nuclear reactions. In addition to covariance calculations it 
may also be used to adjust model parameters to reproduce experimental 
cross-sections and other observables within the selected reaction models 
and initial uncertainties of model parameters. Therefore, the Kalman filter 
can be used throughout the evaluation procedure to ensure consistency 
between cross-sections, model parameters and related covariance matrices. 

5.1 Example of application of EMPIRE-Kalman approach in EMPIRE 

Application of the EMPIRE-Kalman approach is illustrated in two examples. 
We calculated neutron cross-sections and their covariance matrices for 
55Mn and 90Zr at 63 incident energies between 1 keV and 25 MeV, 
considering the five reaction channels, total, elastic, inelastic, (n,2n), and 
capture. We used data from 22 experiments for 55Mn and 7 experiments for 
90Zr. First, we discuss 55Mn and focus on energies above the ORNL 
evaluation [87], that is, above 122 keV. 
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Figure 11 compares our total cross-sections with ENDF/B-VII.0 and three 
sets of experimental data [58-60] found to be the basis of the ENDF/B-VII.0 
evaluation. The optical model predicts a smooth, averaged behaviour of 
cross-sections and cannot reproduce fluctuating values extending as high 
as 4 MeV and adopted by the ENDF/B-VII.0. Accordingly, below 4 MeV we 
adopted the uncertainties deduced from the experiments. Since related 
experimental information was limited, we estimated these uncertainties 
conservatively as 5%. At higher energies, our uncertainties are based on 
Kalman and take into account careful measurement by Cierjacks, et al. [58]. 

Figure 11: Reaction 55Mn(n,tot); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data [58-60] 

Relative uncertainties are in red (point-wise representation) 

 

In Figure 12, 55Mn(n,n′) reaction is shown. Our cross-sections are  
in reasonable agreement with the ENDF/B-VII.0 evaluation. Relative 
uncertainties are fairly large at the threshold region, while in the energy 
range of about 0.7-10 MeV they drop to about 15-30%. As expected, the 
uncertainties rise at higher energies where cross-sections become small. 

Cross-sections for 55Mn(n,2n), obtained with EMPIRE-Kalman using the 
experimental data of Refs. [61-72], appear to agree well with ENDF/B-VII.0 
as shown in Figure 13. Relative uncertainties exhibit expected U-shape, 
starting with large values at the threshold region of ~10 MeV, and essentially 
flat up to about 22 MeV. At even higher energies, in the absence of 
experimental data, the uncertainties again increase. 
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Figure 12: Reaction 55Mn(n,inl); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data 

Relative uncertainties are in red 

 

Figure 13: Reaction 55Mn(n,2n); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data [61-72] 

Relative uncertainties are in red 
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Figure 14 displays 55Mn radiative capture cross-sections and their 
uncertainties. Similar to the (n,tot) reaction, below 1 MeV the ENDF/B-VII.0 
adopted fluctuating cross-sections following the experiment by Garg,  
et al. [73]. Consequently, we adopted Garg’s experimental uncertainties.  
At higher energies the EMPIRE-Kalman method was adopted. Relative 
uncertainties are lower than 10% in the energy range of 0.1-15 MeV, 
followed by the expected sharp increase at higher energies. 

Figure 14: Reaction 55Mn(n,γ); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data 

Relative uncertainties are in red 

 

We proceed with the discussion of 90Zr reactions showing first 90Zr(n,tot) 
and 90Zr(n,el) in Figures 15 and 16. Total as well as elastic cross-sections 
compare well with ENDF/B-VII.0 and experimental data. Except for the  
low-energy region, the uncertainties are fairly flat around 2.5%. In contrast, 
uncertainties for (n,inl) are much larger throughout the whole energy range 
(Figure 17) since no experimental data were used. 

Finally, in Figure 18 the 90Zr(n,2n) cross-sections obtained with the 
EMPIRE-Kalman method are shown. Compared are prior, posterior and ENDF/  
B-VII.0 cross-sections with experimental data [78-82] included in our 
evaluation showing good agreement with both ENDF/B-VII.0 and data. 
Relative cross-section uncertainties exhibit the expected U-shape. 
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Figure 15: Reaction 90Zr(n,tot); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data [74-77] 

Relative uncertainties are in red 

 

Figure 16: Reaction 90Zr(n,el); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data 

Relative uncertainties are shown in red 
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Figure 17: Reaction 90Zr(n,inl); prior, posterior  
and ENDF/B-VII.0 cross-sections are shown 

Relative uncertainties are in red 

 

Figure 18: Reaction 90Zr(n,2n); prior, posterior and ENDF/B-VII.0  
cross-sections are compared with experimental data [78-82] 

Relative uncertainties are shown in red 
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These covariances should be considered as being of intermediate 
quality. For high-fidelity results one should perform a complete re-evaluation 
of cross-sections simultaneously with covariances analysing all experimental 
data. 55Mn represents the additional challenge due to high-resolution 
measurements that exhibit strong fluctuations up to a few MeV. 





GANDR APPROACH 

COVARIANCE DATA IN THE FAST NEUTRON REGION – © OECD/NEA 2011 65 

6. GANDR approach 

6.1 Introduction 

The GANDR system [88,89] is a suite of Fortran programs and associated 
data libraries that can be applied to a variety of tasks in the evaluation of 
neutron-induced nuclear reaction data. While the underlying statistical 
engine ZOTTVL [90] is application independent, a number of features have 
been included in GANDR to support the Global Assessment of Nuclear Data. 
The term “global assessment” refers to the simultaneous evaluation, or 
estimation, of the covariances of nuclear reaction data for many target nuclei 
(typically over 100), using methods that, while approximate, automatically 
enforce a high level of nuclide-to-nuclide consistency. An evaluation 
framework that is suitable for a global assessment of nuclear data is 
described below. 

