NEA/WPEC-10

International Evaluation Co-operation

VOLUME 10

EVALUATION METHOD OF INELASTIC SCATTERING CROSS-SECTIONS FOR WEAKLY **ABSORBING FISSION-PRODUCT NUCLIDES**

A report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee

CO-ORDINATOR

M. Kawai High Energy Accelerator Research Organisation (KEK) Research Foundation (ECN) JAPAN

MONITOR

H. Gruppelaar Netherlands Energy NETHERLANDS

NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed:

- to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy;
- to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and
- to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations.

The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996); Korea (12th December 1996) and the Slovak Republic (14th December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention).

NUCLEAR ENERGY AGENCY

The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full Member. NEA membership today consists of 27 OECD Member countries: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Japan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities also takes part in the work of the Agency.

The mission of the NEA is:

- to assist its Member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes, as well as
- to provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and sustainable development.

Specific areas of competence of the NEA include safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides nuclear data and computer program services for participating countries.

In these and related tasks, the NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has a Co-operation Agreement, as well as with other international organisations in the nuclear field.

© OECD 2001

Permission to reproduce a portion of this work for non-commercial purposes or classroom use should be obtained through the Centre français d'exploitation du droit de copie (CCF), 20, rue des Grands-Augustins, 75006 Paris, France, Tel. (33-1) 44 07 47 70, Fax (33-1) 46 34 67 19, for every country except the United States. In the United States permission should be obtained through the Copyright Clearance Center, Customer Service, (508)750-8400, 222 Rosewood Drive, Danvers, MA 01923, USA, or CCC Online: http://www.copyright.com/. All other applications for permission to reproduce or translate all or part of this book should be made to OECD Publications, 2, rue André-Pascal, 75775 Paris Cedex 16, France.

FOREWORD

A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The working party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data.

The parties to the project are: ENDF (United States), JEF/EFF (NEA Data Bank Member countries) and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries, specifically the Russian BROND and Chinese CENDL projects, are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA).

The following report was issued by a subgroup which has investigated methods for evaluating inelastic scattering cross-sections of weakly absorbing fission-product nuclides. Only a few measurements exist and the evaluations are in general based on nuclear theory calculations. Different methods are compared and the importance of the direct component of inelastic scattering is examined. The integral measurements of the reactivity worths of weakly absorbing fission products are sensitive to the inelastic scattering and they are used to assess the quality of the evaluated data.

The opinions expressed in this report are those of the authors only and do not necessarily represent the position of any Member country or international organisation. This report is published on the responsibility of the Secretary-General of the OECD.

Members of Subgroup 10

BELGIUM

H. Weigmann

Joint Research Centre Institute for Reference Materials and Measurements Geel

Gee

FRANCE

M. Salvatores

Nuclear Reactor Direction Commissariat à l'Énergie Atomique (CEA) Cadarache

JAPAN

M. Kawai, S. Chiba, T. Nakagawa, T. Sugi, Y. Nakajima, T. Watanabe, A. Zukeran, H. Matsunobu, T. Kawano, Y. Watanabe, K. Dietze JNDC (KEK, JAERI, RIST, Kawasaki Heavy Industry, Hitachi, Data Engineering, Kyushu University, JNC)

THE NETHERLANDS

H. Gruppelaar[†], **A. Hogenbirk** Nuclear Analysis, ECN Nuclear Energy

Petten

RUSSIA

A. Ignatyuk

Institute of Physics Power Engineering (IPPE) Obninsk

UNITED STATES OF AMERICA

R.Q. Wright Oak Ridge National Laboratory Oak Ridge **R.E. Schenter** Westinghouse, Hanford Company Washington

[†] We wish to particularly acknowledge the contribution of H. Gruppelaar, who recently passed away. His participation was greatly valued, and will certainly be missed.

TABLE OF CONTENTS

Sun	nma	·y	9			
1.	Inti	oduction	11			
2.	Ine	astic scattering cross-sections	12			
	2.1	Intercomparison of evaluated inelastic scattering cross-sections	12			
	2.2	Enhancement of the DWBA cross-sections	14			
		2.2.1 Global optical potentials	14			
	2.2.2 Simplified optical potentials					
	2.3 Comparisons with experimental data					
3.	Inte	gral tests	21			
	3.1	Intercomparison of integral tests	21			
	3.2 Contribution of direct inelastic scattering cross-sections to the sample reactivity worths					
	3.3 Neutron spectrum uncertainty					
4.	Conclusions					
References						
Tables						
Fig	ures		41			
Арј	pend	ix – Summary of the JNDC Analysis of the STEK Experiments Using JENDL-3.2	59			

List of tables

Table 2.2.1	S-wave and p-wave strength functions for ¹⁰⁰ Mo	33
Table 2.2.2	DWBA cross-sections calculated with the original Walter-Guss potential and the modified Walter-Guss potential	33
Table 3.1.1	Average C/E values for JENDL-3.2, JENDL-3.1 and JEF-2.2 calculations	34
Table 3.1.2	C/E values obtained in Dietze's analysis of the STEK experiments	36
Table 3.2.1	Sample reactivity worth C/E values and the contributions of capture, scattering and direct inelastic scattering to the worth for Mo, Ru, Pd and Nd isotopes	38
Table 3.3.1	C/E values for the reactivity worths of standard samples and strongly absorbing FP nuclides (calculation with JENDL-3.1).	39
Table 3.3.2	C/E values for the reactivity worths of weakly absorbing FP nuclides (calculation with JENDL-3.1)	40
Table A.1	Calculated results with ECN spectrum and JENDL-3.2	61
Table A.2	STEK experimental results	74
Table A.3	(C/E)r comparison between recent analysis and previous results	88
List of figure	25	
Figure 2.1.1	Comparison of inelastic scattering cross-sections for ⁹² Zr	43
Figure 2.1.2	Comparison of inelastic scattering cross-sections for natural Pd	43
Figure 2.1.3	Level scheme of ¹⁴⁴ Nd and ¹⁵⁰ Nd	44
Figure 2.1.4	Comparison of inelastic scattering cross-sections for ¹⁴⁴ Nd	44

Figure 2.1.5	Comparison of inelastic scattering cross-sections for natural ¹⁵⁰ Nd	45
Figure 2.2.1	Direct inelastic scattering cross-sections to 2 ⁺ level calculated with the original Walter-Guss potential and the modified Walter-Guss potential	46
Figure 2.2.2	Direct inelastic scattering cross-sections to 3 ⁻ level calculated with the original Walter-Guss potential and the modified Walter-Guss potential	46
Figure 2.2.3	The squared values of the radial wave functions at $E_n = 0.1 \text{ MeV}$	47
Figure 2.2.4	Comparison of the overlap integral with the original Walter-Guss and the modified Walter-Guss potentials	47
Figure 2.2.5	Imaginary part of the S matrix elements at $E_n = 1$ keV and DWBA cross-sections at $E_n = 1.0$ MeV as a function of the depth of the imaginary potential, W_s	48
Figure 2.2.6	Comparison of the calculated DWBA cross-sections for ¹⁰⁰ Mo and the partial cross-sections	48
Figure 2.2.7	Comparison of the calculated DWBA cross-sections for ⁵⁰ Cr and the partial cross-sections	49
Figure 2.2.8	Comparison of the calculated inelastic scattering cross-sections of ¹⁰⁰ Mo for the 535.6, 695.1 and 1 064 keV levels with the experimental data	49
Figure 2.2.9	Same as Figure 2.2.7, but the direct process is calculated with the CC	50
Figure 2.2.10	Comparison of the calculated inelastic scattering cross-sections of ¹⁰⁰ Mo for the 535.6 keV level with the experimental data	50
Figure 2.2.11	Comparison of the calculated inelastic scattering cross-sections of ⁹⁸ Mo for the 787.4 and 1 432 keV levels with the experimental data, as well as the calculated cross-sections for 734.8 keV level	51

Figure 2.2.12	Comparison of the calculated inelastic scattering cross-sections of ⁹² Mo for the 1 509 keV level with the experimental data	51
Figure 3.1.1	C/E values of sample reactivity worth for the STEK experiments as a function of mass number	52
Figure 3.2.1	Comparison of reactivity worth of ⁹⁸ Mo in order of core size for two sample sizes	52
Figure 3.2.2	Reactivity worth of ¹⁰⁰ Mo in order of core size for three sample sizes	53
Figure 3.3.1	Comparison of the calculated neutron spectra in the STEK-4000 core	53
Figure 3.3.2	Comparison of adjoint spectra and ratios to the ECN spectrum in the STEK-3000 core	54
Figure 3.3.3	Comparison of adjoint spectra and ratios to the ECN spectrum in the STEK-500 core	55
Figure 3.3.4	Comparison of the reactivity worth of ⁹² Zr as a function of average core neutron energy, calculated using various combinations of neutron and adjoint fluxes with the experimental values	56
Figure 3.3.5	Comparison of the C/E values for reactivity worth of ⁹² Zr as a function of average core neutron energy, calculated using various combinations of neutron and adjoint fluxes with the experimental values	57

SUMMARY

Methods used to evaluate inelastic scattering cross-sections of fission-product nuclides are investigated. The origins of the discrepancy found between calculated and measured sample reactivity worths are also discussed, emphasising the effects of approximations in the inelastic scattering cross-sections and in the reactor neutron direct and adjoint spectra used in the calculations.

Neutron inelastic scattering cross-sections for molybdenum isotopes are calculated using the distorted wave Born approximation (DWBA) and the coupled-channels methods (CC). An anomalous enhancement of the DWBA cross-sections near the threshold energy is examined. Numerical simulations with some simplified optical potentials indicate that the enhancement can be related to the p-wave strength. Differences between the cross-sections calculated using the DWBA method and those calculated using coupled-channels theory are small, and experimental data for ⁹²Mo, ⁹⁸Mo and ¹⁰⁰Mo are well reproduced by the DWBA and the Hauser-Feshbach-Moldauer statistical model using reliable optical potentials.

An intercomparison of integral tests of the fission-product data in the nuclear data libraries JENDL-3.2 and JEF-2.2 has been made, concentrating efforts on the analyses of the sample reactivity worth measurements made in the STEK experiments. It was found that calculations are generally in good agreement with the measured values for strongly absorbing FP nuclides, while there were some large discrepancies when the sample reactivity worth was small, in the case of weakly absorbing FP nuclides. Detailed analyses, with cell calculations which give a precise treatment of cross-sections and rigorous reactor transport theory calculations, have shown that approximations in the methods used to calculate the adjoint spectrum is the major reason for discrepancies. However, it should be noted that some significant discrepancies between the calculated and measured reactivity worths remain, even for several important FP nuclides. Further integral experiments are desirable to resolve such problems.

EVALUATION METHOD OF INELASTIC SCATTERING CROSS-SECTIONS FOR WEAKLY ABSORBING FISSION-PRODUCT NUCLIDES

1. Introduction

Integral tests [1,2] of evaluated fission-product (FP) nuclear data libraries, such as JENDL-3.1 and JEF-1, show that the calculated sample reactivity worths are in good agreement with those measured at STEK [3] for strong absorbers (within about $\pm 20\%$). However, there is an anomalous behaviour in the results for weak absorbers; calculation underestimates positive components of the worth, these components being due to scattering. It was considered that such a behaviour probably came from inaccurate inelastic scattering cross-section data for most FP nuclides in these libraries [4]. In the usual evaluated data libraries, except for JENDL-3.2, the direct process contributions to inelastic scattering cross-sections were probably disregarded [5]. Subgroup 10 of the NEA NSC Working Party on International Evaluation Co-operation was organised in 1991 in order to review the inelastic scattering cross-sections for the weakly absorbing FP nuclides, to recommend methods and model parameters for the evaluation of inelastic scattering cross-sections of FP nuclides and to explain the discrepancy between the differential and integral data.

The direct process contribution to inelastic scattering can be calculated using the distorted wave Born approximation (DWBA) or with the coupled-channel (CC) theory. The DWBA method has been extensively used for the evaluation of nuclear data for JENDL-3.1 [6,7] because it has a rather simple formulation, and it is regarded as a good approximation to the CC theory when the deformation is small. However, an anomalous enhancement of DWBA cross-sections near the inelastic scattering threshold has been reported [8,9] for nuclides with mass around A = 100 when global optical potential parameters were used.

The problem was discussed by Subgroup 10 [10,11] but the reason for the enhancement was not obvious, and it was suggested [8] that the DWBA method might be inappropriate for the evaluation of FP nuclear data. Therefore it became important to validate the DWBA calculation method for evaluating the inelastic scattering cross-sections of FP nuclides and to find out how to use it to obtain reliable results.

Isotopes of molybdenum show typical collective excitation, and the properties of the low-lying states have been studied by means of Coulomb excitation and electron, proton scattering [12,13]. Such studies have indicated that the experimental data can be represented by a coupling of the ground state with the collective one-phonon state. Recent measurements of neutron inelastic scattering [14] by molybdenum isotopes may be interpreted with the same coupling scheme, and a comparison of the DWBA calculation with the CC theory may provide the reason for the enhancement or, alternatively, the limitations of the DWBA.

For the analysis of neutron inelastic scattering data, we need the appropriate neutron optical potential and the deformation parameters, as a reference. Smith, *et al.* [15] have made an optical model analysis of the neutron induced reaction data for nuclides with $Z = 39 \sim 51$. They obtained the regional optical potential parameters from the differential elastic scattering and the total cross-sections in the energy range 1.5 to 4 MeV. This regional optical potential, together with the deformation parameters obtained by CC analyses of the proton data, provide a good basis for a comparison between DWBA and CC calculations.

The next problem is to clarify whether the direct inelastic scattering cross-sections are the main component producing the discrepancy between measurement and calculation for the FP sample reactivity worths measured in the STEK reactor. An intercomparison of the integral analyses has been made, concentrating on the analysis of the STEK experiments using JENDL-3.2. The contribution of the direct inelastic scattering to the sample reactivity worth has also been calculated for several nuclides. Finally, approximations in the earlier calculations of the neutron and adjoint fluxes were investigated by means of more detailed calculations made using a Monte Carlo code.

In this report, methods for calculating inelastic scattering cross-sections are discussed in Section 2 and the integral tests in Section 3.

2. Inelastic scattering cross-sections

2.1 Intercomparison of evaluated inelastic scattering cross-sections

The applicability of the DWBA method, which was used in the evaluations for the even-mass FP nuclides in JENDL-3, has been investigated by comparing the JENDL-3 data with experimental data and with CC calculations for isotopes of Zr, Mo, Ru, Pd, Cd, Nd and Sm. Figure 2.1.1 shows that the DWBA calculations of the excitation functions for vibrational levels of ⁹²Zr are in good agreement with the experimental data.

The inelastic scattering cross-sections of Pd isotopes have recently been measured at IRMM [16]. The results were well predicted using the CC theory. Recently, we compared the experimental data obtained for natural palladium at both IRMM [16,17] and ANL [18,19], with JENDL-3.2. For Pd isotopes, the JENDL-3.2 evaluation was based on the statistical model and the DWBA, using the following optical model parameters:

V = 50.01 - 0.5528E	R = 5.972	<i>a</i> = 0.56
$W_s = 8.165$	$R_s = 6.594$	$a_s = 0.44$
$V_{so} = 5.261$	$R_{so} = 5.97$	$a_{so} = 0.267$

The inelastic scattering cross-sections of the natural palladium isotopes given in JENDL-3.2 (in the region of $E_x = 260$ to 560 keV, corresponding to the first excited states of even-even isotopes of Pd) have been summed to give the inelastic scattering cross-section of natural Pd in the same excitation region. This excitation region was determined according to the energy resolution of the experiment at ANL (by Chiba, *et al.* [18]). The following MTs and abundance ratios were adopted:

	MT	Abundance ratio
102 Pd	51	1.02
104 Pd	51	11.14
105 Pd	51-57	22.33
106 Pd	51	27.33
108 Pd	51	26.46
110 Pd	51	11.72

The abundance ratios were normalised to sum to unity. The same averaging procedure was applied to the inelastic scattering cross-sections of the first 2^+ states in ^{104,106,108,110}Pd measured by Meister [16]. The abundance ratio was also normalised to sum to unity. A comparison of the averaged data from JENDL-3.2 for natural Pd with the measurements of Meister and those by Smith, *et al.* and Chiba, *et al.* is given in Figure 2.1.2. The agreement of the JENDL-3.2 data with the data measured by Meister up to 2.5 MeV and by Chiba, *et al.* [18] above 6 MeV is excellent, therefore confirming the method adopted in the evaluation of the JENDL-3.2 data. The reason for the disagreement with the old data of Smith, *et al.* [19] is not clear. In any case, the figure shows that JENDL-3.2 provides a reasonable excitation function curve in the energy region where the direct reaction dominates.

Accordingly, we have reached the conclusion that the DWBA method is widely applicable to the calculation of the direct components of inelastic scattering cross-sections, by normalising to the measured data or to that calculated using the CC theory. However, the DWBA calculation occasionally provides too high an inelastic scattering cross-section in the mass range around A = 100. At ECN, a CC analysis with a two-phonon vibrational model was made [16] for ¹¹⁰Pd. The analysis reproduced well the cross-sections measured at IRMM for the one-phonon level at 373.8 keV. It was guessed that the anomalous behaviour of the DWBA calculation for nuclides around A = 100 was a special case due to some singularity in the optical potential peculiar to the parameter set used.