6.2 Methodology of covariance estimation 

Because of the large scope of a global data assessment, it is essential to 
employ procedures that avoid extensive “tuning” to accommodate individual 
situations. While this is necessary, it is also permissible, because the 
ultimate goal is to provide a consistent uncertainty baseline for experiment 
planning, not necessarily to provide a complete characterisation of all 
aspects of the data and their uncertainties. In this respect, global data 
assessment differs from “data evaluation”. 

In the current framework, we make the simplifying assumption that 
most fine details, such as the energy-dependent shape of the cross-section 
in the neighbourhood of individual resonances, fine details of neutron 
scattering angular distributions, and most emitted-particle angle-energy 
distributions, are sufficiently constrained by nuclear physics that they can 
be treated as known quantities. 

In contrast, nuclear physics provides relatively little guidance on the 
absolute magnitude of integrated neutron cross-sections. The accuracy of 
evaluated data averaged over an energy region rests ultimately on the 
absolute accuracy of available measurements in that region. Unfortunately, 
real measurements are susceptible to various types of measurement error, 
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such as problems with regard to the determination of the neutron flux, 
sample size, background or detector efficiency. 

We take into account such measurement uncertainties by assuming 
that the true value of each reaction cross-section of interest differs from 
the best existing evaluation by a smoothly varying correction function A(E). 
The global approach allocates to each material 25 “reaction types” (some 
being “lumped partial” reactions), so that exactly 25 functions A(E) are 
defined for each material. The “global evaluation of data uncertainties” 
refers to a determination of the uncertainty in the functions A(E). In addition, 
each function is allowed to vary freely only at a modest number of energy 
“nodes”, the function being obtained at other energies by linear-linear 
interpolation. The parameters of the global assessment, then, are the 
numerical values of the 25 functions A(E) at the set of energy nodes 
selected for each material. 

An energy grid that seems suitable for global data assessment is given 
in Table 1-1 of [89]. This grid includes 74 nodes spanning the energy range 
from 10–5 eV to 150 MeV, which is the range covered by several recently 
released data libraries. 

The energy grid in the lower eV range is covered, for the most part, 
with quarter-lethargy steps (four steps per decade). Fifth-lethargy steps are 
employed from 0.1-100 keV, and tenth-lethargy steps from 0.1-150 MeV.  
In the important thermal energy range from 0.01-0.1 eV, a higher density is 
employed. In the cold-neutron range below 10–3 eV, a lower density is used. 

For practical reasons, a fixed limit of 700 parameters is imposed for 
each GANDR material. The dimensioning of arrays in the programs permits 
the simultaneous evaluation of these 700 parameters for up to 130 materials, 
giving a total of 91 000 parameters. In the present GANDR framework, 
global data assessment proceeds by repeatedly updating the full covariance 
matrix of the indicated 91 000 parameters. This matrix is large, but 
manageable, with one full copy occupying 33.2 gigabytes of disk space. 

To save space, the programming logic of the GANDR programs 
eliminates parameters associated with neutron energies falling below 
reaction thresholds. Even with this space-saving feature, meeting the 
700-parameter limit requires that the above-mentioned 74-node evaluation 
grid be “thinned” for 32 of the current 130 materials. For actinides, we 
employ a thinning scheme that preserves this grid in the important energy 
range from 0.01 eV to 40 MeV. 

6.3 Database support for large-scale projects 

In addition to the mentioned Fortran programs, the distributed GANDR 
system includes numerical files that provide support for large-scale 
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evaluation projects. One is the Master PENDF Library (MPL), and the other is 
the Master EXFOR Library (MEL). 

In the GANDR evaluation framework, the final evaluated 
energy-dependent cross-sections for a given reaction are considered to be 
the reference values taken from the MPL, multiplied by the statistically 
adjusted correction function A(E). In the current release, GANDR-3.1, the 
MPL is based on pointwise processing of ENDF/B-VII.0 with NJOY99.259. 
Resonances were reconstructed with an error tolerance of 0.2% and the 
data were Doppler-broadened to 300 K. 

The current MEL was constructed from the international EXFOR 
library [91], available online and on electronic media from the international 
data centres [92]. We currently access EXFOR in the Linux environment 
using the ENDVER-GUI package produced on CD-ROM by the Nuclear Data 
Section of the International Atomic Energy Agency in May 2005. 

More specific information regarding the preparation of the MEL is 
contained in Ref. [93]. The current MPL and MEL are contained in ASCII 
format in the large auxiliary data file GFILES (gfiles.tar.gz), which is 
available online, along with the GANDR-3.1 codes and documentation, at 
www-nds.iaea.org/gandr. 

6.4 The global assessment 

In performing the present global data assessment, we first initialised the 
91 000 nodal values of the functions A(E) to unity, and we introduced a 
non-informative prior (100% uncertainty, fully uncorrelated) for the 
covariances of these values. 

We then introduced, from MEL, measurements of total cross-sections 
for 6Li, 10B, 197Au, 235U, 238U and 239Pu. Measurements of the totals on 
different targets are only weakly correlated, so it is possible to incorporate 
total cross-section data in a series of single-material library updates. 

In a typical situation, a series of data measurements has a mixture of 
correlated (e.g. sample size) and uncorrelated (e.g. counting statistics) 
uncertainties. EXFOR provides no information regarding the extent of data 
correlations. For this reason, the GANDR system provides tools for the user 
to supplement the EXFOR uncertainty information with private estimates 
of correlated uncertainties. In the default correlated-uncertainty treatment, 
the standard deviation due to fully correlated uncertainties is assumed to 
have a constant magnitude equal to one-half the standard deviation due to 
uncorrelated uncertainties (as reported in EXFOR) for the most accurately 
measured point in a given author’s data. 

The assumption of significant correlated uncertainty can be used to 
advantage in reducing the computational requirements of the task. In the 
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current GANDR framework, there are energy nodes at 0.794, 1.000 and 
1.259 MeV (the above-mentioned tenth-lethargy steps). Suppose that a 
measurer were to report a total cross-section measurement at 500 equally 
spaced energies between 0.794 and 1.259 MeV. The impact of this 
measurement on the evaluated uncertainty of the GANDR parameter at 
1.000 MeV would be little changed if the measurer had reported, instead, 
only every fifth data point in that region. In either case, the summation 
over energy inherent in the least squares solution in GANDR would drive 
the effect of the uncorrelated component of uncertainty down to nearly 
zero, leaving only the correlated component. 

A thinning strategy based on the above considerations was employed 
in introducing the total cross-sections in the present data assessment.  
A separate thinning factor was chosen for each author’s measurement, so 
the effective number of data points retained for each measurement was  
no more than a few hundred. This produced a significant savings in 
computational effort. 

In Figure 19, we show the GANDR results from introducing total 
cross-section data for 10B from EXFOR. One interesting result is that the 
experimental data (symbols) support a higher value for the 10B total 
cross-section in the neighbourhood of 1.25 MeV than is given in the 
reference ENDF/B-VII.0 evaluation (dashed line). As expected, the GANDR 
adjusted curve closely follows the trend of the EXFOR data. 

Figure 19: 10B total cross-section after  
introduction of EXFOR total cross-sections 
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7. Dispersion analysis 

Differences among various evaluated files may provide a useful indication 
of the common-sense uncertainties. It is quite intuitive that recommended 
uncertainty should not be drastically different from the spread of evaluations 
available in the major libraries. In particular, uncertainties considerably 
smaller than the spread of the evaluations raise a justified concern. 

The dispersion analysis is of non-statistical nature and reflects 
vagueness of the available experimental information, ambiguity in the 
evaluation methodology including nuclear reaction modelling as well as 
difference of opinion among the evaluators. All these factors are consistent 
with our understanding of the uncertainties (or in general covariances) as 
the measure of dubiety in the final result. The dubiety reflecting our 
knowledge and associated with the choice of experimental database, nuclear 
reaction theory and their utilisation in deriving the recommended values. 

In order for the dispersion analysis to be sensible a few basic 
conditions must be met: 

• Ideally, the same, or at least qualitatively equivalent, experimental 
databases should be used by all evaluators, which implies that the 
evaluations should be performed within a limited period of time. 

• The evaluations should be of comparable quality, i.e. should use the 
established techniques and up-to-date modelling so that it is 
impossible to argue that one of the evaluations is clearly superior to 
others. 

• Obviously, the analysed evaluations must result from independent 
work by different groups. 

If any of these conditions is not fulfilled the dispersion analysis might 
be meaningless or misleading. For example, the presence of a very precise 
and reliable experiment in one or more evaluations disqualifies those 
evaluations in which this particular experiment is not taken into account. 
Similarly, obviously poor and discrepant evaluations should be excluded 
from the analysis. In both cases, their inclusion would cause permanent 
overestimation of uncertainties. 
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With the above conditions taken into account the dispersion analysis 
might be a useful tool for establishing sensible uncertainty margins and 
screening for unrealistically small or large uncertainties. In Figure 20 we 
show an example of inelastic scattering of neutrons on 56Fe. In the 
threshold region differences among cross-sections recommended in ENDF/ 
B-VII.0, JEFF-3.1 and JENDL-3.3 reach 30%, which dramatically exceeds the 
uncertainty of 1.8% claimed by JEFF-3.1. In this context the 18% reported by 
JENDL-3.3 seems more realistic. 

Figure 20: Ratio of cross-sections for 56Fe(n,n′) reaction  
available in JEFF-3.1 and JENDL-3.3 libraries to the ENDF/B-VII.0 

In order to smooth strong fluctuations the cross-sections were averaged over 40 energy bins. 
Compare dispersion among evaluations with the uncertainties quoted by JEFF-3.1 and JENDL-3.3. 

 Neutron Group Energy (MeV)



AVOIDING UNPHYSICALLY LOW UNCERTAINTIES 

COVARIANCE DATA IN THE FAST NEUTRON REGION – © OECD/NEA 2011 71 

8. Avoiding unphysically low uncertainties 

8.1 Model defects 

The collision of a nucleon with a nucleus represents a quantum mechanical 
many-body problem for which no rigorous ab initio calculations starting 
from the nucleon-nucleon interaction are feasible at present. In order to 
overcome this problem, nuclear models have been formulated, which 
describe various aspects of the collision. Usually these models contain 
effective parameters simulating specific features of the many-body problem, 
but obviously they cannot account for all peculiarities of the reaction 
processes. Especially it may happen that variation of the model parameters 
over the whole domain does not match the actual value of the observable. 
This so-called model defect has to be taken into account in an evaluation of 
nuclear data based on modelling. 

Estimates of the model defects and the associated covariance matrices 
are difficult because the failures are of non-statistical nature and cannot be 
determined via theoretical considerations. In order to quantify model defects 
one must take recourse to experimental data. However, double counting 
must be avoided using e.g. only data of neighbouring nuclei in the same 
energy range, which are not used in a subsequent evaluation. 

At present there exists no established method to determine model 
defects. In the following we propose two procedures: i) the scaling procedure 
which defines energy-independent scaling factors for each reaction channel 
of the isotope; ii) remodelling which defines an energy-dependent scaling 
factor for each reaction channel. 

First let us define the common framework: experimental data from N 
neighbouring isotopes are used which are presumed to be equally well 
described by the applied model as the isotope actually considered. This 
procedure is based on the condition that for most of the neighbouring 
isotopes experimental data are available within a certain energy range. The 
energy region is divided into M bins with energy Em, m = 1,…,M at the centre 
of the m-th bin. In addition, an index set Ebin(m,n) is introduced in order to 
identify experimental data points for the n-th isotope in the energy bin m. 
We introduce the bin quantities: 
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where ( )n,m,c
jw  is the chosen weight of the j-th point in the the m-th energy 

bin. Ej is the energy of the j-th experimental point and ex and th refer to 
experimental and model cross-section, respectively. In this contribution we 
choose: 
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which emphasises the scaling factors at the highest values of the 
cross-section. These definitions allow a compact formulation of the two 
proposals for a covariance matrix associated with model defects. 