For the heavier nuclides in the deformed region, it was confirmed that the cross-sections for the vibrational levels calculated using the CC theory with a slightly modified imaginary potential strength, W_s , were in general agreement with the DWBA calculations in the energy range up to 20 MeV. The CC theory estimates well the cross-sections for both vibrational and rotational levels of deformed isotopes of Nd and Sm. Figure 2.1.3 shows the level schemes of ¹⁴⁴Nd and ¹⁵⁰Nd. The CC theory calculations of level excitation functions of ¹⁴⁴Nd, made using the code ESIS with $W_s = 7$ MeV, are in general agreement with the experimental data and with the DWBA calculation with $W_s = 9.1$ MeV, as is shown in Figure 2.1.4. As for ¹⁵⁰Nd, the CC theory calculations were made by considering the coupling of 0⁺-2⁺-4⁺-6⁺-8⁺-10⁺ (ground state rotational band) and 1⁻-3⁻-5⁻ (octopole vibrational band) with $\beta_2 = 0.2848$ [20] and $\beta_3 = 0.070$ [21]. For the 2⁺ level at 1.77 MeV, the result of the CC calculation with $W_s = 4.5$ MeV agrees well with the DWBA calculation with $W_s = 9.13$ MeV, as is shown in Figure 2.1.5.

2.2 Enhancement of the DWBA cross-sections

2.2.1 Global optical potentials

Global optical potentials such as the Walter-Guss potential parameters [22] are widely used for nuclear data evaluation. The Walter-Guss optical potential was obtained from the experimental data above 20 MeV. Yamamuro [23] extrapolated the Walter-Guss potential below 20 MeV by changing the imaginary potential depth to determine the experimental non-elastic cross-sections in this energy range. The modified Walter-Guss potential has an imaginary surface term:

$$W_{s} = 7.21 - 14.94\epsilon \text{ MeV} \qquad (E < 20 \text{ MeV}) \tag{1}$$

$$W_{s} = 10.85 - 14.94\epsilon - 0.1571E \text{ MeV} \qquad (E > 20 \text{ MeV})$$

where $\varepsilon = (N - Z)/A$ and *E* is the incident neutron energy. The modified potential was used in the evaluation of the inelastic scattering cross-sections of molybdenum isotopes for JENDL-3.2.

The DWBA cross-sections for ¹⁰⁰Mo were calculated using CmC [24]. The cross-sections calculated with CmC are almost the same as those calculated with DWUCK4 [25]. The CC calculations are carried out with ECIS88 [19], which solves the coupled equations by a sequential iteration method, and its first iteration corresponds to the DWBA calculation.

The direct inelastic scattering cross-sections are calculated for the low-lying 2^+ (535.6 keV) and 3^- (1 908 keV) levels. We assume these levels are one-phonon states, and the deformation parameters β_2 and β_3 are taken from proton scattering experiments [13], their values being $\beta_2 = 0.214$ and $\beta_3 = 0.208$. The optical potentials for the DWBA calculation are the Walter-Guss [22] and the modified Walter-Guss [23].

The collective inelastic scattering cross-sections for the 2^+ and the 3^- states are shown in Figures 2.2.1 and 2.2.2, respectively. The cross-sections calculated using the CC method are shown in the same figures by the dot-dashed lines. The optical potential used in the CC calculation is the same as that used in the DWBA calculation. One can clearly see the anomalous enhancement of the cross-sections near the threshold energy when the modified Walter-Guss potential is used. This enhancement does not emerge from a problem with the code, because the DWBA calculation made using ECIS88 [26] provides almost the same cross-sections as CmC. The enhancement also appears in the CC result, but it is more moderate than the DWBA enhancement. In the case of the Walter-Guss potential, no enhancement with either the DWBA calculations or the CC calculations is detected. It is known that the unitarity, $|S_{ba}| < 1$, is not necessary for the DWBA calculation, but the CC calculation ensures it [27]. This requirement for unitarity suppresses the anomalous enhancement in the inelastic channel. However, the cross-section excitation function is rather steep just above the threshold energy, therefore adoption of the CC calculation method is not the best way to avoid unusually large direct cross-sections.

The enhancement of the inelastic scattering cross-sections only appears when the modified Walter-Guss potential is used, and one can conclude that the reason is the optical potential used. In order to analyse the effect of the difference between the original Walter-Guss potential and the modified one, we compare the distorted waves at low energies. The squared radial wave functions at a neutron energy of 0.1 MeV are shown in Figure 2.2.3, where the nuclear radius is 5.57 fm. Strong absorption of the p-wave is shown for the modified Walter-Guss potential. The spin-averaged transmission coefficients, T_1 at 0.1 MeV, for these potentials, are 0.158 for the original potential and 0.229 for the modified one. A size resonance for a 3p-wave is observed for A = 100 [28]. The s-wave and p-wave strength functions for the two Walter-Guss optical potentials are tabulated in Table 2.2.1. The strength function calculated with the spherical optical potential of Smith, *et al.* [15] is also tabulated in this table, because they paid attention to the strength functions as well as to the cross-sections in their analyses. The original Walter-Guss potential gives strength functions consistent with the values in Mughabghab's compilation [28]. However, the modified Walter-Guss potential provides a larger p-wave strength function. The strength functions obtained with the optical potential of Smith, *et al.* are in good accord with Mughabghab's values, and the calculated DWBA cross-section does not show the anomalous enhancement. For example, the DWBA cross-section for the 2⁺ state at $E_n = 3$ MeV is 117 mb, and this value is near to the DWBA or CC results calculated using the original Walter-Guss potential, as can be seen in Figure 2.2.1.

An increase in the p-wave amplitude enhances the DWBA calculated value. A DWBA transition amplitude contains an angular momentum coupling coefficient and a radial overlap integral between the initial and the final state [27]:

$$I_{ba}^{L} = \frac{\sqrt{4\pi}}{k_a k_b} \int u_b(r) F_L(r) u_a(r) dr$$
⁽²⁾

where $u_a(r)$ and $u_b(r)$ are the radial parts of distorted waves, *L* is the orbital angular momentum transfer, and $F_L(r)$ is the form factor. The DWBA cross-section is calculated from the squared transition amplitudes, and it is possible to see the contribution to the DWBA calculation from various partial waves if one compares the overlap integrals. Figure 2.2.4 shows the squared overlap integrals as a function of the radius:

$$|I(r)|^{2} = \left| \int_{0}^{\gamma} u_{b}(r') F_{L}(r') u_{a}(r') dr' \right|^{2}$$
(3)

The distorted waves in Figure 2.2.4 are both for p-wave ($j_a = j_b = 3/2$), and the *L* transfer is 2. We assume the excitation energy of the 2⁺ state is zero in order to equate the distorted waves for the entrance and the exit channels. The overlap integral with the modified Walter-Guss potential is very large in comparison with the value for the original potential. This enhancement also appears in the overlap integral between the p-wave and f-wave, and the strong contribution from the p-wave results in the anomalous enhancement of the DWBA cross-section. This enhancement becomes smaller as the incident neutron energy increases, because many partial waves contribute to the total inelastic scattering cross-sections, and the relative importance of the p-wave contribution reduces.

2.2.2 Simplified optical potentials

The difference between the original Walter-Guss potential and the modified one is the depth of the imaginary potential, W_s . The modified Walter-Guss potential has an imaginary depth of $W_s = 5.32$ MeV at $E_n = 0$, and the original potential has an imaginary depth of 8.46 MeV. Figure 2.2.5 shows the dependence of the imaginary parts of the S matrix elements for p-waves on W_s . The incident neutron energy is 1 keV. As W_s decreases the imaginary parts of the S matrix elements increase and they become positive at ~3 MeV for j = 3/2 and ~6 MeV for j = 1/2. The calculated DWBA cross-section for the 2⁺ level at $E_n = 1$ MeV is depicted in the same figure by the dot-dashed line. One can see the relationship between the DWBA cross-section and the imaginary part of the S matrix element. When a spherical optical model calculation gives $Im(S_1) > 0$ as $E_n \rightarrow 0$, the calculated DWBA cross-section becomes very large. For example, both $Im(S_1^{3/2})$ and $Im(S_1^{1/2})$ are positive below $W_s = 3$ MeV, and the DWBA cross-sections are unacceptably large there.

In order to investigate the dependence of the DWBA cross-section on the p-wave S matrix element, we have employed a simplified optical potential:

$$V = 50 \text{ MeV} r_v = 1.2 \text{ fm} a_v = 0.6 \text{ fm} (4) W_s = 3 \text{ or } 5 \text{ MeV} r_w = 1.3 \text{ fm} a_w = 0.6 \text{ fm}$$

without a spin-orbit term. This optical potential gives $Im(S_1) > 0$ for $W_s = 3$ MeV, and $Im(S_1) < 0$ for $W_s = 5$ MeV. The inelastic scattering cross-sections for a 2⁺ level whose excitation energy is set to zero are calculated with the DWBA, and the level excitation function is shown in Figure 2.2.6 compared with the partial cross-sections obtained using the spherical optical model (SOM):

$$\sigma_T^l = \frac{2\pi}{k^2} (2l+1) \{ 1 - \operatorname{Re}(S_l) \}$$
(5)

Two resonance-like peaks appear in the DWBA cross-section when $W_s = 3$ MeV, while in the case of $W_s = 5$ MeV the enhancement of the DWBA cross-section is small. As can be seen in Figure 2.2.6, the first peak near $E_n = 500$ keV corresponds to the p-wave contribution, and the second one near 2 MeV is the f-wave contribution.

This anomalous enhancement may occur in the mass region where the s-wave strength function has a maxima. The 3s size resonance appears around $A \sim 50$. The imaginary part of the s-wave S matrix element becomes positive when the following optical potential is used:

V = 52 MeV	$r_v = 1.2 \text{ fm}$	$a_v = 0.6 \text{ fm}$	(4)
$W_s = 1 \text{ MeV}$	$r_w = 1.3 \; {\rm fm}$	$a_w = 0.6 \text{ fm}$	

The calculated DWBA cross-sections for ⁵⁰Cr are shown in Figure 2.2.7. Anomalous enhancements of the DWBA cross-section occur near $E_n = 2.5$ MeV and 4.5 MeV, and they correspond to the d-wave and g-wave contributions, respectively. The imaginary part of the optical potential in Eq. (6) is unphysically shallow. If the imaginary depth increases to 3 MeV, the anomalous enhancement disappears, as indicated by the thin solid line in Figure 2.2.7. The anomalous enhancements of the DWBA cross-sections in Figures 2.2.6 and 2.2.7 are extreme cases, but they imply that the anomaly happens when the imaginary potential is very shallow. Some global optical potentials have a symmetry term $(N-Z)/A \times W_{sym}$, and the Walter-Guss optical potential contains the term -14.94(N-Z)/A MeV in the surface imaginary part. The imaginary part then becomes small for a nucleus which has an excess of neutrons. Table 2.2.2 shows the DWBA cross-sections calculated with the original Walter-Guss optical potential [22] and with the modified Walter-Guss [23] at $E_n = 1$ MeV for some stable isotopes: ^{40,48}Ca, ^{78,86}Kr, ^{102,110}Pd and ^{156,164}Dy. The calculated cross-sections are for the collective excited states, J^{π} of 2^+ , $\beta_2 = 0.1$, and the excitation energies are assumed to be zero. The enhancement is observed when the modified Walter-Guss potential is used, and the effect is larger for the heavy nuclides.

2.3 Comparisons with experimental data

Measurements of the $(n,n'\gamma)$ reaction cross-sections of Mo isotopes have been made at IRMM [14]. To analyse the experimental data we employ the DWBA method and the CC method for the collective direct process, and the Hauser-Feshbach-Moldauer model for the compound process. As shown in Section 2.2, the modified Walter-Guss potential is inadequate to calculate the direct cross-sections at low energies, while the optical potential of Smith, *et al.* [15] is appropriate because this potential gives a p-wave strength function which is in good agreement with the experimental data. Also, the potential is defined in the energy range $E_n < 5$ MeV which covers the energies where the experimental data exist.

The experimental inelastic scattering data were obtained by means of γ -ray detection [14]. The experimental data for the 535.6 keV level of ¹⁰⁰Mo are not resolved, and they contain the cross-sections to the first excited state (535.6 keV) and 88% of the second excited state (695.1 keV). The 535.6 keV excited level is a one-phonon 2⁺ state, and the 695.12 keV level is a member of the two-phonon triplet, 0⁺ (695.1 keV), 2⁺ (1064 keV) and 4⁺ (1 136 keV). Since the cross-sections

for the two-phonon triplet are expected to be small, the direct inelastic scattering cross-sections are calculated only for the one-phonon states $(2^+ \text{ and } 3^-)$. The deformation parameters are $\beta_2 = 0.214$ and $\beta_3 = 0.208$.

The compound cross-sections are calculated using Hauser-Feshbach theory with Moldauer's width fluctuation correction [29]. The discrete levels up to an excitation energy of 2.3 MeV are included in the calculation, and their J^{π} values are taken from ENSDF [30]. The excited levels are assumed to be overlapping above 2.3 MeV, and Gilbert and Cameron's formulas [31] are used to calculate the level density in the continuum region. The adopted level density parameters are $a = 17.9 \text{ MeV}^{-1}$ and $\Delta = 2.22 \text{ MeV}$. At low excitation energies, the constant temperature model is used, and its parameters are determined by a, Δ and the discrete levels.

A comparison of the calculated cross-sections with the experimental data is shown in Figure 2.2.8. The thick solid line is an incoherent sum of the DWBA calculation and the Hauser-Feshbach-Moldauer calculation for the 535.6 keV level including the 88% of the 695.1 keV level. The thin solid line is the compound cross-section for the 1 064 keV level. The calculated cross-section for the 1 064 keV level is in good agreement with the data, while the cross-section calculated for the 535.6 keV level is larger than the measured cross-section. There are some possible reasons. These are the incoherent sum of the direct and compound cross-sections, the deformation parameters, the difference between DWBA and CC and the width fluctuation correction. When we added the compound cross-sections incoherently to the direct cross-sections, then a summation of all non-elastic cross-sections exceeded the total reaction cross-section, σ_R , which was calculated using the optical model. However this effect does not explain the overestimation, because the difference between the calculated cross-section and the experimental data is larger than the DWBA cross-section itself.

The deformation parameters were obtained from a (p,p') experiment [13]. It is possible to correct the β for neutron induced reactions if one applies the relation $\beta_p R_p = \beta_n R_n$. This gives $\beta_2 = 0.205$ and $\beta_3 = 0.199$ when the R_n value of Smith's optical potential is used. This correction reduces the direct cross-section slightly, but it is only 0.7% at 1.5 MeV.

In order to calculate the width fluctuation correction factor, it is necessary to know the distribution of level widths in the compound nucleus. A χ^2 -distribution with v degrees of freedom is assumed. Moldauer [29] obtained a practical expression for v by a Monte Carlo method, and this has been adopted in the present study. The other assumption is v = 1, which means the distribution is a Porter-Thomas distribution. The calculated cross-sections for the case with v = 1

are shown in Figure 2.2.8 by the dot-dashed lines. The compound cross-sections decrease and the level excitation function becomes very similar to the experimental data.

CC calculations were made for the $0^+ - 2^+ - 3^-$ coupling scheme using ECIS88, and the results are compared with the experimental data in Figure 2.2.9. The thick dotted line is the direct component, and the thick solid line is the incoherent sum of the direct and the compound cross-sections. The calculated cross-sections are very similar to those obtained with the DWBA method in Figure 2.2.8, and it can be concluded that the DWBA method is a useful tool for an evaluation of the direct process as long as the optical potential is adequate. The experimental data were obtained by means of γ -ray detection [14], and the inelastic scattering to the 535.6 keV level was not resolved. The calculated cross-section for this level can be compared with some neutron measurements [32-35] and the comparison is shown in Figure 2.2.10. The experimental data are scattered; however the calculation reproduces the tendency of the data. The evaluated cross-section in JENDL-3.2, which included DWBA calculations with the modified Walter-Guss potential, is shown in the same figure by the dashed line.

Comparisons of the ⁹⁸Mo inelastic scattering data with the DWBA and the compound process calculations are shown in Figure 2.2.11. The discrete levels up to 2.57 MeV were included, and the level density parameters used were $a = 15.8 \text{ MeV}^{-1}$ and $\Delta = 2.57 \text{ MeV}$. We regarded the 787.4 keV level ($J^{\pi} = 2^+$) as a collective one-phonon state. The deformation parameter employed is $\beta_2 = 0.162$. The excitation function for the 734.8 keV level ($J^{\pi} = 0^+$) is depicted by the dotted line. This cannot be measured by γ -ray detection because a γ -ray transition between the states with the same spin and parity is prohibited by the selection rule. The cross-sections for the second (787.4 keV) and the third (1 432 keV) levels are well reproduced by the incoherent sum of the DWBA and the compound cross-sections.

Figure 2.2.12 illustrates the calculated cross-sections for the ⁹²Mo inelastic scattering. The discrete levels included in the compound process calculation are below 3.69 MeV, and the level density parameters $a = 10.6 \text{ MeV}^{-1}$ and $\Delta = 2.21 \text{ MeV}$ were used in the continuum. The DWBA calculations for the collective state of 1 509 keV ($J^{\pi} = 2^+$) were made with $\beta_2 = 0.101$. The calculated cross-sections exceed the experimental data above 2 MeV. The overestimation is essentially a problem of the compound calculation because the DWBA cross-sections are very small in this energy range. The compound cross-section for the 1 509 keV level at $E_n = 2 \text{ MeV}$ is 886 mb, and if v = 1 is assumed for the width fluctuation correction the cross-section becomes 752 mb, which agrees with the experimental data.