8.1.1 Model defects from scaling procedure 

In this procedure one defines first an overall scaling factor D(c) via averaging 
over all neighbouring isotopes: 
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The weights ( )n,c
mw  of the m-th energy bin averaged over the whole 

energy range are given in analogy to those for the j-th point in the m-th 
energy bin in Eq. (49) by: 
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The covariance matrix for the reaction channel c of the considered 
isotope is then introduced via: 
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The first term of Eq. (53) is due to the defect of the model, while the 
second term reflects the uncertainty in the scaling factor due to the limited 
accuracy of the experimental data. However, it must be remarked that even 
if Eq. (53) is a reasonable ansatz, it is not fully of statistical nature. 

8.1.2 Model defects associated with remodelling 

The formulation of an energy-dependent scaling factor: 
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c ED
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1
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changes the inherent features of the original model (e.g. the energy 
dependence) and we denote this procedure as remodelling. A reasonable 
covariance matrix is given by: 
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with: 
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8.1.3 Example 

The procedures defined in this section allow estimating the model defects, 
comprising the corrections of the mean value and the associated 
covariance matrix for the relevant reactions. In order to show the feasibility 
we apply the procedure to neutron-induced reactions of oxygen in the 
energy range between 5 and 60 MeV. Apart from a slightly adapted 
neutron-oxygen optical potential we use the code TALYS with default 
parameters as nuclear model description. We tested both procedures using 
total cross-section data from the EXFOR library of the neighbouring nuclei 
12C, 14N, 19F, 23Na and 24Mg. In Figure 21(a) the scaling factor D(c) = 0.9735 as 
well as the energy-dependent remodelling factor D(c)(Em) are displayed. The 
latter exhibits only a small energy dependence beyond 20 MeV resulting in 
similar uncertainties of the model defects for both methods [Figure 21(b)]. 

In Figure 22 we show the correlation matrix due to model defects for 
the total cross-sections obtained by the scaling method of Section 8.1.1.  
In Figure 23 the same correlation matrix obtained via the remodelling 
procedure of Section 8.1.2 is displayed in comparison to Figure 22. 
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Figure 21: (a) The scaling factor and (b) the square root of the variances in % 
of the model cross-section for n-16O total cross-sections for both methods 

The results of the scaling method are denoted in red and those of remodelling in green 
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Figure 22: Correlation matrix of the model defects in the total  
cross-sections of oxygen using the scaling procedure of Section 8.1.1 

The model calculations are performed with the TALYS code with adapted optical potential 

 

Figure 23: Correlation matrix of the model defects in the total  
cross-sections of oxygen using the remodelling procedure 

 

Both procedures yield a similar gross structure of the correlations, 
which reflects the fact that the overall scaling factor of Section 8.1.1 
matches approximately the slightly-varying energy-dependent factors 
D(c)(Em) of the remodelling procedure beyond 20 MeV. 
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8.1.4 Scaling in the EMPIRE-Kalman approach 

The concept of scaling model predictions, or lack of such a possibility within 
the model formulation, was recognised to contribute to unrealistically low 
uncertainties often resulting from the Kalman filter analysis involving a 
vast amount of experimental data. The uncertainties obtained in such 
cases are far lower than systematic uncertainties even of the most precise 
measurement. This happens even for a single experiment in spite of the 
fact that proper experimental covariances, accounting for systematic 
uncertainties, are supplied as an input to the Kalman code. This issue 
raises serious concerns and puts the validity of the approach in question. 

One of the sources of the problem is the implicit Kalman filter 
assumption that the model itself is perfect. Thus, any uncertainties in model 
calculations are only due to the uncertainties of the model parameters. 
Often, the shape of a calculated excitation function is constrained, i.e. even 
with a substantial variation of model parameters it is not possible to alter 
the shape or the absolute value of the function in an arbitrary fashion. This 
point is illustrated in the example of the 93Nb(n,tot) reaction in Figure 24. 
The depth and radius of the real part of the optical model potential are 
essentially determining the shape and magnitude of the total cross-section. 
The two quantities are known to be strongly correlated, therefore it is  

Figure 24: Effect of 5% variation of the depth of the real  
optical potential on the 93Nb(n,tot) cross-section 

The baseline values are in red 
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sufficient to consider only one of them. In Figure 24 we show the change of 
total cross-section in response to the variation of the real potential depth 
by 5%. One observes that this does not provide for scaling of the absolute 
value of the cross-section. Such scaling is actually the degree of freedom 
that would be needed to accommodate systematic uncertainties in the 
measurements that in most cases amount to scaling cross-sections up and 
down without changing its shape. Lack of this possibility might have a 
dramatic effect on parameter uncertainties – any scaling of the cross-section 
appears incompatible with the model calculations since it cannot be 
reproduced by any sensible variation of the model parameters. If the model 
were perfect we would have to conclude that the systematic experimental 
uncertainties are overestimated. To avoid such a reduction we introduce 
intrinsic model uncertainty by defining a model parameter, pmod, that 
multiplies model predicted cross-sections. The prior value of this parameter 
is one. 

In order to simulate scaling of the absolute value the new block is 
constant in energy: 

 ( ) ( )EpE σ⋅=σ′ mod  (57) 

Our preliminary studies indicate that the Kalman filter adjusts the 
uncertainty of the scaling model parameter, Δpmod, to reproduce the smallest 
systematic uncertainty. Thus, if the whole energy range is adequately 
covered by the experimental data the final result is well-defined. In the 
energy ranges without measurements the result, to some extent, depends 
on the initial (assumed) uncertainty of the new parameter, Δpmod. Naturally, 
if no experimental data are available the discussed contribution to the 
uncertainty is defined by Δpmod. In such a case, however, the cross-section 
uncertainties are determined primarily by the propagation of uncertainties 
of the genuine model parameters, which are much larger than the intrinsic 
model uncertainties. The latter can, therefore, be neglected especially since 
there should be no uncertainties small enough to raise any concern. The 
procedure is particularly useful to simulate intrinsic uncertainties in the 
optical model, i.e. it is meant to be applied to the total cross-sections. These 
are often very well measured which, combined with the rigid shape of the 
optical model predictions, results in extremely low uncertainties. There is 
no need to invoke such a procedure for other nuclear reaction models, 
e.g. compound nucleus and pre-equilibrium emission, as their formulations 
include parameters which, to a large extent, provide for a scaling degree of 
freedom. 