3. Integral tests

3.1 Intercomparison of integral tests

Several programmes of integral measurements in fast reactor spectra have been carried out for individual nuclides in the FP range. At JNDC, the STEK reactivity worth experiments [3,36] and the capture rate measurements made in CFRMF [37] and EBR-II [38] were analysed by Watanabe, et al. [2] using 70 group cross-sections generated from JENDL-3.1 and -3.2, and the neutron and adjoint fluxes which were provided by the experimenters. The methods of calculation used for the integral test and the results obtained using JENDL-3.1 were described in detail in Ref. [2]. The fluxes were converted into the 70-group structure in such a way as to preserve the energy integrals. The results which were obtained are given in the Appendix. Average C/E values for the five STEK cores and for the capture rate measurements are given in Table 3.1.1 and Figure 3.1.1. At ECN, Gruppelaar, et al. [39] compared JEF-1 calculations with the STEK experiments. Since for the major reactions the cross-section data of JEF-1 and JEF-2.2 in the energy region above resolved resonance region are the same for most nuclides, the results obtained using JEF-1 for hard spectra are expected to be similar to those obtained using JEF-2.2. The C/E values obtained using JEF-1 were compared by Kawai, et al. [11] with those obtained using JENDL-3.1 (in Table 1 of Ref. [11]). It was noted that the worths calculated with JEF-1 were largely discrepant, compared with the measured values, and also the discrepancies for the JENDL-3.1 values for the weak absorbers were quite large.

In Cadarache, analyses of the Rossendorf experiments [40] (measuring sample worths in SEG lattice configurations) and the STEK experiments, were performed to test JEF-2.2 by Dietze, et al. [41] and Meister [42], respectively. The reactor calculations were performed with the S_N transport code BISTRO in two-dimensional RZ geometry. The cell code ECCO was used to provide the broad group constants for the different reactor regions, with the calculations being made for the heterogeneous compositions. Recently, Dietze [43] has analysed the STEK and Rossendorf experiments with JENDL-3.2, using the reactor core design code system at the Japan Nuclear Fuel Cycle Organisation (JNC). He calculated the neutron and adjoint fluxes taking into account the cell heterogeneity of the core around the samples. Table 3.1.2 gives a summary of the C/E values obtained in the analysis made using JENDL-3.2 for the five STEK experiments. The C/E values were estimated for the reactivity worths of infinitely dilute samples by extrapolating the measured and calculated values to zero sample size. Table 3.1.1 compares the C/E values obtained for two of the STEK cores (STEK-500 and STEK-3000) by Dietze using the JNDC methods and JENDL-3.2, with Meister's analysis using JEF-2.2 and Dietze's analysis of the Rossendorf experiments (SEG-5 and SEG-7A) made using JEF-2.2.

STEK-500 is the core with the hardest spectrum, and STEK-3000 has a soft spectrum. As for the Rossendorf experiments, the SEG-5 core configuration was characterised by a nearly energy-independent adjoint spectrum and consequently the slowing-down component of the reactivity worth was small. SEG7A had an extremely hard spectrum and an adjoint spectrum which increased with neutron energy.

For the STEK experiments, both the JNDC and the Dietze analyses with JENDL-3.2 show good agreement between the measurements and the calculations for the strong absorbers in the tables, while the calculations systematically underestimated the worths by about 10% for the nuclides heavier than A = 130, as is shown in Figure 3.1.1. The reasons for this underestimation were investigated by Watanabe, *et al.* [44] by using a detailed model of the STEK core in a Monte Carlo code. As a result, the approximation involved in the group cross-section treatment was identified as one of the reasons. However, there are unexplained discrepancies between the reactivity worth data and the differential cross-section data for several nuclides. Further integral experiments are needed to clarify the reasons for the discrepancies for these strongly absorbing FP nuclides.

On the other hand, there are discrepancies for the worths calculated by JNDC for many weak absorbers, particularly for the oxide samples. Small total reactivity worths are mostly the result of compensating effects (capture: only negative, scattering: negative and positive). The scattering contributions are very sensitive to the calculated adjoint spectrum. A large discrepancy is also found for ¹⁰⁰Mo in the Rossendorf experiments. The C/E value for JEF-2.2 in SEG-7A, which has an extremely hard neutron spectrum and an adjoint spectrum which increases with increasing energy (which gives a negative reactivity of scattering), can be interpreted as being caused by the calculated scattering effect being too small (12% and 3% for inelastic and elastic scattering contributions to the worth, respectively) [41]. Gruppelaar [4,39] considered that an underestimation of the inelastic scattering cross-sections was the probable reason. A similar underestimation was observed in the results calculated by Dieze [43] even with JENDL-3.2, despite the direct inelastic scattering component being treated in the cross-section evaluations. On the other hand, Dietze's analysis [43] using JENDL-3.2 for the STEK experiments gives C/E values which are closer to unity than those of the JNDC analysis, as is shown in Table 3.1.2. A major reason for the difference between these analyses must lie in the neutronics calculation, particularly of the adjoint spectrum, although it was caused, to some extent, by a different normalisation of the sample reactivity: JNDC normalised the worth relative to the perturbation denominator, but Dietze normalised relative to the infinite dilute sample worth of the ¹⁰B standard sample.

3.2 Contribution of direct inelastic scattering cross-sections to the sample reactivity worths

In order to clarify the question of whether disregard of direct inelastic scattering cross-sections in the earlier nuclear data files, such as JENDL-3.1, JEF-2.2 and ENDF/B-VI, caused the underestimation, we have examined the effect of direct inelastic scattering on the calculated worths in the STEK experiments. Calculations have been made for several typical FP isotopes using the JENDL-3.2 cross-sections and temporary files excluding the direct inelastic scattering cross-sections. Table 3.2.1 gives the C/E values for the reactivity worth of Mo, Ru, Pd and Nd isotopes in STEK-500 and STEK-3000 and the contributions of capture, scattering and direct inelastic scattering to the worth. Capture gave negative worths and scattering positive worths in these cases. The C/E values are scattered about unity, ranging from -2.73 to +4.46, the underestimation being especially large in the case of STEK-500, the core with a hard spectrum. The negative C/E values for ⁹²Mo and ⁹⁸Mo mean that calculated and measured total reactivity worths are of opposite sign. The worths measured in the STEK-500 core were positive for all Mo isotopes, while the calculated worths for ⁹²Mo and ⁹⁸Mo were negative. The situation of the calculated values is quite clearly seen in Figures 3.2.1 and 3.2.2 which show the calculated and measured worths plotted against core size (the larger core number has the softer spectrum). The worth is greatest for the core with the hardest spectrum, as is shown in the figures, and becomes positive in STEK-500 for all Mo isotopes. It is also found that the measured values are more positive than the calculated values, as is shown in the figures. Accordingly, the calculated and measured worths for ⁹²Mo and ⁹⁸Mo are of opposite sign for STEK-500, while the C/E value becomes positive for ¹⁰⁰Mo. It is a characteristic, in the case of samples having a large positive worth contribution due to scattering, that the C/E values change violently, sometimes being very large and negative in a particular core. The same situation, the experimental value was larger than the calculated value, was generally observed for Ru, Pd and Nd isotopes.

The fifth and ninth columns of Table 3.2.1 show the contributions of direct inelastic scattering cross-sections to the total scattering worth. They are 10% at most. These small values cannot be a factor to explain the discrepancy between the calculated and measured reactivity worths for weakly absorbing FP nuclides. Therefore, other possible explanations for the discrepancies should be investigated.

It should also be noted that the C/E values are not always a good measure when evaluating the quality of nuclear cross-sections for weakly absorbing nuclides. Figure 3.2.1 is very instructive in showing that the calculations underestimate the scattering component of the worth. In such cases, the absolute

value of the reactivity worth discrepancy is also a useful indicator to show trends, particularly when the worth is the result of a cancellation of a negative reactivity effect due to absorption and a positive one due to scattering.

3.3 Neutron spectrum uncertainty

The neutron spectra of the STEK cores were calculated using the vectorised pointwise Monte Carlo code, MVP [45], for a three-dimensional homogeneous model of the STEK reactor and a cross-section library based on JENDL-3.1. The calculated spectrum was then corrected for heterogeneous effects by means of diffusion theory calculations. The results were compared with the original spectra reported by Petten, and employed by them in their sample worth calculations. Figure 3.3.1 shows a comparison of the neutron spectra calculated with the various models for the test region of the STEK-4000 core with the original spectrum [36] (ECN-ADJUSTED). This spectrum was obtained [36] by adjusting the spectrum calculated using diffusion theory to reproduce the reactivity worths of the standard samples. In the lower energy range, where the capture contribution to the reactivity worth of the strong absorbers in a large core is large, the Monte Carlo calculation, corrected for heterogeneous effects, supports the original Petten spectrum. Table 3.3.1 shows the results obtained for the standard samples and strongly absorbing nuclides. Compared with the results obtained using the original spectra, the present Monte Carlo calculation provides almost the same or better results for several nuclides such as the standard samples of Al and Pb. As for the weakly absorbing FP nuclides, an apparent small improvement of the C/E values is seen in Table 3.3.2, but the C/E values obtained with the Monte Carlo method agree with those calculated using the ECN flux within the statistical errors of the Monte Carlo calculation. Accordingly, it is concluded that the neutron flux difference is not important in the present problem.

Dietze [42] has calculated both the neutron and adjoint fluxes using the JNC reactor core design code system with a geometrical model which gives a detailed representation and with a rigorous treatment of the group cross-section processing. A comparison between the original ECN adjoint spectra and Dietze's calculations is shown in Figures 3.3.2 and 3.3.3 for the STEK-500 and STEK-3000 cores, respectively. Some differences are observed between the adjoint spectra calculated by Dietze and by JNDC, and the ECN spectra. We have calculated sample worths using the three sets of spectra. Figure 3.3.4 shows the sample worths calculated for ⁹²Zr as a function of the core average neutron energy for the different STEK assemblies and for the two sample sizes (mean chord lengths, Id = 0.726 and 1.3). There are systematic differences between the JNDC and Dietze's spectra. The total worths calculated using both the neutron and adjoint spectra from Dietze's analysis are closest to the

experimental values. The position second nearest to the experimental values is occupied by the value calculated with Dietze's adjoint spectrum and the ECN neutron flux. The difference between the top position and the second is very small, while the top position is far from the values calculated with the ECN flux and adjoint spectrum. This means that the flux difference between Dietze and ECN does not play an important role but the adjoint spectrum difference engenders a large effect. In reactor theory, adjoint spectra contribute to the neutron slowing-down component of sample reactivity. Figure 3.3.5 shows the C/E values for the sample worths of ⁹²Zr as a function of average core neutron energy. For the mean chord length, ld = 0.726, the C/E values show a dip at 16.3 keV, i.e. the average neutron energy of the STEK-200 assembly. This unnatural trend is caused by a large experimental value that seems to be erroneous.

Finally, it can be concluded that the origin of the worth discrepancy, a problem which has existed for a number of years, can be identified as due to inaccurate calculations of the scattering components because of approximations in the calculation of the adjoint spectra. However, we find that there are some discrepancies remaining between the calculated and measured values even in the fairly sophisticated analysis made by Dietze. This might mean that the adjoint calculation method should be refined further, by using a very fine group cross-section set having a higher reliability.

4. Conclusions

The present studies confirm that the DWBA method is applicable for estimating the cross-sections for one-phonon vibrational levels. The coupled channel theory is the best to estimate the excitation functions for both vibrational and rotational levels of deformed nuclides and for the mass range around 100.

An anomalous enhancement of the DWBA cross-sections for ¹⁰⁰Mo appears near the threshold energy when the optical potential has a small imaginary part. The enhancement tends to occur when global optical potentials with a symmetry term in the imaginary part are used for nuclides which have an excess of neutrons. The problem is also seen in the coupled-channels calculation; however the magnitude of the enhancement is smaller. The enhancement in the case of the DWBA can be attributed to a large p-wave amplitude. An optical potential which yields too large a p-wave strength function tends to give a large DWBA cross-section. When the DWBA cross-sections are physically reasonable, the differences between the DWBA cross-sections and the coupled-channels cross-sections are small. The DWBA and the Hauser-Feshbach-Moldauer calculations made using the spherical optical potential of Smith, *et al.* provide inelastic scattering cross-sections in the energy range $E_n \leq 5$ MeV, which are in good agreement with the recent IRMM experimental data. The compound cross-section calculation in this energy range is sensitive to the width fluctuation correction.

The discrepancies between the experimental and calculated sample reactivity worths measured in the STEK experiments are partially attributed to the inaccurate inelastic scattering cross-sections used in the calculations. Modification of the inelastic scattering cross-sections reduces the discrepancies to some degree. However, there are discrepancies for some strong absorbers and for the standard samples such as carbon and oxygen whose cross-sections are rather accurately known. This suggests that there remain yet other factors, such as errors in the calculation of the adjoint spectra and the treatment of resonance self-shielding effects. A recent analysis with a more rigorous treatment of the geometrical model and cross-section processing has led to the probable conclusion that the sample reactivity worth discrepancies for weakly absorbing FP nuclides were caused by approximations in the calculation of adjoint spectra. It should also be noted that the worth of C/E value is not always a good measure to use as a test of the accuracy of cross-sections when the worth is a balance between positive and negative components. The absolute values of the measured and calculated worths, the differences between them and their trends should also be studied.

Acknowledgements

We are indebted to Dr. F.H. Fröhner for his valuable contributions to discussions on the calculation of inelastic scattering cross-sections. We are also grateful to Dr. H. Takano of JAERI for providing the 70 group cross-sections based on JENDL-3.1 and JENDL-3.2. We thank the members of the Evaluation, Calculation System Working Group of the Japanese Nuclear Data Committee for their useful comments.

REFERENCES

- A.J. Janssen, H. Gruppelaar, N. Karouby-Cohen, L. Martin-Deidier, G. Rimpault, M. Salvatores, ECN 176 (1985).
- [2] T. Watanabe, M. Kawai, A. Zukeran, H. Matsunobu, T. Nakagawa, Y. Nakajima, T. Sugi, S. Chiba, M. Sasaki, Proc. Specialists Meeting on Fission-product Nuclear Data, Tokai, Japan, 25-27 May 1992, p. 411 (1992).
- [3] J.J. Veenema, A.J. Janssen, ECN 10 (1976).
- [4] H. Gruppelaar, H.A.J. van der Kamp, Proc. Specialists Meeting on the Use of the Optical Model for the Calculation of Neutron Cross-sections Below 20 MeV, Paris, France, 13-15 Nov. 1985, p. 221 (1986).
- [5] M. Kawai, *et al.*, "Status of Evaluated Fission-product Cross-sections", NEA/NSC/DOC(92)9, p. 39 (1992).
- [6] M. Kawai, S. Iijima, T. Nakagawa, Y. Nakajima, T. Sugi, T. Watanabe, H. Matsunobu, M. Sasaki, A. Zukeran, J. Nucl. Sci. Technol., 29, 195 (1992).
- [7] M. Kawai, A. Zukeran, T. Nakagawa, S. Chiba, Y. Nakajima, T. Sugi, Y. Kikuchi, T. Watanabe, H. Matsunobu, Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, USA, 9-13 May 1994, p. 727 (1994).
- [8] H. Gruppelaar, A. Hogenbirk, Proc. Specialists Meeting on Fission-product Nuclear Data, Tokai, Japan, 25-27 May 1992, p. 207 (1992).
- [9] S. Chiba, A.B. Smith, Proc. Specialists Meeting on Fission-product Nuclear Data, Tokai, Japan, 25-27 May 1992, p. 162 (1992).
- [10] M. Kawai, H. Gruppelaar, R.E. Schenter, R.Q. Wright, Proc. Specialists Meeting on Fission-product Nuclear Data, Tokai, Japan, 25-27 May 1992, p. 39 (1992).

- [11] M. Kawai, S. Chiba, T. Nakagawa, Y. Nakajima, T. Watanabe, A. Zukeran, H. Gruppelaar, A. Hogenbirk, M. Salvatores, K. Dietze, R.Q. Wright, R.E. Schenter, Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, USA, 9-13 May 1994, p. 795 (1994).
- [12] H.F. Lutz, D.W. Heikkinen, W. Bartolini, Phys. Rev., 4, 934 (1972).
- [13] E. Cereda, M. Pignanelli, S. Micheletti, H.V. von Geramb, M.N. Harakeh, R. De Leo, G. D'Erasmo, A. Pantaleo, *Phys. Rev.*, C26, 1941 (1982).
- [14] I-G. Birn, A. Meister, E. Wattecamps, H. Weigmann, Proc. Int. Conf. Nuclear Data for Science and Technology, Trieste, Italy, 19-24 May 1997. Numerical data by private communication.
- [15] A.B. Smith, P.T. Guenther, J.F. Whalen, Nucl. Phys., A415, 1 (1984).
- [16] A. Meister, E. Wattecamps, Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, Sept. 1994, p. 263 (1994); A. Meister, *et al.*, ECN-C-94-084 (1994).
- [17] A. Meister, E. Wattecamps, A.J. Koning, A. Hogenbirk, H. Gruppelaar, Proc. Int. Conf. Nuclear Data for Science and Technology, Trieste, Italy, May 1997, p. 586 (1997).
- [18] S. Chiba, et al., Ann. Nucl. Energy, 16, 647 (1989).
- [19] A.B. Smith, et al., ANL/NDM-71 (1982).
- [20] S. Raman, et al., Atom. Data and Nucl. Data Tables, 36, 1 (1987).
- [21] R.H. Spear, Atom. Data and Nucl. Data Tables, 42, 55 (1989).
- [22] R.L. Walter, P.P. Guss, Proc. Int. Conf. Nuclear Data for Basic and Applied Science, Santa Fe, 13-17 May 1985, p. 1 079 (1986).
- [23] N. Yamamuro, JAERI-M 90-006 (1990).
- [24] T. Kawano, "CmC", unpublished.
- [25] P.D. Kunz, "DWUCK4", unpublished.
- [26] J. Raynal, "ECIS88", unpublished.
- [27] G.R. Satchler, "Nuclear Reactions", Oxford Press (1983).

- [28] S.F. Mughabghab, M. Divadeenam, N.E. Holden, "Neutron Cross-sections, Vol. 1: Resonance Parameters and Thermal Cross-sections", Academic Press, New York (1981).
- [29] P.A. Moldauer, Nucl. Phys., A344, 185 (1980).
- [30] National Nuclear Data Center (BNL), "Nuclear Structure Data File, ENSDF".
- [31] A. Gilbert, A.G.W. Cameron, Can. J. Phys., 43, 1 446 (1965).
- [32] P. Lambropoulos, P. Guenther, A. Smith, J. Whalen, Nucl. Phys., A201, 1 (1973).
- [33] M.T. McEllistrem, J.D. Brandenberger, K. Sinram, G.P. Glasgow, K.C. Chung, *Phys. Rev.*, C9, 670 (1974).
- [34] F.D. McDaniel, J.D. Brandenberger, G.P. Glasgow, H.G. Leighton, *Phys. Rev.*, C10, 1 087 (1974).
- [35] A.B. Smith, P. Guenther, J. Whalen, Nucl. Phys., A244, 213 (1975).
- [36] J.W. Dekker, et al., ECN-35 (1978).
- [37] Y.D. Harker, R.A. Anderl, NEANDC(E)-209"L", p. 5 (1980).
- [38] R.A. Anderl, EGG-PHYS-5182 (1981).
- [39] H. Gruppelaar, *et al.*, Proc. Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe, May (1985).
- [40] K. Dietze, *et al.*, Integral Tests of FPND by Reactivity Measurements in Reactor Configurations with Specially Designed Adjoint Spectra, NEA/NSC/DOC(92)9, p. 404 (1992).
- [41] K. Dietze, E. Fort, S. Rahlfs, G. Rimpault, M. Salvatores, "JEF-2 Data Check by Reanalysis of the Rossendorf Expriments in Reactor Configuration with Specially Designed Adjoint Spectra", Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, September 1994, p. 789 (1997).

- [42] A. Meister, "Analysis of the Sample Oscillation Measurements in the STEK Facility Using JEF-2.2 Data", JEFF/DOC-746 (1998).
- [43] K. Dietze, "Integral Test of JENDL-3.2 Data by Re-analysis of Sample Reactivity Measurements at Fast Critical Facilities", Proc. 2000 Symposium on Nuclear Data, November 2000, JAERI, Tokai (to be published as JAERI-conf).
- [44] T. Watanabe, M. Kawai, T. Nakagawa, Y. Nakajima, T. Sugi, S. Chiba, A. Zukeran, H. Matsunobu, H. Takano, H. Akie, "Benchmark Tests of FP Nuclear Data in JENDL-3.2 and Consideration of Resonance Self-shielding Effects for Neutron Strong Absorber Nuclei", JAERI-conf 96-008, p. 140 (1996).
- [45] T. Mori, M. Nakagawa, JAERI-data/code 94-007 (1994).

TABLES

	s-wave	p-wave
	(× 10 ⁻⁴)	(× 10 ⁻⁴)
Mughabghab	0.73 ± 0.17	4.4 ± 0.9
Original WG	0.91	5.1
Modified WG	0.61	7.5
Smith, et al	0.75	4.9

Table 2.2.1. S-wave and p-wave strength functions for ¹⁰⁰Mo

Table 2.2.2 DWBA cross-sections calculated with the original Walter-Guss potential and the modified Walter-Guss potential. The values of W_s are at $E_n = 0$ MeV.

The DWBA cross-sections are for the collective 2^+ state at $E_n = 1$ MeV, assuming $\beta_2 = 0.1$ and an excitation energy of zero

	$(\mathbf{N} - \mathbf{Z})/\mathbf{A}$	Origi	nal WG	Modified WG		
	(N - L)/A	W_s [MeV]	DWBA [mb]	W_s [MeV]	DWBA [mb]	
⁴⁰ Ca	0.0	10.85	4.882	7.710	8.647	
⁴⁸ Ca	0.167	8.360	11.73	5.220	27.20	
⁷⁸ Kr	0.0769	9.701	21.56	6.561	43.39	
⁸⁶ Kr	0.163	8.418	32.28	5.278	78.71	
102 Pd	0.0980	9.385	17.57	6.245	43.62	
¹¹⁰ Pd	0.164	8.405	20.76	5.265	51.28	
¹⁵⁶ Dy	0.154	8.552	51.94	5.412	174.4	
¹⁶⁴ Dy	0.195	7.935	57.45	4.795	213.1	

	JUDC	%JENDL-3.2	JNDC	JENDL-3.1	Dietze/J.	ENDL-3.2	Meister	·/JEF-2.2	Dietze/.	IEF-2.2
INUCLIDES	STEK	CFRMF/EBR	STEK	CFRMF/EBR	STEK-500	STEK-3000	STEK-500	STEK-3000	SEG-5	SEG-7A
Standard sample								,		
^{10}B	0.98	I	0.98	I	1.00°	1.00	1.04^{b}	1.02^{b}	1.00	1.00
	I	Ι	0.83	I	0.94	0.93	0.99	0.98	1.09	
Weak absorber										
90 Zr ^a	0.76	I	0.71	I	0.89	0.78	06.0	0.81	I	I
91 Zr ^a	0.00	I	0.38	I	1.24	1.37	0.80	(0.86)	I	I
92 Zr ^a	0.53	I	0.49	I	0.72	(0.31)	0.78	(0.59)	I	I
96 Zr ^a	0.66	Ι	0.58	I	0.86	I	0.80	(0.56)	I	I
92 Mo	0.89	I	0.96	I	Ι	1.01	2.21	1.30	I	I
94 Mo	1.00	I	1.11	I	0.37	0.66	0.96	(1.33)	I	I
96 Mo	0.92	I	1.01	I	I	0.91	(2.95)	(2.47)	I	I
98 Mo	0.78	1.16	0.98	1.16	I	1.69	(-0.69)	1.66	1.06	1.14
100 Mo	0.45	1.00	0.98	0.99	I	1.75	(0.45)	(1.62)	0.89	0.47
102 Ru	I		1.07	1.05	1.95	1.05	(2.96)	(1.40)		
¹⁰⁴ Pd	I	I	1.10	I	1.58	1.46	I	I	I	I
106 Pd	1.17	I	1.15	I	1.43	1.47	0.96	0.98	I	I
108 Pd	I	I	1.07	0.99	1.17	0.81	1.66	0.93	I	I
Pd Pd	0.73	Ι	0.73		Ι	I	0.49	-4.23	I	I
128 Te			0.39		0.54	I	(0.60)	(3.06)	I	I
130 Te			0.46	I	Ι	I	1.37	(0.68)	Ι	I
139 La ^a	0.70	I	0.74	1.00	0.81	1.35	0.98	(-5.74)	Ι	I
140 Ce ^a	0.78	I	0.78	I	0.49	0.55	0.83	0.91	Ι	I
142 Ce ^a	0.66	0.76	0.64	0.84	0.33	0.44	0.79	0.83	Ι	I
¹⁴¹ Pr	0.96	0.93	0.95	0.92	0.80	1.06	(0.62)	(1.20)	Ι	I
142 Nd ^a	0.00	0.85	0.01	I	0.93	0.76	I		Ι	I
144 Nd ^a	0.56	0.76	0.67	0.76	Ι	0.58	0.62	(1.03)	Ι	I
$^{146}Nd^{a}$	Ι	I	0.13	1.24	Ι	0.87	0.67	0.86	Ι	I
¹⁴⁸ Nd	Ι	I	0.79	0.98	Ι	0.79			Ι	Ι
150 Nd ^a	0.67	1.35	0.68	1.35	Ι	0.92	(0.11)	1.22	I	I
^{a} Oxide sample. ^{b} Extranolated to	UMDS 0402	ile size excent fo	i souhou re	sosothoson n						
EMILAPOINTEU IN	dume nia?	ne size, excepi ju	JI VUINCO I	n purenumero.						

Table 3.1.1. Average C/E values for JENDL-3.2, JENDL-3.1 and JEF-2.2 calculations

34

March 1 and	JUDC	VJENDL-3.2	JNDC/	IENDL-3.1	Dietze/J	ENDL-3.2	Meister,	/JEF-2.2	Dietze/J	EF-2.2
INUCLIDES	STEK	CFRMF/EBR	STEK	CFRMF/EBR	STEK-500	STEK-3000	STEK-500	STEK-3000	SEG-5	SEG-7A
Strong absorber										
93 Nb	0.95	I	0.97	I	1.01	1.06	1.12	(1.07)	I	I
95 Mo	0.99	I	1.01	I	0.82	0.81	1.54	(1.15)	1.13	0.96
70 Mo	0.96	I	1.00	I	0.99	1.22	1.66	1.22	0.95	0.96
99 Tc	0.81	I	0.88	1.22	0.88	0.66	1.09	(1.03)	I	I
¹⁰¹ Ru	0.94	I	1.00	I	1.04	0.99	(1.11)	(1.07)	I	I
103 Rh	0.96	I	1.04	I	0.90	0.97	1.07	0.99	0.90	1.12
¹⁰⁵ Pd	I	I	0.92	I	0.99	0.85	1.09	0.82	1.06	I
¹⁰⁷ Pd	0.94	I	0.92	I	1.04	0.92	1.20	0.93	I	I
107 Ag	I	0.93	I	0.91	I	I	I	I	I	I
^{109}Ag	0.66	0.72	0.63	0.72	0.76	0.55	0.67	0.98	0.93	0.89
$^{111}Cd^{a}$	1.08	I	0.92	I	0.95	1.10	0.62	0.73	I	I
In	0.95	I	0.88	I	I	I	(0.86)	I	I	I
¹²¹ Sb	I	0.95	I	1.20	I	I		I	I	I
123 Sb	Ι	1.01	I	1.29	I	I	I	I	I	I
¹²⁷ I	0.86	I	0.82	I	0.81	0.82	0.75	(1.03)	I	I
¹²⁹ I	1.06	I	1.06	I	1.12	0.88	0.96	1.48	0.93	I
¹³³ Cs (Cl)	0.86	I	0.80	0.91	0.71	0.58	0.87	(0.98)	I	I
¹³⁵ Cs (Cl)	0.92	I	0.88	I	0.23	0.43	0.89	1.17	0.90	I
143 Nd ^a	06.0	0.85	0.90	0.85	0.88	0.84	(1.99)	0.96	1.06	I
145 Nd ^a	0.84	0.81	0.85	0.81	0.90	0.58	0.43	1.14		
147 Pm	I	Ι	I	I	0.89	0.65	1.80	(1.13)	I	I
147 Sm ^a	0.90	Ι	0.83	0.86	0.96	0.87	1.46	(1.17)	1.19	1.50
149 Sm ^a	0.88	0.83	0.88	0.83	1.05	0.89	1.25	(1.24)	I	I
150 Sm ^a	0.81	I	0.86	I	0.89	0.75	(1.15)	(1.08)	I	I
152 Sm ^a	0.85	I	0.85	1.01	0.92	0.69	1.74	(0.95)	Ι	Ι
154 Sm ^a	0.86	I	0.81	I	0.84	0.85	(0.80)	(1.00)	1.09	I
153 Eu ^a	0.92	0.86	0.92	0.86	0.98	0.94	0.95	(1.07)		
^a Oxide sample.				1						
Extrapolatea to	<i>zero sam</i> p	ile size, except ju	or values tr	ı parenıneses.						

Table 3.1.1. Average C/E values for JENDL-3.2, JENDL-3.1 and JEF-2.2 calculations (cont.)

35

MAT	ID	STEK-4000	STEK-3000	STEK-2000	STEK-1000	STEK-500	Comment
$^{10}\mathbf{B}$	105	1.00±4%	1.00±5%	1.00±4%	1.00±4%	1.00±4%	Normalisation
⁹⁰ Zr	400	0.58±29%	0.78±28%	0.71±28%	0.75±24%	0.89±21%	Small effect, !
⁹¹ Zr	401	1.51±13%	1.37±15%	1.43±15%	1.22±22%	1.24±68%	!
⁹² Zr	409	х	х	0.31±55%	0.60±31%	0.72±25%	Small effect, !
⁹³ Zr	403	0.32±43%	0.40±59%	0.37±54%	0.28±57%	0.35±44%	!
⁹⁶ Zr	406	2.20±28%	х	2.36±79%	1.13±63%	$0.86\pm29\%$	Small effect
⁹² Mo	422	1.08±48%	1.01±61%	0.97±54%	0.66±53%	Х	
⁹⁴ Mo	424	х	0.66±49%	$0.85 \pm 37\%$	1.62±70%	$0.37 \pm 60\%$	Small effect
⁹⁵ Mo	425	0.80±12%	0.81±14%	$0.87 \pm 14\%$	0.88±13%	$0.82 \pm 16\%$	Important FP, ?
⁹⁶ Mo	426	1.04±36%	0.91±57%	0.96±50%	1.17±51%	Х	Small effect
⁹⁷ Mo	427	0.77±16%	0.79±15%	0.93±12%	0.97±9%	0.99±13%	Important FP
⁹⁸ Mo	428	2.33±12%	1.69±20%	2.14±23%	х	Х	Important FP, !
¹⁰⁰ Mo	420	1.87±15%	1.75±27%	х	х	х	Important FP, !
⁹⁹ Tc	439	0.84±11%	0.66±12%	0.69±15%	0.72±17%	0.88±8%	Important FP, !
¹⁰¹ Ru	441	1.16±12%	0.99±13%	1.03±13%	0.98±14%	$1.04{\pm}11\%$	Important FP
102 Ru	442	0.67±27%	1.05±20%	1.10±19%	1.43±23%	1.95±61%	Important FP, ?
¹⁰⁴ Ru	444	1.09±38%	1.09±32%	1.23±39%	1.84±36%	$1.24 \pm 38\%$	Important FP
¹⁰³ Rh	453	0.95±8%	0.97±9%	0.93±9%	0.92±7%	$0.90{\pm}11\%$	Important FP
¹⁰⁴ Pd	464	1.30±45%	1.46±44%	1.55±47%	1.40±52%	1.58±84%	?
¹⁰⁵ Pd	465	0.88±10%	0.85±12%	0.96±10%	1.03±9%	0.99±9%	Important FP
¹⁰⁶ Pd	466	1.59±16%	1.47±17%	1.44±15%	1.40±19%	1.43±29%	!
¹⁰⁷ Pd	467	0.93±9%	0.92±10%	$1.07 \pm 11\%$	1.11±11%	$1.04 \pm 9\%$	Important FP
¹⁰⁸ Pd	468	0.97±23%	0.81±17%	0.95±22%	1.39±42%	1.17±39%	Important FP
¹¹⁰ Pd	460	1.05±36%	х	$0.89 \pm 86\%$	0.59±40%	х	
¹⁰⁹ Ag	479	0.78±11%	0.55±13%	0.84±15%	0.72±19%	0.76±14%	Important FP, !
¹¹¹ Cd	481	0.95±24%	1.10±25%	$1.07 \pm 22\%$	0.89±21%	$0.95 \pm 22\%$	
¹²⁸ Te	528	х	х	х	х	0.54±28%	Small effect, !
¹³⁰ Te	533	х	х	0.79±44%	1.02±39%	х	Small effect
127 I	537	0.73±11%	0.82±17%	0.92±14%	0.87±16%	0.81±20%	?
^{129}I	539	0.86±28%	0.88±29%	0.93±28%	1.08±21%	$1.12\pm26\%$	Important FP
¹³³ Cs	553	0.65±10%	0.58±13%	0.70±9%	0.80±8%	0.71±12%	Important FP, !
¹³⁵ Cs	555	х	0.43±70%	0.61±84%	0.71±85%	0.23±84%	Large err., ?
¹³⁹ La	579	1.17±8%	1.35±55%	х	X	0.81±53%	Small effect
¹⁴⁰ Ce	580	1.54±64%	0.55±54%	0.68±39%	0.98±24%	0.49±45%	Small effect
¹⁴² Ce	582	х	0.44±65%	0.27±25%	0.36±19%	0.33±17%	!
¹⁴¹ Pr	591	0.99±19%	1.06±25%	0.87±21%	1.49±29%	0.80±38%	Important FP

Table 3.1.2. C/E values obtained in Dietze's analysis of the STEK experiments

1

C/E values of central reactivity worths, normalised to the C/E value of ¹⁰B, calculated using the JNC standard route JENDL-3.2/SLAROM/CITATION/ PERKY in 70 energy groups.

x Measured reactivity or infinitely dilute value is very small or near zero.