Practical application of the method is illustrated in Figure 25 for the 
case of total cross-section on 90Zr. At energies above 3 MeV the standard 
EMPIRE-Kalman method results in uncertainties of the order of 2%, which is 
smaller than the 2.8% adopted as a systematic error of experimental data. 
Including the scaling degree of freedom increases predicted uncertainties  
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Figure 25: Cross-sections (black lines) and uncertainties (dashed red  
lines) for 90Zr(n,tot) obtained by applying standard EMPIRE-Kalman  

method constrained by the four experimental data sets 

The solid red line demonstrates increase of the uncertainties  
resulting from adding the scaling degree of freedom 

 

in the whole energy range. In particular, at energies above 3 MeV, the 
calculated uncertainties are always above the expected 2.8% limit, indicating 
that the rigidity of the model is responsible for the suspiciously small 
uncertainties. Simulating intrinsic model uncertainty by introducing scaling 
degree of freedom is a simple and effective way of alleviating the problem. 

Correlated sampling of energy-dependent scaling parameters, a 
conceptually similar solution, has also been adopted for the MC approach 
in EMPIRE. In this way, the minimum uncertainty of the calculated 
cross-section is limited by the uncertainty of the scaling parameter which 
is taken as the model uncertainty. 

We note that scaling of the prior combined with the experimental 
systematic uncertainty might open the door for the Peelle’s Pertinent 
Puzzle [83-86]. The Kalman-predicted posterior cross-sections may deviate 
from the experimental data, and adequate measures should be taken to 
prevent it. 
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9. Comparison of different methods 

9.1 Comparison of model-based covariances obtained with Monte Carlo 
and Kalman 

In this section Kalman and MC approaches are compared, and it is 
attempted to understand their differences. The EMPIRE code was used to 
perform nuclear reaction calculations, which enter both approaches, 
keeping inputs in both methods identical. Thus, the potential source of 
discrepancies, inevitable if two different reaction codes were used, was 
avoided. Calculations were performed for total, elastic, inelastic, (n,2n), 
capture, (n,p) and (n,α) reactions on 89Y up to an incident energy of 20 MeV. 
The same uncertainties of model parameters were assumed and the MC 
parameters were sampled from a Gaussian distribution. 

Uncertainties of the considered cross-sections resulting from the 
variation of a single model parameter were compared. Figure 26 shows 
such a comparison for one of the key parameters – depth of the real part of 
the optical potential. There is a reasonable agreement between model-based 
uncertainties obtained using the MC and Kalman methods. Also, for the 
remaining parameters the results are close to each other. The only exception 
is the pre-equilibrium strength, for which the non-negligible differences 
were obtained. The reason for this discrepancy might be related to the fact 
that the relatively strong variation (20%) used in the calculations, together 
with the Gaussian distribution, allowed for values considerably far from the 
central value in the MC simulations. Because of this, the MC results may be 
demonstrating sensitivity to the non-linear dependence of the cross-sections 
on the parameters. 

Figure 27 compares correlation matrices for the total cross-sections. 
Again, both methods yield essentially equivalent results – the chess-board 
like pattern in the correlation matrix is the same in both methods. Only the 
transition between negative and positive correlations above 10 MeV is more 
gradual in the MC than in the Kalman approach. 

These numerical tests indicate that, in absence of experimental data, 
both methods are practically equivalent as long as the non-linearity 
(higher-order) effects in the Kalman approach are taken into account.  
To minimise the impact of non-linearity, it was found that the sensitivity 
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matrix should be calculated using model parameter variations that are 
close to the parameter uncertainties. 

9.2 Inclusion of experimental data 

Inclusion of experimental data into the covariance determination still 
appears to be a major issue. The Kalman method accounts for them 
naturally but suffers from the general deficiency of all least squares type 
approaches – uncertainties tend to reach values that are considered far too 
small if very many experimental data are included in the analysis. One 
practical remedy to this problem is to prevent uncertainties of the model 
parameters to fall below some sensible limit (say 3%). While this procedure 
is simple and effective, it introduces a highly arbitrary component into the 
estimation of uncertainties. In the present comparison we have refrained 
from resorting to this solution. 

The classical formulation of the MC approach does not account for the 
experimental data. Thus, in the present study, the prior (model-based 
cross-section covariance), obtained with the EMPIRE-MC calculations, was 
fed into the Generalised Least Squares code ZOTT that was incorporated in 
a more general GANDR system by D.W. Muir [51]. In the following, we refer 
to this approach as EMPIRE-MC-GANDR. The same nuclear reaction input 
was used to produce sensitivity matrices for Kalman and the MC based 
priors for GANDR. 

Figure 26: Comparison of the model-based cross-section  
uncertainties obtained with Kalman (black) and  
Monte Carlo (red) methods for 89Y+n reactions 

Calculated uncertainties result from the variation of the real depth of the optical potential 
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Figure 27: Comparison of the model-based cross-section  
correlations for the 89Y(n,tot) reaction obtained with  

Kalman (top) and Monte Carlo (bottom) methods 

The correlations result from the variations of the real depth of the optical potential 
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Figure 28 illustrates the effect of including experimental uncertainties 
of the 89Y(n,2n) reaction, estimated using the two methods. The pure 
model-based predictions are very similar. (flat behaviour of the GANDR 
results at higher energies is believed to be an artefact related to the 
too-coarse energy mash). As expected, adding experimental data reduces 
uncertainties in both methods, but the reduction in the Kalman approach is 
stronger than in the GANDR method. One should note, however, that 
cross-correlations between different experiments were considered in GANDR 
but not in Kalman. Inclusion of the experimental data for all of the 
remaining channels (including nearly 1 000 points for the total) reduces 
(n,2n) uncertainties by about 30% in GANDR. In Kalman this difference is 
practically negligible around 14-15 MeV, i.e. in the range in which many 
(n,2n) measurements are available as can be seen in Figure 29. This figure 
also shows the effect of including all experimental data on the posterior 
cross-sections. Additional experimental points constrain model parameters 
so that the fit is slightly worse than in the case of using (n,2n) data only. 
There is a considerable advantage in simultaneously reproducing all reaction 
channels with the same set of model parameters, as cross-correlations 
among various reaction channels are also produced. 