Discrepancy significant.
Discrepancy questionable.
MAT	ID	STEK-4000	STEK-3000	STEK-2000	STEK-1000	STEK-500	Comment
¹⁴² Nd	602	х	0.76±69%	0.98±47%	0.73±40%	0.93±54%	Small effect
¹⁴³ Nd	603	0.66±18%	$0.84\pm25\%$	$0.86\pm25\%$	0.99±14%	$0.88 \pm 24\%$	Important FP
¹⁴⁴ Nd	604	0.36±37%	$0.58 \pm 45\%$	$0.92\pm54\%$	0.85±44%	х	
¹⁴⁵ Nd	605	0.47±25%	$0.58\pm 28\%$	0.71±22%	0.87±18%	$0.90 \pm 22\%$	Important FP
¹⁴⁶ Nd	606	0.82±37%	$0.87 \pm 72\%$	$1.58\pm84\%$	х	х	Small effect
¹⁴⁸ Nd	608	0.76±23%	0.79±24%	0.92±18%	1.13±19%	х	
¹⁵⁰ Nd	600	0.75±33%	0.92±49%	$1.30\pm25\%$	1.69±23%	х	
¹⁴⁷ Pm	617	0.78±19%	$0.65 \pm 24\%$	0.76±21%	0.86±15%	0.89±12%	Important FP
¹⁴⁷ Sm	627	0.86±15%	$0.87 \pm 24\%$	1.11±24%	0.95±12%	0.96±14%	
¹⁴⁸ Sm	628	0.49±25%	$0.59\pm52\%$	0.90±33%	1.23±36%	$1.54\pm84\%$	
¹⁴⁹ Sm	629	1.25±14%	0.89±15%	$0.87 \pm 14\%$	0.88±13%	$1.05 \pm 10\%$	Important FP
¹⁵⁰ Sm	620	0.86±19%	$0.75\pm25\%$	0.77±21%	0.81±22%	$0.89 \pm 21\%$	
¹⁵¹ Sm	621	0.46±60%	0.42±54%	0.44±51%	0.50±53%	0.55±55%	Important FP, !
¹⁵² Sm	622	0.80±25%	0.69±39%	$0.75\pm27\%$	0.78±26%	$0.92 \pm 37\%$	
¹⁵⁴ Sm	624	0.77±27%	$0.85 \pm 38\%$	0.99±32%	1.00±28%	$0.84 \pm 46\%$	
¹⁵¹ Eu	631	0.84±14%	0.72±17%	$0.80{\pm}16\%$	0.86±12%	$0.81 \pm 17\%$	From Eu-nat
¹⁵³ Eu	633	0.92±11%	0.94±16%	$1.02\pm14\%$	0.99±12%	0.98±13%	Important FP
¹⁵⁶ Gd	646	1.69±18%	$1.89\pm28\%$	1.43±25%	0.98±27%	1.17±63%	?
¹⁵⁷ Gd	647	3.19±8%	1.41±11%	1.24±12%	0.99±14%	1.23±21%	?
¹⁵⁹ Tb	659	0.96±6%	0.92±13%	$1.01 \pm 7\%$	1.08±8%	1.10±12%	

Table 3.1.2. C/E values obtained in Dietze's analysis of the STEK experiments (*cont*.)

C/E values of central reactivity worths, normalised to the C/E value of ¹⁰*B, calculated using the JNC standard route JENDL-3.2/SLAROM/CITATION/ PERKY in 70 energy groups.*

x Measured reactivity or infinitely dilute value is very small or near zero.

! Discrepancy significant.

? Discrepancy questionable.

C/E values and the contributions of capture,	g to the worth for Mo, Ru, Pd and Nd isotopes
Table 3.2.1. Sample reactivity v	scattering and direct inelastic sca

Nlidoz		STEK-500 (ha	urd spectrun	n)		STEK-3000 (s	soft spectru	m)
Inuclines	C/E	Capture/total	Scat./total	Direct/scat.	C/E	Capture/total	Scat./total	Direct/scat.
92 Mo	-2.73	-2.31	1.31	-0.60%	1.26	-1.55	0.55	0.70%
${ m oM}_{ m 86}$	-0.33	-9.06	8.06	1.20%	1.15	-1.74	0.741	1.40%
100 Mo	0.054	-747	748	0.20%	1.24	-1.84	0.84	2.20%
102 Ru	2.03	-1.66	0.66	%6.6	1.43	-1.26	0.26	%8.6
104 Ru	1.00	-2.08	1.08	5.5%	1.15	-1.34	0.34	5.3%
\mathbf{pd}^{104}	1.65	-1.22	0.22	11%	1.17	-1.08	0.08	12%
\mathbf{pd}^{106}	1.24	-1.29	0.29	5.2%	1.21	-1.13	0.13	7.1%
\mathbf{Pd}^{108}	1.74	-1.43	0.43	10%	1.10	-1.11	0.11	8.3%
\mathbf{Pd}^{110}	2.68	-1.96	0.96	4.0%	4.33	-1.28	0.28	2.6%
142 Nd	0.218	-4.89	5.89	1.9%	4.46	-2.47	1.47	2.3%
$\rm bN^{441}$	0.568	-1.87	2.87	6.8%	0.76	-2.61	1.61	5.0%
146 Nd	0.387	-5.06	6.06	7.0%	1.14	-2.38	1.38	5.3%
148 Nd	1.03	-7.24	6.24	9.3%	0.80	-1.69	0.69	7.2%
$\rm bN^{021}$	0.37	-6.37	7.37	5.6%	0.81	-1.79	0.79	4.1%

Nuclidad	C/E value with	C/E value with
Inuclides	ECN flux	Monte Carlo method
(Stadard samples)		
${}^{10}\mathbf{B}$	0.981	0.963 ± 0.018
С	0.829	0.823±0.020
Ν	0.850	0.847±0.085
0	0.729	0.753±0.030
Al	0.817	0.871±0.037
Pb	0.662	0.823±0.025
²³⁵ U	0.946	0.962±0.021
(FP nuclides)		
⁹⁵ Mo	0.998	0.969±0.045
⁹⁹ Tc	0.872	0.859±0.026
105 Pd	0.894	0.883±0.027
107 Pd	0.899	0.888±0.019
149 Sm	0.851	0.841±0.018
¹⁵³ Eu	0.899	0.888±0.020
¹⁵⁹ Tb	1.017	1.009±0.024

 Table 3.3.1. C/E values for the reactivity worths of standard samples and strongly absorbing FP nuclides (calculation with JENDL-3.1)

Nuclidae	C/E value with	C/E value with
Inuclides	ECN flux	Monte Carlo method
⁹⁰ Zr	0.674	0.705±0.123
92 Zr	0.479	0.532±0.138
⁹⁶ Zr	0.571	0.622±0.156
⁹² Mo	0.947	0.877±0.338
⁹⁴ Mo	1.099	1.006 ± 0.468
⁹⁸ Mo	1.027	0.975±0.103
100 Mo	1.089	1.041±0.190
104 Pd	1.101	1.078±0.217
106 Pd	1.147	1.120±0.106
108 Pd	1.065	0.998±0.149
110 Pd	0.722	0.649 ± 0.456
¹²⁸ Te	0.386	0.407±0.279
¹³⁰ Te	0.457	0.549±0.269
¹⁴⁰ Ce	0.795	0.843±0.118
¹⁴² Ce	0.642	0.675±0.183
142 Nd	0.009	0.043 ± 0.079
144 Nd	0.628	0.645±0.336
146 Nd	0.590	0.696±0.236
¹⁴⁸ Nd	0.767	0.728±0.100
¹⁵⁰ Nd	0.675	0.641±0.097

Table 3.3.2. C/E values for the reactivity worths of weakly absorbing FP nuclides (calculation with JENDL-3.1)

FIGURES

Figure 2.1.1. Comparison of inelastic scattering cross-sections for ⁹²Zr

Figure 2.1.2. Comparison of inelastic scattering cross-sections for natural Pd

JENDL-3 is based on DWBA calculation with $W_s = 9.1$ MeV and ECIS is denoted to the CC calculation

Figure 2.1.5. Comparison of inelastic scattering cross-sections for natural ¹⁵⁰Nd

Solid and dashed lines show the CC results with $W_s = 4.5$ and 9.13 MeV, respectively. JENDL-3 was estimated with DWBA.

Figure 2.2.1. Direct inelastic scattering cross-sections to 2⁺ level calculated with the original Walter-Guss potential (thin lines) and the modified Walter-Guss potential (thick lines). The dot-dashed lines are the CC results with the 0⁺-2⁺-3⁻ coupling scheme.

Figure 2.2.2. Direct inelastic scattering cross-sections to 3⁻ level calculated with the original Walter-Guss potential (thin lines) and the modified Walter-Guss potential (thick lines). The dot-dashed lines are the CC results with the 0⁺-2⁺-3⁻ coupling scheme.

Figure 2.2.3. The squared values of the radial wave functions at $E_n = 0.1$ MeV

The thin lines are calculated with the original Walter-Guss potential, and the thick lines are with the modified one

Figure 2.2.4. Comparison of the overlap integral with the original Walter-Guss and the modified Walter-Guss potentials

The entrance channel and the exit channel wave functions are for the p-wave, j = 3/2 at $E_n = 0.1$ MeV. The collective form factor is shown by the dashed line (real) and the dot-dashed lines (imaginary). The real parts of both potentials are the same.

Figure 2.2.5. Imaginary part of S matrix elements at

Figure 2.2.6. Comparison of the calculated DWBA cross-sections for ¹⁰⁰Mo and the partial cross-sections (dashed lines)

Figure 2.2.7. Comparison of the calculated DWBA cross-sections for ⁵⁰Cr and the partial cross-sections (dashed lines)

The DWBA cross-sections are calculated for a fictitious level having the excitation energy of 0 MeV and the angular momentum transfer of 2 h

Figure 2.2.8. Comparison of the calculated inelastic scattering cross-sections of ¹⁰⁰Mo for the 535.6, 695.1 and 1 064 keV levels with the experimental data

Cross-sections for the first level contain⁸⁸Mo of the second level. The direct process is calculated with the DWBA. The dot-dashed line corresponds to the compound cross-section calculation on the assumption that the level widths distribution is the Porter-Thomas distribution.

Figure 2.2.9. Same as Figure 2.2.7, but the

Figure 2.2.10. Comparison of the calculated inelastic scattering cross-sections of ¹⁰⁰Mo for the 535.6 keV level with the experimental data

Figure 2.2.12. Comparison of the calculated inelastic scattering cross-sections of ⁹²Mo for the 1 509 keV level with the experimental data

Figure 3.1.1. C/E values of sample reactivity worth for the STEK experiments as a function of mass number

Figure 3.2.2. Reactivity worth of ¹⁰⁰Mo in order of core size for three sample sizes

Figure 3.3.2. Comparison of adjoint spectra and ratios to the ECN spectrum in the STEK-3000 core

Figure 3.3.3. Comparison of adjoint spectra and ratios to the ECN spectrum in the STEK-500 core

Figure 3.3.4. Comparison of the reactivity worth of ⁹²Zr as a function of average core neutron energy, calculated using various combinations of neutron and adjoint fluxes with the experimental values

Figure 3.3.5. Comparison of the C/E values for reactivity worth of ⁹²Zr as a function of average core neutron energy, calculated using various combinations of neutron and adjoint fluxes with the experimental values

APPENDIX

Summary of the JNDC Analysis of the STEK Experiments Using JENDL-3.2

ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK-	.1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	$Av(C/E)_{\rm abs}$	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
Н	Ρ	1.80	0.1246	0.509	0.124	0.698	0.131	0.896	0.129	1.241	0.124	1.600	0.111
	Р	3.44	-0.0003	0.509	0.123	0.698	0.131	0.896	0.130	1.241	0.124		
IT_{t}	M	9.55	0.0161	0.010	-0.115	0.083	0.016	0.134	1.372	0.210	1.008		
	Z	13.85	-0.0146	0.011	-0.118	0.083	0.015	0.134	1.370	0.209	1.016	0.290	0.852
$1^{-10}B$	Ph = 0.75	3.26	1.0195	-1.771	1.042	-1.331	1.053	-1.165	1.006	-0.945	0.998	-0.646	0.961
	Ph = 1.50	6.30	1.0033	-1.687	1.040	-1.301	1.027	-1.148	1.003	-0.937	0.975	-0.643	0.948
	Ph = 2.25	9.16		-1.626	1.018	-1.278	1.025	-1.135	1.001	-0.930	0.982		
	Ph = 3.00	11.84		-1.580	1.019	-1.259	1.017	-1.123	0.996	-0.924	0.976	-0.638	0.923
2- ¹⁰ B		0.0038											
		0.0150											
3- ¹⁰ B		0.0130											
C	Ph = 3.0	8.94	0.8635			0.213	0.874	0.276	0.869				
	Ph = 3.5	10.26	-0.0176							0.371	0.819		
	Ph = 5.0	13.72				0.213	0.870						
	Ph = 9.7	23.21		0.145	0.882	0.213	0.884	0.276	0.868	0.371	0.838		
	Ph = 11.2	25.08						0.276	0.868	0.371	0.834		
	Ph = 16.8	32.03				0.213	0.880						
	Ph = 21.0	35.22		0.145	0.891								
	Ph = 31.5	43.47		0.145	0.890							0.460	0.781
1-N	М	17.51	0.7235	0.015	1.242	0.030	0.752	0.044	0.667	0.059	0.676		
	R	29.85	1.1516	0.015	1.000	0.030	0.757	0.044	0.721	0.059	0.654		
2-N	M	18.26	0.4712	0.005	0.327	0.017	0.513	0.026	0.503	0.036	0.497		
	R	29.00	1.3224	0.005	0.337	0.017	0.474	0.027	0.499	0.036	0.467		
1-0	M	11.30	0.7629	0.050	0.749	0.077	0.804	0.101	0.731	0.136	0.760		
	z	17.92	-0.4477	0.050	0.750	0.077	0.780	0.101	0.767	0.136	0.742		
	R	13.65		0.050	0.785	0.077	0.791	0.101	0.770	0.136	0.755	0.172	0.730
									J	(-1-)			

N.B. Av(C/E)_{ass} = $(\rho/p_0)_{cal}/[(\rho/p_0)_{cal} - (\rho_s/p_0)_{cal}]$, where $(\rho_c/p_0)_{cal}$ is the calculated reactivity worth for capture, $(\rho/p_0)_{cap}$ is the experimental reactivity worth and $(\rho_s/p_0)_{cal}$ is the calculated reactivity worth for scattering.

	ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	(-2000	STEK	-1000	STEK	<u>-500</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	isotope	code	(g/cm^2)	$\mathbf{Av}(\mathbf{C}/\mathbf{E})_{\mathrm{abs}}$	p/p₀	C/E	p/p₀	C/E	₀d/q	C/E	p/p₀	C/E	p/p₀	C/E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-0	z	22.40	0.3654	0.007	0.209	0.020	0.354	0.032	0.404	0.048	0.422		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R	20.75	-0.8208	0.007	0.203	0.020	0.352	0.032	0.393	0.048	0.420	0.066	0.443
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Al	Ph = 2.1	10.52	0.8661			0.053	0.884	0.070	0.909				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ph = 3.0	14.17	1.4682	0.033	0.834	0.053	0.870			0.092	0.880	0.116	0.841
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ph = 3.4	15.77								0.092	0.855		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ph = 4.0	18.00				0.053	0.877	0.069	0.884	0.092	0.863	0.116	0.879
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ph = 4.7	20.97								0.092	0.857		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ph = 5.7	24.33		0.033	0.838	0.053	0.886	_					
		Ph = 6.1	25.78						0.069	0.862	0.092	0.866		
		Ph = 10.3	37.52						0.069	0.881				
NimPh = 14.7 47.12 0.033 0.033 0.850 0.687 0.047 0.632 0.063 0.623 0.623 SiM13.01 0.6873 0.023 0.023 0.023 0.037 0.717 0.063 0.623 0.670 C11.25 -0.7613 0.023 0.023 0.729 0.037 0.741 0.047 0.717 0.063 0.623 C11.25 -0.7613 0.023 0.023 0.729 0.037 0.725 0.044 0.717 0.063 0.670 C11.25 -0.7613 0.023 0.023 0.729 0.037 0.725 0.044 0.717 0.633 0.670 C1D13.71 0.3111 -0.005 0.137 0.001 -0.221 0.063 0.670 D13.71 0.3111 -0.005 0.137 0.001 -0.221 0.004 -0.729 0.001 L16.17 0.3111 0.005 0.124 0.004 -0.221 0.004 -0.724 0.011 L16.17 0.3111 0.012 0.001 -0.221 0.004 -0.221 0.001 -0.732 VPh = 4.56 27.38 1.377 -0.010 5.464 0.003 0.235 0.024 0.041 0.544 Ph = 5.61 27.06 1.377 -0.010 11.510 0.005 0.235 0.024 0.041 0.544 Ph = 10.9 48.44 Ph = 13.3		Ph = 13.9	45.61		0.033	0.852			_					
SiM13.01 0.6873 0.023 0.023 0.027 0.037 0.687 0.047 0.717 0.063 0.623 C 11.25 -0.7613 0.023 0.023 0.037 0.037 0.047 0.717 0.063 0.623 R 33.26 0.023 0.023 0.027 0.037 0.037 0.047 0.717 0.063 0.623 C1D 13.02 0.023 0.023 0.023 0.023 0.004 -0.508 0.670 D 13.71 0.3111 -0.005 0.145 0.001 -0.023 0.004 -0.538 0.670 D 13.71 0.3111 -0.005 0.137 0.001 -0.023 0.004 -0.538 0.670 D 13.71 0.3111 -0.005 0.137 0.001 -0.023 0.004 -0.538 0.073 VPh = 4.56 22.33 0.5290 0.128 0.001 -0.026 0.004 -0.221 0.011 -1.732 VPh = 5.61 27.06 1.3737 -0.010 5.464 0.001 -0.025 0.023 0.521 0.011 -1.732 Ph = 6.05 27.38 0.520 0.004 -0.249 0.063 0.644 -0.732 Ph = 10.9 43.04 $Ph = 1.3.33$ 48.84 -0.010 0.005 0.235 0.024 0.024 0.021 Ph = 13.3 48.84 -0.000 5.949 0.006 0.288		Ph = 14.7	47.12		0.033	0.850								
Si M 13.01 0.6873 0.023 0.629 0.037 0.687 0.047 0.632 0.663 0.623 0.623 0.670 R 33.26 -0.7613 0.023 0.729 0.037 0.741 0.047 0.717 0.063 0.653 0.670 C1 D 13.71 $0.13.02$ 0.0311 -0.005 0.145 0.001 -0.028 0.004 -0.508 0.063 0.670 D 13.71 0.3111 -0.005 0.137 0.001 -0.028 0.004 -0.227 0.008 -0.732 M 19.13 -0.005 0.137 0.001 -0.026 0.004 -0.221 0.008 -0.732 0.011 -1 V Ph = 4.56 22.33 0.5290 0.128 0.001 -0.026 0.004 -0.221 0.008 -0.907 0.011 -1 Ph = 5.61 27.06 1.3737 -0.010 5.464 0.001 -0.025 0.004 -0.221 0.041 0.544 -0.907 0.011 -1 Ph = 5.61 27.38 0.5290 -0.010 11.510 0.005 0.235 0.024 0.024 0.021 0.041 0.544 -0.907 -0.900 -0.900 -0.900 -0.900 -0.900 -0.907 -0.907 -0.907 -0.907 -0.907 -0.900 -0.900 -0.900 -0.900 -0.900 -0.907 -0.907 -0.907 -0.907 -0.900 -0.9														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si	M	13.01	0.6873	0.023	0.629	0.037	0.687	0.047	0.632				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		J	11.25	-0.7613	0.023	0.729	0.037	0.741	0.047	0.717	0.063	0.623		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		R	33.26		0.023	0.700	0.037	0.725	0.048	0.698	0.063	0.670		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CI	D	13.02	0.0813	-0.005	0.145	0.001	-0.023	0.004	-0.508				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D	13.71	0.3111	-0.005	0.137	0.001	-0.028	0.004	-0.227	0.008	-0.732		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L	16.17		-0.005	0.154	0.001	-0.026	0.004	-0.221			0.011	-0.787
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M	19.13		-0.005	0.128	0.001	-0.031	0.004	-0.249	0.008	-0.907	0.011	-0.789
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Λ	Ph = 4.56	22.33	0.5290			0.005	0.235			0.041	0.544		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ph = 5.61	27.06	1.3737	-0.010	5.464			0.023	0.521				
		Ph = 6.05	27.38		-0.010	11.510								
Ph = 13.3 48.84 -0.009 5.949 0.006 0.288 0.042 0.587 Ph = 17.7 58.48 -0.009 5.949 0.006 0.288 0.042 0.587		Ph = 10.9	43.04				0.006	0.268	0.024	0.563				
Ph = 17.7 58.48 -0.009 5.949 0.006 0.288 0.024 0.600		Ph = 13.3	48.84								0.042	0.587		
		Ph = 17.7	58.48		-00.00	5.949	0.006	0.288	0.024	0.600				