Figure 28: Comparison of the 89Y(n,2n) cross-section  
uncertainties obtained with GANDR (solid lines) and Kalman  

(dashed lines) illustrating inclusion of experimental data 

The top panel shows the model-based uncertainties (prior), the middle panel includes  
(n,2n) data only, and the bottom panel includes experimental data for all reaction channels 
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Figure 29: Comparison of the 89Y(n,2n) cross-sections  
and uncertainties obtained with Kalman 

“Prior” indicates default calculations and related model-based uncertainties, “(n,2n)” takes into 
account (n,2n) experimental data, and “Full” includes experimental data for all reaction channels 

 

Figure 30 presents correlation matrices obtained with the two methods. 
The comparison is to some extent obscured by the low-energy resolution in 
the case of GANDR, but the general structure of the two matrices can  
be considered similar. In the Kalman matrix one notes relatively weak 
correlations below 15 MeV due to a large number of experimental data 
available in this region. At higher energies, the correlations are stronger as 
expected for the model dominated cases. The anti-correlations observed 
above 28 MeV can be explained as due to the pre-equilibrium emission that 
decreases (n,2n) cross-sections in the maximum of the excitation function 
and increases them in the high-energy tail. 

Finally, in Figure 31 we show 89Y(n,tot) and illustrate the effect of 
including experimental data on the uncertainties of the total cross-section 
using the Kalman method. We note that a 2.8% systematic error was 
assumed for all experiments but no cross-correlations were allowed. Using 
the extended set of Abfalterer data (>400 points), the uncertainties are of 
the order of 1.5%. Adding about 200 points by Foster brings them down to 
about 1%, and including the remaining experiments results in a further 
reduction to about 0.75%. Many experimentalists would consider such low 
uncertainties as unrealistic. 
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Figure 30: The correlation matrix for the 89Y(n,2n) reaction  
obtained with Kalman using full set of experimental data for  

all reaction channels (top); the same for MC method (bottom) 
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Figure 31: Uncertainties of the 89Y(n,tot) cross-sections obtained  
with Kalman including (n,tot) data by Abfalterer (blue),  

(n,tot) data by Foster and Abfalterer (red), and full set of  
experimental data for all reaction channels (black) 
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10. Covariances for experimental data 

10.1 Estimation of unknown systematic uncertainties 

The analysis of uncertainties for the BROND-3 evaluations is carried out 
now on the basis of the unrecognised error-estimation method [95]. Along 
with a consistent consideration of statistical errors of experimental data 
the method allows to determine some systematic data uncertainties 
usually underestimated by their authors and to establish also some implicit 
correlations of data. This approach was used successfully for evaluations of 
the standard neutron cross-sections [96] and is nowadays routinely applied 
to construct the uncertainties and corresponding covariance matrices of 
the main reactor structural materials and most important fissile nuclei for 
the BROND-3 library. 

Construction of the covariance matrices for evaluated uncertainties is 
usually confronted by two principal difficulties. The first relates to a 
disagreement between the uncertainty distribution based on the error 
estimations declared by authors and the reasonable statistical laws for 
uncertainties. Attempts to improve the distribution by rejection of some 
outlying data introduce badly controlled uncertainties in results and thwarts 
the proper estimation of systematic uncertainties, which are crucial for a 
complete uncertainty evaluation of all available data. 

The second difficulty of the covariance construction is connected with 
the essential differences of matrices obtained with various approximating 
functions even if the resulting descriptions are practically indistinguishable. 
As a rule, the local uncertainties corresponding to the diagonal matrix 
elements increase for a large number of approximating parameters, but the 
off-diagonal elements responsible for correlations decrease. As a result, the 
uncertainty of any integral function averaged over a broad energy spectrum 
depends on the local uncertainties in a rather complex way and is very 
sensitive to evaluations of long-range systematic uncertainties. 

Our method of the unrecognised error estimation is based on a priori 
equal reliability of all available experimental data, of course excluding 
proven erroneous results. However, the systematic and statistic uncertainties 
of each experimental work are determined in accordance with the observed 
distribution of data. Some initial description of data is required at the 
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beginning and deviations from it can be considered as the selective values 
of uncertainties. The averaged deviation of experimental data from the 
approximating function is regarded for each analysed work as its systematic 
error and the deviations of experimental points from an approximant shifted 
on the systematic error are regarded as the statistical errors. An optimal 
description of all data is achieved by the traditional iteration procedure 
minimising mean square deviations with the obtained statistical and 
systematic errors. The rational functions of an optimal order are used for 
the corresponding approximants (the Pade approximation) and the problem 
of small uncertainties (the Peelle paradox [83-86]) is taken into consideration 
under the minimisation process and a construction of the resulting 
covariance matrices for the approximating function. More details of the 
method can be found in Ref. [95]. 

To display the main features of our approach the results of the fission 
cross-section analysis of 235U can be used. In accordance with the EXFOR 
library this cross-section was measured for the neutron energies from 2 keV 
up to 20 MeV in 107 experiments and the available data include more than 
10 000 points. After averaging over the intermediate resonance fluctuations 
and a rejection of old low-accuracy measurements, 84 experiments with 
2 311 points were conserved in the analysis. The results of 32 experiments, 
which contain one or two points only, were then combined and considered 
as one experiment. The obtained distribution of the systematic and averaged 
statistical uncertainties for the selected experiments is shown in Figure 32. 