& main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
pe	code	$(\mathbf{g/cm}^2)$	$\mathbf{Av}(C/E)_{\mathrm{abs}}$	p/p₀	C/E	p/p	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
	Ph = 1.94 Ph = 3.06	15.91 23.92	0.3645 1.9231			0.007	0.267			0.027	0.425		
	Ph = 3.76	28.55						0.017	0.400				
	Ph = 4.75	34.70		-0.003	-0.460	0.008	0.306						
	Ph = 5.7	40.18		-0.003	-0.304	0.008	0.330						
	Ph = 9.22	57.55								0.028	0.464		
	Ph = 12.2	69.75		-0.002	-0.240	0.009	0.360	0.018	0.465				
	Ph = 0.1	1.09	0.2279	0.001	0.043			0.040	1.188	0.071	2.305		
	Ph = 1.0	15.01	0.4448	-0.003	-0.297	0.007	0.311	0.015	0.430	0.026	0.523		
	Ph = 2.0	28.69	1.9483	-0.001	-0.099	0.009	0.397	0.018	0.504				
	Ph = 3.0	41.34		0.000	0.014	0.011	0.446	0.019	0.562	0.030	0.583	0.042	0.610
	Ph = 1.5	24.83	1.4847	-0.023	1.390	-0.021	2.279	-0.020	5.305	-0.024	79.758		
	Ph = 3.0	46.32	1.2833	-0.023	1.289	-0.021	2.688						
	Ph = 4.25	61.16								-0.023	-10.428		
	Ph = 4.75	68.09						-0.019	7.001				
	Ph = 5.25	73.74		-0.023	1.367	-0.021	2.606						
	Ph = 7.0	81.97						-0.019	6.695				
	Ph = 7.25	90.51								-0.022	-10.213		
	Ph = 10	17.00	1.5173	-0.024	1.528			-0.020	10.433			-0.036	9.866
	Ph = 3.0	46.81	1.2802	-0.023	1.451			-0.019	7.384				
	Ph = 0.25	3.19	0.4580			-0.024	-4.742	-0.018	-1.232				
	Ph = 0.75	9.35	1.3234	-0.021	1.592	-0.018	3.033			-0.003	-0.175		
	Ph = 1.49	18.08		-0.017	1.532	-0.014	14.045	-0.009	-2.684			0.016	0.356
	K	11.09	0.7415	0.023	0.479	0.036	0.899	0.048	0.700	0.067	0.714		
	М	23.43	-0.5701	0.024	0.740	0.037	0.784	0.049	0.795	0.068	0.749	0.088	0.776
	К	5.91	0.5837	-0.057	1.422	-0.049	1.406	-0.034	0.627	0.003	-0.007		
	0	6.64	1.0446	-0.054	1.513	-0.047	1.140	-0.032	4.506	0.001	0.060		
	L	9.19		-0.048	1.067	-0.040	0.932	-0.025	1.807	0.006	0.429	0.052	0.637

ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	(-500
isotope	code	$(\mathbf{g/cm}^2)$	$\mathbf{Av}(\mathbf{C}/\mathbf{E})_{abs}$	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
92 Zr	0	7.26	0.5403	0.015	1.289	0.027	0.598	0.039	0.407	0.058	0.728		
	M	13.01	0.5403	0.017	0.484	0.029	0.529	0.042	0.549	0.061	0.562	0.084	0.590
93 Zr	L	6.51	0.6956	-0.057	0.902	-0.042	1.015	-0.021	2.616	0.018	-0.891	0.066	0.685
	M	5.82	1.0550	-0.059	1.226	-0.043	1.889	-0.022	-5.615	0.017	0.368	0.065	0.564
	M	6.07		-0.058	1.139	-0.043	1.711	-0.022	-3.648	0.017	0.283	0.066	0.596
96 Zr	K	13.19	0.6599	-0.004	-0.634	0.011	0.337	0.028	0.748	0.057	0.832		
	L	20.50	1.0354	0.001	-0.512	0.016	0.739	0.032	0.677	0.059	0.688	0.089	0.679
Nb	Ph = 1.0	16.06	0.9802	-0.231	0.981	-0.267	1.020	-0.275	0.992	-0.262	0.985	-0.184	1.014
	Ph = 2.0	30.78	0.9830	-0.197	0.964	-0.229	0.995	-0.237	0.975	-0.227	0.977		
	Ph = 3.0	44.24		-0.179	0.969	-0.208	0.976	-0.215	0.956	-0.207	0.964	-0.148	0.945
Mo	Ph = 0.1	2.18	1.0110	-0.298	1.003	-0.277	0.971	-0.250	1.070	-0.199	1.008	-0.118	1.034
	Ph = 0.2	4.36	1.0230	-0.262	0.971	-0.251	1.059	-0.231	1.006	-0.189	1.079	-0.115	1.171
	Ph = 0.3	6.43		-0.243	0.977	-0.236	1.010	-0.220	1.029	-0.183	1.014		
	Ph = 0.4	8.61		-0.230	0.956	-0.226	1.012	-0.212	1.023			-0.111	1.332
	Ph = 0.8	16.90				-0.201	0.992	-0.192	1.020	-0.165	1.106		
0W ²⁶	Н	5.43	0.9107	-0.046	2.847	-0.050	1.027	-0.051	0.800	-0.050	1.517		
	K	7.34	0.9799	-0.044	1.066	-0.048	1.302	-0.049	1.687	-0.048	0.783	-0.040	-2.859
94 Mo	Н	8.42	1.0264	-0.075	1.522	-0.078	1.109	-0.076	1.340	-0.073	5.204		
	Τ	8.61	1.0728	-0.074	9.276	-0.077	0.978	-0.076	1.169	-0.073	1.543	-0.056	0.640
0M ²⁶	Н	5.25	1.0269	-0.501	0.965	-0.482	1.042	-0.460	0.980	-0.411	0.949	-0.298	1.093
	K	7.56	1.0203	-0.460	0.953	-0.450	0.996	-0.434	1.062	-0.394	1.128	-0.290	1.003
	L	11.48		-0.416	0.973	-0.414	1.030	-0.404	1.066	-0.372	1.085		
oM ^{oe}	Ρ	8.59	0.9383	-0.091	1.284	-0.083	0.729	-0.071	0.755	-0.051	6.423		
	s	11.26	0.9932	-0.084	0.941			-0.065	1.102	-0.047	2.043	-0.022	2.164
	Н	15.90		-0.075	1.001	-0.068	1.625	-0.058	0.863	-0.041	2.066	-0.018	0.596
oW ⁷⁹	K	6.83	0.9732	-0.379	0.931	-0.421	1.034	-0.424	0.957	-0.390	0.982	-0.269	0.979
	0	8.77	0.9758	-0.362	0.933	-0.404	1.010	-0.409	0.935	-0.378	0.980	-0.263	1.017
	L	11.30		-0.345	0.974	-0.387	0.987	-0.393	0.986	-0.366	0.993	-0.257	0.901

ID & main	I Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	$Av(C/E)_{\rm abs}$	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
оМ ⁸⁶	гo	18.69 28.91	1.0167 1.1040	-0.069 -0.058	1.197 1.001	-0.071 -0.058	1.043 1.166	-0.065 -0.052	$0.969 \\ 1.341$	-0.050 -0.039	3.323 7.760	-0.010	-0.303
оМ ^{оот}	T 7	7.66	1.0587	-0.068	1.998	-0.070	1.709	-0.063	2.738	01010			
	L P	10.02	C/ 60.1	-0.055 -0.055	0.969 1.077	-0.055	1.218	-0.048 -0.048	1.1/2	-0.040 -0.032	2.140 2.140	0.003	0.116
1- ⁹⁹ Tc	Ρ	3.26	0.8218	-1.011	0.919	-0.926	0.850	-0.901	0.805	-0.848	0.689	-0.683	066.0
	Н К	7.52 10.53	0.8295	-0.864 -0.807	0.823 0.823	-0.838 -0.799	0.798 0.824	-0.837 -0.806	$0.790 \\ 0.815$	-0.809 -0.789	$0.870 \\ 0.830$	-0.666 -0.657	0.844 0.904
2^{-99} Tc	Gh = 19.5 Gh = 72.0	6.25	0.8122	-0.897	0.787	-0.859	0.795	-0.853	0.741	-0.819	0.853		
	Gh = 16.5	9.92	7010.0	-0.817	0.817	-0.806	0.791	-0.812	0.812	-0.792	0.880		
¹⁰¹ Ru	Р	11.31	0.9564	-0.907	0.997	-0.949	1.005	-0.948	0.946	-0.887	0.905	-0.701	1.079
	Н	20.81	0.9641	-0.776	0.935	-0.832	0.952	-0.846	0.956	-0.814	0.970	-0.666	0.965
102 Ru	S	10.25	1.0745	-0.134	0.961	-0.153	0.925	-0.159	1.052	-0.157	1.278		
	Н	14.67	1.0760	-0.126	1.017	-0.144	1.437	-0.149	1.099	-0.148	1.371	-0.117	2.054
¹⁰⁴ Ru	Ь	10.59	1.0753	-0.117	0.906	-0.132	1.125	-0.133	1.314	-0.123	1.425		
	Η	20.27	1.0658	-0.096	0.996	-0.108	1.165	-0.110	1.166	-0.103	1.283	-0.072	1.018
1- ¹⁰³ Rh	Ph = 0.05	1.24	0.9692	-1.640	0.988			-1.045	0.975	-0.942	0.996	-0.727	0.900
	Ph = 0.1	2.49	0.9705	-1.367	0.974	-1.041	0.992	-0.976	0.954	-0.903	0.963	-0.714	1.011
	Ph = 0.2	4.98		-1.115	0.961	-0.924	0.963	-0.896	0.964	-0.855	0.978	-0.695	1.004
	Ph = 0.3	7.34		-0.991	0.963	-0.860	0.960	-0.849	0.965	-0.824	0.978		
	Ph = 0.4	9.83		-0.906	0.952	-0.813	0.967	-0.813	0.965	-0.799	0.980		
2- ¹⁰³ Rh	M	6.22	1.0114	-1.058	0.969					-0.841	0.994		
	M	6.22	1.0040			-0.894	0.999	-0.874	0.960	-0.841	0.967		
	M	6.22		-1.058	1.009	-0.894	1.031	-0.874	0.968	-0.841	0.981		
	W	6.22				-0.894	1.112	-0.874	1.012	-0.841	1.058		
3- ¹⁰³ Rh	Ph = 0.98	5.19	0.9716	-0.056	1.061								
	Ph = 1.47 Ph = 2.45	7.62	1.1499	-0.052	1.072			0.022	0.770	0.050	0.868	0.083	0.843

ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK.	-3000	STEK	-2000	STEK.	-1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	$Av(C/E)_{\rm abs}$	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p	C/E
Pd	M	6.08	1.0495	-0.615	1.078	-0.594	1.080	-0.568	0.962			-0.378	0.819
	W	6.08	1.0441	-0.615	1.031					-0.502	1.046		
	W	6.08		-0.615	1.031	-0.594	1.034	-0.568	1.019			-0.378	0.986
	W	6.08								-0.502	1.130		
	W	6.08								-0.502	1.154		
¹⁰⁴ Pd	S	3.64	1.1400	-0.418	1.497	-0.448	1.220	-0.447	0.931	-0.412	1.790	-0.321	2.470
	S	3.79	1.1377	-0.415	1.476	-0.445	1.190	-0.444	1.932	-0.410	1.139	-0.320	1.686
pd ²⁰¹	T	7.60	0.9969	-1.144	0.960	-1.226	0.977	-1.247	0.974	-1.194	0.964	-0.960	0.932
	K	7.48	0.9942	-1.147	0.963	-1.229	0.988	-1.249	0.999	-1.195	1.017	-0.960	1.059
	Ah = 0.54	1.67		-1.388	1.020	-1.422	0.954	-1.406	1.019	-1.292	1.025		
	Ah = 1.09	3.24		-1.293	1.016	-1.349	1.007	-1.348	1.029	-1.258	1.030		
pd_{901}	Н	11.76	1.1932	-0.222	1.181	-0.259	1.226	-0.274	1.149	-0.277	1.294	-0.237	1.269
			1.1693										
Pd_{201}	T	12.39	1.0105	-0.993	0.999	-1.030	1.008	-1.023	1.030	-0.949	1.080	-0.745	1.086
	K	15.88	1.0166	-0.954	0.993	-0.998	1.030	-0.998	1.022	-0.933	1.048	-0.738	1.079
	0	20.69		-0.913	0.992	-0.964	1.032	-0.969	1.022	-0.915	1.042	-0.730	1.066
	Dh = 1.39	7.33		-1.073	0.995	-1.092	1.010	-1.073	1.021	-0.979	1.085		
	Dh = 2.78	13.33		-0.982	0.934	-1.020	0.987	-1.016	0.998	-0.945	1.065		
pd_{801}	Н	6.49	1.1095	-0.407	1.111	-0.325	0.997	-0.279	1.044	-0.224	1.866		
	Т	7.72	1.1023	-0.386	1.205	-0.310	1.116	-0.268	1.097	-0.218	1.236	-0.167	1.774
pd_{011}	S	3.60	0.7482	-0.129	1.722	-0.132	-2.132	-0.129	1.170	-0.118	0.588	-0.082	0.744
	S	3.69	0.9243	-0.129	1.355	-0.132	4.393	-0.128	-1.605	-0.117	0.903	-0.082	2.724
109 Ag	7h>.07	>0.44	0.8997	-2.440	1.190	-1.617	0.728	-1.311	1.032	-1.009	0.795		
	Ah>.15	>0.85	0.8969	-2.104	1.031	-1.477	0.839	-1.238	0.998	-0.984	0.871		
	Р	5.88		-1.273	0.909	-1.053	0.892	-0.973	0.846	-0.866	0.767	-0.675	0.704
	Н	10.57		-1.075	0.918	-0.935	0.899	-0.889	0.881	-0.820	0.921	-0.658	0.967
111 Cd	Р	3.92	1.0972	-0.667	1.170	-0.719	1.092	-0.741	1.029	-0.734	1.034	-0.643	1.089
	Р	3.55	1.0899	-0.675	1.072	-0.725	1.132	-0.746	0.899	-0.738	0.997		
	S	5.07		-0.644	1.193	-0.701	1.310	-0.726	1.084	-0.726	1.230	-0.640	1.163

ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK-	1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	$Av(C/E)_{\rm abs}$	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p	C/E
In	Ph = 1.0	14.02	1.0160	-0.913	0.990			-0.763	1.041			-0.652	1.053
	Ph = 3.0	38.61	1.0043	-0.668	0.973			-0.665	1.016				
$^{128}\mathrm{Te}$	0	21.86	0.3816	-0.009	0.785	-0.006	1.594	-0.003	0.324	0.004	0.477	0.014	0.342
			0.9543										
130 Te	0	8.08	0.4823	0.006	0.264	0.011	2.160	0.015	0.607	0.021	0.655		
	L	7.25	0.5858	0.006	-2.008	0.011	0.894	0.015	0.604	0.021	1.392	0.029	1.448
I_{221}	Eh = 9.71	11.62	0.8797	-0.455	0.784	-0.444	0.737	-0.421	0.796	-0.363	0.878		
	Dh = 4.71	13.69	0.8826	-0.436	0.849	-0.429	0.859	-0.410	0.888	-0.357	0.906		
	S	5.71		-0.540	0.918	-0.507	1.000	-0.469	0.983	-0.389	1.020	-0.266	0.645
	Т	8.40		-0.493	0.889	-0.472	0.888	-0.443	0.931	-0.375	0.846	-0.262	0.860
	0	13.80		-0.436	0.889	-0.429	0.932	-0.410	0.931	-0.357	0.936	-0.256	0.981
I_{50}	Т	7.43	1.0735	-0.296	1.160	-0.292	1.148	-0.278	1.010	-0.239	1.025	-0.168	1.303

Table A.1. Calculated results with ECN spectrum and JENDL-3.2 (cont.)