Figure 32: Distribution of relative uncertainties for the fission cross-section  
data of 235U in accordance with the unrecognised error-estimation method 
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Because the final approximated function for the fission cross-section 
of 235U is very close to the well-known evaluation recommended recently as 
the neutron standard [96], the plots of the cross-sections can be omitted 
and only the uncertainties will be discussed. The uncertainties presented in 
different libraries are shown in Figure 33. The uncertainties for ABBN-93 [94] 
and CEA-2004 [97] were obtained on the basis of the expert estimations, 
while the uncertainties for neutron standard cross-sections were evaluated 
by means of the careful statistical analysis of all available data with a 
thorough estimation of experimental uncertainties and correlations of 
various measurements [96]. A rather good agreement between our 
evaluations of the uncertainties and the standards recommended above 
100 keV can be considered as an additional justification of our approach.  
Of course, a priori evaluation of systematic uncertainties and data 
correlations made for the standards is more correct than a posteriori 
statistical estimation of unrecognised errors. However, in a majority of 
practical tasks there is not enough information for the rigorous estimation 
of systematic uncertainties, and the statistical estimation of uncertainties 
and correlations of the available data becomes a quite reasonable or even 
the only possible approach. 

Figure 33: Relative uncertainties of the fission cross-section  
evaluations for 235U adopted in different libraries 
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11. Conclusions 

Subgroup 24 was established to develop a methodology for production of 
covariance data in the fast neutron region. The subgroup concentrated on 
the methods that invoke statistical theory of nuclear reactions, which 
underlies most of the neutron nuclear data evaluations. Therefore, scant 
attention was paid to the fitting procedures using non-informative prior, 
e.g. least-squares fitting, since these have already been amply documented. 

The statistical theory is understood here in a somewhat broader sense. 
We classify in this category not only the compound nucleus model, but also 
optical model, coupled channels and distorted wave Born approximation, 
as well as pre-equilibrium models including their classical and quantum 
mechanical formulations. All these models involve statistical averaging 
over many nuclear states in the incoming channel and usually also in the 
outgoing channel. In general, full sets of these models are needed to 
describe neutron-induced reactions. Because of the focus on the statistical 
model we excluded from our considerations light nuclei since these have to 
be treated in terms of the R-matrix or few-body theories. 

Nuclear reaction theory plays a central role in the determination of 
covariances in the broad energy range for a complete set of reaction 
channels and observables. Theory constraints also provide a major source 
of cross-correlations among different reaction channels as well as among 
different isotopes. For the nuclei or reaction channels for which no 
measurements are available any estimates of covariances must resort to 
the nuclear reaction theory, since propagation of the model parameter 
uncertainties is the only viable possibility. For such cases, uncertainties of 
the model parameters become critical as the only source of information for 
generating cross-section covariances. 

Capabilities to generate covariances in the fast neutron region have 
been established in several laboratories world wide (e.g. BNL, LANL, IAEA, 
IPPE Obninsk, JAEA, KAERI, NRG Petten). The approaches considered in the 
Subgroup 24 exercise were: Unified Monte Carlo, Filtered Monte Carlo, 
Monte Carlo Reject/Accept method, Total Monte Carlo, Kalman and GANDR. 
All these approaches have been implemented directly or indirectly in the 
existing nuclear reaction codes such as CoH, EMPIRE, McGNASH and TALYS. 
The intense activity carried out in the participating laboratories over the 
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last four years produced sufficient results to define and understand the 
strengths and weaknesses of current covariance methodologies and their 
implementation. 

The approaches discussed in this report were divided into two major 
groups – stochastic and deterministic. The first group contains various 
implementations of the Monte Carlo method while the latter is represented 
by the Kalman filter and the least-squares method using an informative 
prior as implemented in the GANDR system 1 . The approaches were 
compared analysing their inherent approximations, results obtained, 
applicability to various applications and convenience of use. There is no 
clear winner in this competition and most of the approaches are expected 
to be used by the evaluators, depending on the application and available 
resources. Let us summarise our findings grouping them, this time, by the 
desired features rather than by approaches. 

Inclusion of experimental data is obviously the fundamental consideration 
for the quantification of uncertainties. Among the considered approaches 
only Unified Monte Carlo, Backward-Forward Monte Carlo, Kalman filter, 
and GANDR GLSQ fitting are able to include experimental results in a way 
that is statistically sound. The Straight Monte Carlo approach has no 
provision for including experimental data. The Filtered Monte Carlo, as well 
as the derived Total Monte Carlo method can do it but both methods 
depend on the subjective judgement of the evaluator, who arbitrarily 
decides what is accepted or rejected. In some cases, however, this 
drawback might be considered an advantage as it allows avoiding 
unreasonably small uncertainties that tend to be produced by the more 
statistically sound approaches. 

If calculation speed is a major concern then deterministic methods offer 
a clear advantage since the number of times the reaction calculations have 
to performed are usually twice the number of varied model parameters 
(sensitivity matrices are calculated independently for each perturbed 
parameter). Unless this number is extremely large, say several hundred or 
more, deterministic calculations require much less computational effort 
than the Monte Carlo approaches. Should the number of parameters be 
high, the advantage of the deterministic calculations is less evident since 
Monte Carlo calculations vary all parameters in each run and thus are not 
so sensitive to the number of parameters. Even in this case, however, a 
good practice is to have considerably more calculations than varied 
parameters. 
                                                 
1. In the present report we have used the GANDR system in conjunction with the 
Monte Carlo generated prior. We have shown, however, that deterministic priors are 
essentially equivalent to the Monte Carlo priors as long as the non-linearity effects are 
not too pronounced. Therefore, deterministic priors, calculated by propagating model 
uncertainties into cross-sections and their covariances could also be used in the 
GLSQ-based GANDR system. 
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The Kalman filter method is also preferable when adjustment of the 
model parameters to the differential or integral data is performed. The key 
ingredients of such adjustment are sensitivity matrices and covariances for 
the model parameters which are natural outcomes of the Kalman filter 
procedure but are usually neither needed nor generated in the Monte Carlo 
approaches. In this sense the Kalman filter is a convenient evaluation tool 
comprising estimation of cross-sections and covariances. 

The non-linearity effects, if significant, might complicate analysis and 
invalidate usage of covariances altogether. The Kalman filter relies on the 
assumption that the cross-sections respond linearly to the perturbation of 
the model parameters. The whole concept of the covariance matrices is 
based on the assumption that uncertainties are propagated linearly. The 
Total Monte Carlo is the only approach for propagating model parameter 
uncertainties to integral quantities without facing the non-linearity issues. 
There are numerical indications confirming the presence of non-linearity 
effects but it is not yet clear whether these effects are significant in 
comparison with the accuracy of the whole procedure for determining 
uncertainties. 

For the global estimates involving large-scale covariances between 
different reactions as well as materials the GANDR system is the only 
available framework. So far, it has been applied for cross-correlations 
between reactions in individual isotopes. It has been designed, however, for 
considering cross-correlations among multiple materials. 

The persistent problem, encountered in statistically sound approaches 
is that uncertainty estimates are often unrealistically low. The most known 
are the uncertainties of standards in ENDF/B-VI.8 that were increased by 
the CSEWG experts, since considered to be largely underestimated. This 
raises serious concerns as the users, as a matter of principle, might lose 
confidence in the practical usability of the covariances. Addressing this 
issue is fundamental for the future of the field as well as for the further 
development of nuclear techniques and applications for which realistic and 
reliable estimates of the security margins are a necessity. Subgroup 24 
made several attempts to understand the low values of the uncertainties. 
Three reasons recognised as potential cause of low uncertainties are 
summarised below. 

The rigidity of the nuclear reaction model used in the analysis (see 
Section 8.1) of the experimental data may result in uncertainties lower than 
the systematic error in the measurement. Relaxing this rigidity by allowing 
for scaling of cross-sections and eventually also for modifying the shape 
(remodelling) increases the predicted uncertainties to (or above) the level of 
the systematic uncertainties. One should be aware, however, that such 
scaling may trigger the Pertinent Peele Puzzle, which then must be addressed. 
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Often ignored correlations among experiments are another reason 
leading to underestimation of uncertainties [54]. This problem is inherent 
in the Bayesian approach in which subsequent updates (experiments) are 
considered to be independent. The same problem appears, however, in any 
approach if correlations among measurements are ignored. Then, the 
systematic uncertainties in different experiments become statistical and 
the final uncertainty for the average of N experiments scales approximately 
as ( )N1 . Unfortunately, it is extremely difficult, if not impossible, to 

estimate cross-measurement correlations. 

Last but not least are the hidden systematic uncertainties, i.e. errors of 
which the experimentalists were unaware. These might be perceived by 
analysing discrepancy among the measurements as suggested in Section 10. 

The three effects mentioned above, when taken into account, effectively 
increase recommended uncertainties. It remains to be proved, however, that 
they are sufficient to cure the problem of unrealistically low uncertainties 
in all cases. 

For some nuclei with A < 100 strong fluctuations have been observed in 
a few MeV region. These cannot be described by any model calculations. 
There is no consensus concerning how such cases should be treated in 
covariances based on the model calculations. 

With all the methods close at hand, it has to be admitted that 
estimation of the covariances is, to a large extent, affected by a subjective 
evaluator’s judgement. Such factors as selection of the method, choice of 
the experimental data and the way these data are treated in the evaluation 
procedure (e.g. estimation of the systematic uncertainties and correlations 
among experiments) may have a dramatic impact on the final covariances 
and cause uncertainties recommended by different evaluators to differ by 
more than 100%. It is by no means surprising, since the dispersion analysis 
also shows that cross-sections recommended by different evaluators often 
differ by several standard deviations. It can be expected that further 
refinement of the covariance methodology, greater experience in using it, 
and new, more precise, and well-documented measurements will eventually 
reduce this ambiguity. Until then, discrepant data and even more discrepant 
uncertainties will simply have to be coped with. 

When dealing with discrepant uncertainty information, it should be 
emphasised that covariances are not physical quantities and therefore 
cannot be investigated experimentally. There is, however, a justified concern 
regarding reliability of the covariances associated with a given evaluation. 
Contrary to the resonance region, in which several integral quantities 
(e.g. resonance integrals and 30 keV Maxwellian averages) are available, 
there are no similar measures at our disposal for validation of covariances 
in the fast neutron region. In principle, clean integral experiments with fast 
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neutrons could be used for this purpose. Covariances of the nuclear data 
could be propagated through the transport calculations to obtain uncertainty 
of the integral quantity. If the calculated and the measured values are 
consistent within the combined experimental and propagated uncertainties 
the comparison might be considered a successful validation of the proposed 
covariances. It should be kept in mind, however, that in most cases such 
validation would probe a set of covariances for different reactions and 
possibly different materials rather than the specific covariance matrix for  
a single reaction. So far, such validations have not been performed on a 
large scale. 

The activities of Subgroup 26 have increased awareness of covariances 
in the nuclear data community. As a result, covariance capabilities have 
been developed in all major nuclear reaction codes used for nuclear data 
evaluation. Several large-scale projects have been undertaken to produce a 
vast amount of covariances for the existing libraries. Specific examples 
include: WPEC Subgroup 26, US “Low-fidelity Project”, Japanese Actinoid file 
later incorporated into JENDL-4.0, successive releases of the TENDL library, 
a whole series of AFCI libraries culminating with AFCI-2.0, and the ongoing 
effort to produce covariances for ENDF/B-VII.1. Although a large part of 
these early attempts should be considered an exercise helping to master 
covariance methodology, a principal concept has been affirmed – each new 
evaluation must contain covariance data. It is clear that further 
investigations of these evaluation methods is warranted to better identify 
their individual strengths and weaknesses as well as ranges of applicability. 
Attempts should be made to eliminate to the extent possible instances 
where evaluations by the different methods using similar input lead to 
uncertainties that do not adequately cover observed dispersions between 
the evaluated central values. 
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