 $\begin{array}{c} 0.864 \\ 0.932 \\ 0.934 \\ 1.094 \\ 0.568 \\ 0.680 \end{array}$

 $\begin{array}{c} -0.160\\ -0.158\\ -0.154\\ -0.152\\ 0.047\\ 0.048\end{array}$

 $\begin{array}{c} 1.026\\ 0.779\\ 0.945\\ 1.104\\ 0.715\\ 0.753\end{array}$

-0.239 -0.232 -0.222 -0.216 0.027 0.029

 $\begin{array}{c} 1.017\\ 0.896\\ 0.873\\ 0.917\\ 0.683\\ 0.825\\ \end{array}$

-0.304 -0.291 -0.273 -0.263 0.011 0.013

1.000 0.968 0.925 0.925 0.925 0.426

-0.346 -0.328 -0.304 -0.291 -0.001 0.001

 $\begin{array}{c} 0.993 \\ 0.917 \\ 0.937 \\ 0.925 \\ 0.673 \end{array}$

-0.016 -0.013

0.69470.9801

ЪZ

l-¹³⁹La

-0.421 -0.394 -0.359 -0.341

н мол

0.92890.9382

2.07 5.95 8.75 115.34 12.89 18.90 7.55 7.55 7.55 7.55 7.55 7.55 7.53 23.96 23.96

_

2-¹³³Cs ¹³⁵Cs

 $0.878 \\ 0.858$

-0.313

1.043 1.146

-0.118

-0.201

1.185

-0.284

1.086

0.936

-0.552

1.07401.10910.86830.8753

2.14

RB

Xe

- ¹³³Cs

 \mathbf{z}

-0.279

1.0661

7.43 10.99

766.0

-0.267

1.059

-0.278 -0.363

-0.168 -0.166

1.0251.113 1.170

-0.239 -0.233

1.160 1.083 $\begin{array}{c} 0.646 \\ 0.850 \\ 0.854 \end{array}$

-0.292 -0.284 -0.275

 $\begin{array}{c} 0.936\\ 0.880\\ 0.857\\ 0.886\\ 0.886\\ 0.842\\ 0.845\\ 0.845\end{array}$

-0.474 -0.429 -0.379 -0.409 -0.388 -0.367 -0.348

 $\begin{array}{c} 0.864\\ 0.870\\ 0.870\\ 0.868\\ 0.846\\ 0.836\\ 0.853\\ 0.854\\ 0.854\end{array}$

-0.606 -0.520 -0.437 -0.487 -0.487 -0.452 -0.418 -0.390

 $\begin{array}{c} 0.913\\ 0.893\\ 0.890\\ 0.850\\ 0.867\\ 0.863\\ 0.875\\ 0.875\\ 0.875\\ 0.875\\ \end{array}$

-0.693 -0.575 -0.467 -0.531 -0.487 -0.445 -0.410

0.899 0.895 0.900 0.835 0.835 0.875 0.885

-0.861 -0.676 -0.524 -0.612 -0.550 -0.493 -0.448

Ah = 0.48 Ah = 1.45 Bh = 4.3 K K L M

1	7
n	1
~	'

-500	C/E			0.716		0.597	0.537	0.452	0.537	0.452			3.415	-1.282	-3.098			0.209	0.901	1.560			0.438	0.768	1.252	1.505		0.574
STEK	p/p₀			0.064		0.067	0.012	0.014	0.012	0.014			-0.027	-0.027	-0.025			0.011	-0.122	-0.108			0.025	-0.246	-0.232	-0.227		0.025
1000	C/E	0.915	0.773	0.773	0.554	0.639	1.216	1.599	1.216	1.599	0.926	1.177	1.253	1.234	1.193	-0.011	-0.011	-0.004	1.247	0.949	-2.903	-0.101	0.088	0.943	0.911	0.980	-0.120	-0.103
STEK	p/p₀	0.027	0.052	0.052	0.052	0.052	-0.034	-0.030	-0.034	-0.030	-0.138	-0.131	-0.083	-0.081	-0.075	-0.001	-0.001	0.000	-0.217	-0.180	-0.003	-0.001	0.001	-0.391	-0.357	-0.347	-0.005	-0.002
-2000	C/E	1.286	0.784	0.824	0.735	0.841	1.002	1.000	1.002	1.000	1.149	0.997	0.998	1.029	1.044	-0.480	-0.797	-0.519	0.929	0.919	1.586	0.746	1.110	0.854	0.900	0.917	2.122	1.522
STEK	p/p₀	0.010	0.039	0.039	0.037	0.037	-0.064	-0.059	-0.064	-0.059	-0.183	-0.170	-0.126	-0.124	-0.113	-0.014	-0.014	-0.013	-0.289	-0.231	-0.024	-0.022	-0.019	-0.476	-0.424	-0.409	-0.023	-0.020
-3000	C/E	0.826	0.889	0.910	0.830	0.822	1.031	0.982	1.031	0.982	0.849	0.992			1.006	1.674	-2.560	-4.487	0.858	0.931	0.786	0.973	0.862	0.959	0.865	0.882	0.846	1.039
STEK	p/p	-0.002	0:030	0.030	0.027	0.027	-0.077	-0.072	-0.077	-0.072	-0.206	-0.190			-0.133	-0.023	-0.023	-0.022	-0.329	-0.259	-0.035	-0.033	-0.030	-0.515	-0.452	-0.434	-0.034	-0.030
-4000	C/E	0.838	1.009	0.961	0.801	1.017	0.986	0.978	0.986	0.978	0.975	0.886	0.870	0.892	0.948	12.891	1.530	2.507	0.911	0.905	0.598	0.662	0.797	0.752	0.836	0.858	0.876	0.874
STEK	p/p₀	-0.017	0.019	0.019	0.016	0.016	-0.085	-0.079	-0.085	-0.079	-0.237	-0.215	-0.178	-0.175	-0.157	-0.039	-0.038	-0.038	-0.400	-0.314	-0.047	-0.044	-0.041	-0.562	-0.482	-0.461	-0.042	-0.038
Av(C/E)	$\mathbf{Av}(\mathbf{C}/\mathbf{E})_{abs}$	0.8819 0.9644	0.8182	-0.4884	0.6478	-0.2248	0.9880	1.0337	1.0183	1.0789	0.9423	1.0168	0.9557	1.0772		-0.0156	1.5820		0.9194	0.9473	0.6188	0.9927		0.8778	0.9022		0.6173	1.0268
10*l*d	(g/cm^2)	15.49	27.38	38.02	16.65	21.80	15.89	19.48	18.71	25.50	5.39	10.48	10.21	11.65	22.01	5.07	6.39	8.65	5.92	14.59	6.30	8.15	11.52	4.85	9.11	10.89	8.53	13.13
Packing	code	Ι	I	1				1	1	1	1			I	1	_		I	1				1					
ID & main	isotope	2- ¹³⁹ La	¹⁴⁰ Ce N	N	¹⁴² Ce C	L	$1 - {}^{141}Pr$ L	<u>2</u>	2^{-141} Pr N	Z	1-Nd H	L	2-Nd L	2	N	¹⁴² Nd C	L	<u>2</u>	H I43Nd H	<u> </u>	¹⁴⁴ Nd C	L	N	¹⁴⁵ Nd S	X	C	¹⁴⁶ Nd K	Γ

Table A.1. Calculated results with ECN spectrum and JENDL-3.2 (cont.)

nain	Packing	10*l*d	Av(C/E)	STEK-	4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	(-500
	code	$(\mathbf{g/cm}^2)$	$\mathbf{Av}(C/E)_{\mathrm{abs}}$	p/p₀	C/E								
	Т	5.64	0.8179	-0.096	1.098	-0.082	0.974	-0.064	0.691	-0.028	0.660		
	K	7.80	0.9002	-0.089	0.694	-0.075	0.876	-0.058	1.033	-0.024	3.493		
	L	12.61		-0.080	0.829	-0.067	0.783	-0.050	0.926	-0.019	0.904	0.024	1.498
	s	5.52	0.7171	-0.099	0.659	-0.088	0.861	-0.072	0.352	-0.042	0.451		
-	Т	9.28	0.8675	-0.083	0.892	-0.073	0.991	-0.060	1.064	-0.033	1.328	0.006	-0.343
	K	11.50		-0.077	0.916	-0.068	0.818	-0.055	0.711	-0.030	2.126	0.008	-0.975
	0	13.97		-0.072	0.749	-0.063	0.854	-0.051	0.778	-0.027	1.673	0.009	0.243
1	Т	4.85	0.9161	-2.309	0.935	-1.893	0.906	-1.637	0.909	-1.224	0.927	-0.725	0.929
	K	6.33	0.9143	-2.168	0.943	-1.805	0.945	-1.575	0.900	-1.193	0.897	-0.716	0.862
	0	8.21		-2.035	0.929	-1.719	0.919	-1.513	0.877	-1.161	0.886		
1	Gh = 26.4	4.94	0.9239	-1.830	0.893	-1.615	0.000	-1.442	0.974	-1.116	1.053		
-	Fh = 25.3	6.85	0.9405	-1.665	0.920	-1.495	0.000	-1.350	0.938	-1.065	0.942		
	Eh = 30.0	9.39		-1.515	0.896	-1.382	0.000	-1.262	0.902	-1.014	1.014		
-	Н	4.42		-1.888	0.926	-1.657	0.949	-1.473	0.963	-1.133	0.985		
	T	5.33		-1.791	0.948	-1.587	0.928	-1.421	0.929	-1.104	0.995		
	K	6.71		-1.675	0.925	-1.502	0.942	-1.356	0.916	-1.068	0.883		
i —	s	4.51	0.9184	-1.905	0.972	-1.655	1.015	-1.468	0.900	-1.126	0.766	-0.677	1.074
	Т	8.14	0.9124	-1.611	0.959	-1.441	0.948	-1.305	0.919	-1.035	0.877	-0.647	0.874
	0	13.63		-1.379	0.932	-1.264	0.916	-1.165	0.910	-0.951	0.881	-0.616	0.848
	s	6.46	0.9104	-0.364	0.847	-0.283	0.841	-0.243	0.743	-0.182	1.027	-0.113	-11.338
	Н	9.12	0.9340	-0.335	0.905	-0.263	0.985	-0.226	0.992	-0.171	1.050	-0.109	1.818
	Т	9.71		-0.330	1.000	-0.259	0.856	-0.223	1.163	-0.169	1.045	-0.108	0.902
	Ρ	5.39	0.8900	-3.699	0.889	-3.079	0.886	-2.742	0.864	-2.158	0.824	-1.352	0.800
	s	7.32	0.8870	-3.388	0.878	-2.897	0.878	-2.615	0.881	-2.095	0.884	-1.334	0.920
	K	13.91		-2.791	0.908	-2.520	0.911	-2.337	0.896	-1.943	0.891	-1.283	0.847
	s	3.00	0.8141	-0.659	0.928	-0.476	0.798	-0.401	0.728	-0.308	1.121		
	Н	4.23	0.8337	-0.601	0.906	-0.441	0.791	-0.375	0.782	-0.294	0.793		
	Т	4.14		-0.605	0.901	-0.443	0.901	-0.377	0.802	-0.295	0.833	-0.207	0.941
	K	5.93		-0.548	0.835	-0.409	0.793	-0.351	0.747	-0.280	0.817	-0.201	0.875
	0	7.06		-0.523	0.886	-0.393	0.806	-0.339	0.771	-0.273	0.736	-0.198	0.840

Table A.1. Calculated results with ECN spectrum and JENDL-3.2 (cont.)

K-500	C/E				0.679	1.076	0.890	1.011	0.769	1.356	1.165	0.445	0.607		0.754	0.803	0.789	0.844	0.917		0.926	0.000	0.948	1.081	1.021	1.192		
STE	۵/م				-0.523	-0.517	-0.503	-0.192	-0.184	-0.176	-0.169	-0.049	-0.049		-2.035	-2.019	-2.000	-1.645	-1.623		-0.324	-0.714	-0.711	-1.394	-1.388	-1.383		, to
-1000	C/E	0.941	0.992	0.977	0.938	0.860	0.897	0.598	0.870	0.856	0.849	1.050	0.818	1.311	0.842	0.843	0.830	0.899	0.918	0.804	0.758	0.713	0.827	1.038	1.041	1.097	1.093	1 000
STEK	p/p	-0.874	-0.852	-0.831	-0.901	-0.879	-0.835	-0.299	-0.278	-0.258	-0.240	-0.101	-0.100	-0.094	-3.061	-3.004	-2.942	-2.491	-2.412	-0.482	-0.477	-1.176	-1.166	-1.982	-1.961	-1.943	-1.927	010
-2000	C/E	0.954	0.930	0.943	0.976	0.975	0.923	0.720	0.748	0.807	0.815	1.337	0.802		0.860	0.861	0.855	0.959	0.942	1.184	1.271	0.886	0.835	1.074	1.057	1.059	1.069	770 1
STEK	p/p	-1.198	-1.153	-1.112	-1.254	-1.209	-1.120	-0.403	-0.366	-0.331	-0.302	-0.134	-0.132		-3.799	-3.680	-3.555	-3.088	-2.928	-0.580	-0.572	-1.516	-1.495	-2.352	-2.305	-2.267	-2.234	2000
3000	C/E	0.905	0.909	0.967	0.958	0.945	0.947	0.787	0.834	0.874	0.870	0.896	0.876		0.874	0.882	0.869	0.981	0.964	1.470	1.085	0.900	0.846	1.034	1.062	1.074	1.065	1 0.61
STEK	p/p	-1.430	-1.364	-1.305	-1.514	-1.446	-1.317	-0.511	-0.459	-0.408	-0.367	-0.152	-0.150		-4.237	-4.058	-3.876	-3.431	-3.201	-0.617	-0.608	-1.711	-1.683	-2.540	-2.467	-2.410	-2.362	1 2 2 1
4000	C/E	0.941	0.920	0.978	0.983	0.979	0.962	0.874	0.906	0.931	0.886	0.819	0.879	0.930	0.882	0.884	0.876	0.959	0.951	1.227	1.278	0.850	0.848	1.071	1.044	1.043	1.032	1.021
STEK	p/p	-1.901	-1.784	-1.683	-2.055	-1.929	-1.702	-0.830	-0.734	-0.642	-0.567	-0.176	-0.174	-0.164	-5.086	-4.746	-4.421	-4.027	-3.651	-0.638	-0.626	-2.092	-2.043	-2.818	-2.683	-2.586	-2.509	VVV C
Av(C/E)	Av(C/E) _{abs}	0.9465	0.9443					0.8556	0.8730			0.8695	0.9075		0.8604	0.8583		0.9482	0.9447	1.0321	1.0345	0.8485	0.8519	1.0599	1.0602			
10*l*d	(g/cm^2)	7.01	9.22	11.83	4.90	6.54	11.30	4.19	6.14	9.09	12.90	8.47	8.80	10.92	4.83	6.94	9.72	3.67	6.20	3.79	4.04	4.38	4.84	0.35	0.70	1.05	1.40	77 1
Packing	code	Gh = 29.0	Fh = 18.0	Eh = 30.0	s	T	0	Ρ	s	Т	K	Н	Т	K	Н	K	L	Н	K	Р	Р	Р	Р	Ph = 0.025	Ph = 0.05	Ph = 0.075	Ph = 0.1	71 0 - 40
ID & main	isotope	¹⁵¹ Sm						¹⁵² Sm				¹⁵⁴ Sm			Eu			¹⁵³ Eu		156Gd		¹⁵⁷ Gd		dT^{921}				

ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm ²)	$\mathbf{Av}(\mathbf{C}/\mathbf{E})_{\mathrm{abs}}$	p/p₀	C/E	p/p	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
Hf	Н	8.51	1.1076	-1.243	1.110	-0.864	1.060	-0.707	1.062	-0.514	1.097	-0.309	0.953
	K	13.89	1.0955	-1.090	1.090	-0.797	1.086	-0.669	1.094	-0.499	1.111	-0.305	1.197
	L	27.25		-0.901	1.110	-0.709	1.113	-0.616	1.113	-0.476	1.116	-0.299	1.222
M	Ph = 0.06	2.17	0.8551	-0.622	0.879			-0.338	0.927	-0.216	0.804	-0.100	0.821
	Ph = 0.12	4.33	0.8652	-0.523	0.885			-0.301	0.864	-0.199	0.776		
1-Pb	0	44.35	0.5559	0.007	0.589			0.013	0.538	0.017	0.539	0.021	0.443
	М	55.63	-0.2884	0.007	0.553	0.010	0.565	0.013	0.562	0.017	0.522	0.021	0.567
	Dh = 28.0	72.98		0.007	0.584	0.010	0.583	0.014	0.573	0.017	0.557		
2-Pb	Ph = 3.84	73.05	1.2648							0.016	1.145		
	Ph = 4.2	78.05	0.5086					0.013	1.267				
	Ph = 5.0	90.80		0.006	1.296	0.010	1.259	0.013	1.257				
	Ph = 8.8	140.30		0.006	1.280	0.010	1.311	0.013	1.281				
	Ph = 17.5	215.50		0.006	1.305							0.020	1.203
3-Pb	Ah = 1.5	10.38	0.2962			0.010	0.291						
	L	27.86	-0.1991	0.007	0.307	0.011	0.319	0.014	0.289	0.018	0.266	0.021	0.325
	Ch = 6.02	28.28		0.007	0.293	0.011	0.310	0.014	0.316	0.018	0.277		
	Ch = 6.12	28.63				0.011	0.293						
1- ²³⁵ U	Ph = 0.14	4.93	1.0613	0.469	1.125	0.587	1.161	0.647	1.096	0.762	1.063	0.947	1.040
	Ph = 0.28	9.73	1.0943			0.585	1.134	0.644	1.083			0.944	1.021
	Ph = 0.42	14.35		0.470	1.096	0.582	1.118	0.641	1.079	0.756	1.057	0.941	1.009
	Ph = 0.56	18.88				0.579	1.120						
2^{-235} U	Ph = 0.6	3.34	0.9836			0.112	1.014	0.133	0.996				
	Ph = 1.2	6.02	0.9497	0.081	0.986					0.167	0.960		
	Ph = 1.8	9.48				0.112	0.999	0.134	0.975				
	Ph = 3.6	17.78				0.112	1.000	0.133	0.974			0.208	0.929
	Ph = 4.8	23.14		0.081	1.005			0		0.166	0.949	0	0
	Ph = 6.0	26.65		0.081	1.027			0.133	0.965			0.207	0.942

ID & main	Packing	10*l*d	Av(C/E)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	C-500
isotope	code	(g/cm ²)	$Av(C/E)_{\rm abs}$	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
236 U	$Ah = 1^{*}.5$	3.67	0.8612	0.063	1.184	0.178	0.997	0.243	0.818	0.354	0.815	0.515	0.747
	Ah = 2*.5	7.14	0.8556	0.092	1.580	0.193	1.116	0.252	0.847				
	Ah = 3*.5	10.42		0.107	1.759	0.202	1.085			0.360	0.838	0.516	0.780
	Ah = 4*.5	13.53				0.208	1.214	0.262	1.023				
1^{-238} U	Ph = 0.1	0.64	1.0670			-0.060	1.305	-0.018	0.219				
	Ph = 0.2	1.28	1.1768					-0.014	-0.537				
	Ph = 0.3	1.90				-0.048	1.200	-0.011	-1.101				
	Ph = 0.4	2.52				-0.044	2.311						
	Ph = 0.6	3.76		-0.087	1.422	-0.038	2.360	-0.005	-0.356	0.040	0.682	0.089	0.764
	Ph = 0.8	4.91		-0.079	1.234								
	Ph = 1.2	7.29		-0.068	1.356	-0.027	2.486	0.001	0.069	0.042	0.735	0.089	0.863
2^{-238} U	Ph = 0.14	5.15	1.0893	-0.284	1.107	-0.223	1.133	-0.180	1.141	-0.109	1.349	-0.003	-0.463
	Ph = 0.28	10.23	1.0862			-0.183	1.079	-0.151	1.088	-0.094	1.204	0.002	0.137
	Ph = 0.42	15.27		-0.196	1.046	-0.163	1.070	-0.135	1.102	-0.085	1.101	0.005	0.322
239 Pu	DC	2.57	0.9701	0.624	1.008	0.807	0.957	0.918	0.956	1.143	0.973		
	DC	8.28	0.9880	0.640	0.974	0.814	0.997	0.923	0.933	1.145	0.884		
	DC	12.00		0.644	1.027	0.815	0.995	0.924	0.953	1.145	0.913		
	DC	16.56		0.646	0.983	0.814	0.987	0.924	0.924	1.144	0.893		
	0	2.74		0.624	1.069			0.918	1.127	1.143	1.042	1.532	0.995
	0	7.71		0.639	1.105			0.923	1.031	1.145	1.005	1.531	0.945
	0	11.94		0.644	1.075			0.924	1.050	1.145	1.029		
	0	13.87		0.645	1.066			0.924	1.049	1.145	1.015	1.529	0.974
1^{-240} Pu	D	0.99	0.9438	-0.504	1.482	0.221	0.763	0.451	1.670	0.697	1.056		
	D	2.50	0.9685	-0.119	0.744	0.326	1.207	0.491	1.363	0.709	1.181		
	D	5.01		0.066	0.734	0.383	0.934	0.516	0.922	0.717	0.834		
	0	0.81		-0.606	1.010			0.442	1.767	0.694	2.314		
	0	2.45		-0.126	0.465			0.490	1.289	0.708	1.124		
	0	5.35		0.080	-2.001			0.518	1.205	0.718	1.176		

Table A.1. Calculated results with ECN spectrum and JENDL-3.2 (cont.)
ID & main	Packing	10*l*d	Av(C/E)	STEK-	-4000	STEK	-3000	STEK	-2000	STEK.	-1000	STEK	-500
isotope	code	(g/cm^2)	$\mathbf{Av}(C/E)_{\mathrm{abs}}$	p/p	C/E	₀d/q	C/E	p/p₀	C/E	p/p₀	C/E	p/p₀	C/E
2^{-240} Pu	D	0.59	0.2737	-1.805	1.399	-0.597	-3.316	-0.231	-2.564	0.104	0.149		
	0	0.54	0.1469	-1.891	1.106			-0.239	-4.782	0.102	0.925		
0	Al_2O_3												
	Fe_2O_3												
	PbO												
	H_2O												
Η	H_2O												
H_2O													
В	Natural B												

Table A.1. Calculated results with ECN spectrum and JENDL-3.2 (cont.)

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	(g)	p/p₀	Error								
Н	Ρ	1.80	1.7469	4.090	0.020	5.3210	0.0150	6.954	0.012	10.00	0.03	14.38	0.03
	Р	3.44	3.4940	4.121	0.005	5.3340	0.0100	6.913	0.008	9.97	0.03		
\mathbf{IT}_{t}	М	9.55	4.8348	-0.091	0.006	0.0214	0.0050	0.098	0.005	0.208	0.008		
	Z	13.85	14.2417	-0.091	0.001	0.0224	0.0020	0.098	0.003	0.206	0.004	0.340	0.004
$1^{-10}B$	Ph = 0.75	3.26	3.1178	-1.699	0.0040	-1.263	0.0000	-1.158	0.0094	-0.947	0.011	-0.672	0.017
	Ph = 1.50	6.30	6.2268	-1.622	0.0030	-1.266	0.0050	-1.145	0.0045	-0.961	0.005	-0.678	0.009
	Ph = 2.25	9.16	9.3564	-1.597	0.0015	-1.246	0.0025	-1.133	0.0035	-0.947	0.004		
	Ph = 3.00	11.84	12.4671	-1.551	0.0013	-1.238	0.0024	-1.128	0.0022	-0.947	0.003	-0.691	0.004
2^{-10} B		0.0038	0.0024	-24.0	11.0								
		0.0150	0.0091	-17.5	2.6	-15.3	3.0	-11.6	3.4	-10.8	3.8		
$3^{-10}B$		0.0130	0.0080	-85.5	2.8	-62.0	4.6	-52.5	5.0	-49.8	4.3		
С	Ph = 3.0	8.94	9.3308			0.2440	0.0030	0.3181	0.0020				
	Ph = 3.5	10.26	11.0340							0.4531	0.0067		
	Ph = 5.0	13.72	15.6405			0.2450	0.0020						
	Ph = 9.7	23.21	30.4324	0.1639	0.0015	0.2410	0.0010	0.3181	0.0007	0.4424	0.0014		
	Ph = 11.2	25.08	35.2855					0.3181	0.0010	0.4447	0.0011		
	Ph = 16.8	32.03	52.6913			0.2420	0.0010						
	Ph = 21.0	35.22	62.0107	0.1623	0.0012								
	Ph = 31.5	43.47	92.4408	0.1624	0.0010							0.5893	0.0005
1-N	Μ	17.51	8.8348	0.0120	0.0026	0.0400	0.0030	0.0660	0.0030	0.0880	0.0040		
	R	29.85	81.5671	0.0150	0.0006	0.0398	0.0007	0.0610	0.0010	0.0908	0.0014		
2-N	M	18.26	9.2043	0.0163	0.0022	0.0330	0.0020	0.0525	0.0021	0.0730	0.0060		
	R	29.00	79.5949	0.0163	0.0010	0.0360	0.0010	0.0533	0.0014	0.0780	0.0025		
1-O	М	11.30	5.7182	0.0670	0.0035	0.0954	0.0030	0.1382	0.0040	0.1790	0.0040		
	Z	17.92	18.5471	0.0670	0.0017	0.0983	0.0013	0.1315	0.0012	0.1830	0.0030		
	R	13.65	37.9249	0.0640	0.0010	0.0969	0.0012	0.1312	0.0015	0.1800	0.0030	0.2350	0.0036
2-O	Z	22.40	22.9686	0.0337	0.0008	0.0577	0.0010	0.0790	0.0007	0.1142	0.0021		
	R	20.75	56.6503	0.0337	0.0008	0.0574	0.0008	0.0807	0.0011	0.1144	0.0023	0.1492	0.0022

Table A.2. STEK experimental results

ID & main	n Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error	₀d/q	Error	₀d/q	Error	₀d/q	Error	₀d/q	Error
AI	Ph = 2.1	10.52	10.6950			0.0596	0.0020	0.0765	0.0030				
	Ph = 3.0	14.17	14.9267	0.0401	0000.0	0.0606	0.0020			0.1049	0.0024	0.1382	0.0040
	Ph = 3.4	15.77	16.8668							0.1079	0.0020		
	Ph = 4.0	18.00	19.7348			0.0601	0.0060	0.0784	0.0007	0.1067	0.0015	0.1317	0.0026
	Ph = 4.7	20.97	23.6610							0.1072	0.0014		
	Ph = 5.7	24.33	28.4522	0.0399	0.000	0.0594	0.0007						
	Ph = 6.1	25.78	30.6548					0.0802	0.0007	0.1058	0.0014		
	Ph = 10.3	37.52	51.2515					0.0781	0.0008				
	Ph = 13.9	45.61	69.4418	0.0391	0.0003								
	Ph = 14.7	47.12	73.3252	0.0392	0.0003								
Si	M	13.01	6.5712	0.0360	0.0040	0.0540	0.0040	0.0750	0.0050				
	C	11.25	7.0271	0.0310	0.0040	0.0500	0.0040	0.0660	0.0060	0.1010	0.0060		
	R	33.26	90.9582	0.0328	0.0005	0.0513	0.0007	0.0681	0.0010	0.0934	0.0016		
CI	D	13.02	4.6108	-0.0370	0.0040	-0.0270	0.0070	-0.0080	0.0060				
	D	13.71	9.5258	-0.0390	0.0020	-0.0230	0.0030	-0.0180	0.0040	-0.0110	0.0020		
	L	16.17	4.9509	-0.0340	0.0040	-0.0280	0.0050	-0.0189	0.0054			-0.0140	0.0120
	Μ	19.13	9.6624	-0.0400	0.0020	-0.0260	0.0020	-0.0171	0.0023	-0.0090	0.0030	-0.0140	0.0060
v	Ph = 4.56	22.33	25.0328			0.0194	0.0010			0.0746	0.0020		
	Ph = 5.61	27.06	31.1696	-0.0019	0.0011			0.0442	0.0012				
	Ph = 6.05	27.38	33.5726	-0000.0-	0.0008								
	Ph = 10.9	43.04	60.0144			0.0220	0.0005	0.0425	0.0006				
	Ph = 13.3	48.84	73.1053							0.0714	0.0007		
	Ph = 17.7	58.48	98.2700	-0.0015	0.0002	0.0224	0.0003	0.0407	0.0004				

& main	Packing	10*l*d	Weight	STEK	4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
otope	code	(g/cm^2)	(g)	p/p₀	Error	₀d/q	Error	p/p₀	Error	₀d/q	Error	p/p₀	Error
	Ph = 1.94	15.91	16.0316			0.0246	0.0020						
	Ph = 3.06	23.92	25.2627							0.0634	0.0027		
	Ph = 3.76	28.55	31.0070					0.0414	0.0011				
	Ph = 4.75	34.70	39.1423	0.0060	0.0026	0.0263	0.0010						
	Ph = 5.7	40.18	47.0407	0.0083	0.0005	0.0252	0.0006						
	Ph = 9.22	57.55	76.0227							0.0612	0.0007		
	Ph = 12.2	69.75	101.3500	0.0070	0.0004	0.0255	0.0003	0.0388	0.0003				
	Ph = 0.1	1.09	1.0016	0.033	0.018			0.034	0.022	0.031	0.030		
	Ph = 1.0	15.01	14.5232	0.0099	0.0020	0.0225	0.0013	0.0353	0.0014	0.0506	0.0027		
	Ph = 2.0	28.69	28.7813	0.0093	0.0011	0.0235	0.0007	0.0349	0.0009				
	Ph = 3.0	41.34	42.9832	0.0092	0.0004	0.0236	0.0005	0.0335	0.0006	0.0511	0.0014	0.0686	0.0014
i	Ph = 1.5	24.83	20.6644	-0.0169	0.0016	-0.0094	0.0013	-0.0037	0.0012	-0.0003	0.0014		
	Ph = 3.0	46.32	41.3429	-0.0179	0.0000	-0.0078	0.0006						
	Ph = 4.25	61.16	58.5153							0.0022	0.0005		
	Ph = 4.75	68.09	65.4638					-0.0027	0.0005				
	Ph = 5.25	73.74	72.4778	-0.0166	0.0003	-0.0079	0.0004						
	Ph = 7.0	81.97	96.5311					-0.0028	0.0003				
	Ph = 7.25	90.51	98.2743							0.0022	0.0003		
i	Ph = 10	17.00	15.4812	-0.0155	0.0015			-0.0019	0.0018			-0.0036	0.0032
	Ph = 3.0	46.81	46.9136	-0.0159	0.0004			-0.0026	0.0007				
	Ph = 0.25	3.19	1.6390			0.0050	0.0150	0.0150	0.0170				
	Ph = 0.75	9.35	5.0369	-0.0130	0.0040	-0.0060	0.0040	0.0000	0.0050	0.0150	0.0080		
_	Ph = 1.49	18.08	10.0493	-0.0110	0.0020	-0.0010	0.0026	0.0034	0.0027			0.0436	0.0055
	K	11.09	1.9658	0.048	0.011	0.040	0.012	0.069	0.011	0.094	0.021		
	М	23.43	11.4861	0.032	0.002	0.047	0.002	0.062	0.002	0.091	0.004	0.113	0.006
_	K	5.91	1.0254	-0.040	0.019	-0.035	0.022	-0.054	0.019	0.041	0.070		
	0	6.64	1.5411	-0.036	0.015	-0.041	0.018	-0.007	0.021	0.023	0.027		
	L	9.19	2.8053	-0.045	0.008	-0.043	0.008	-0.014	0.007	0.014	0.014	0.081	0.016
	0	7.26	1.6822	0.012	0.014	0.045	0.015	0.097	0.019	0.080	0.022		
	М	13.01	6.5572	0.036	0.005	0.056	0.004	0.077	0.005	0.109	0.006	0.142	0.010

Packiı	Зg	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEF	C-500
code (g/cm ²)	(g/cm^2)		(g)	₀d/q	Error	p/p₀	Error	p/p₀	Error	p/p	Error	p/p₀	Error
6.51	6.51		2.0661	-0.063	0.008	-0.041	0.016	-0.008	0.014	-0.020	0.016	0.096	0.024
5.82	5.82		2.9523	-0.048	0.007	-0.023	0.008	0.004	0.009	0.046	0.013	0.116	0.020
6.07	6.07		3.0644	-0.051	0.007	-0.025	0.007	0.006	0.009	0.061	0.012	0.110	0.018
13.19	13.19		2.3069	0900.0	0.0000	0.0320	0.0100	0.0370	0.0090	0.0680	0.0160		
20.50	20.50		6.3264	-0.0020	0.0030	0.0210	0.0040	0.0470	0.0040	0.0860	0.0060	0.1310	0.0075
n = 0.1 1.09	1.09		1.0016	0.033	0.018			0.034	0.022	0.031	0.030		
n = 1.0 15.01	15.01	1	14.5232	0.0099	0.0020	0.0225	0.0013	0.0353	0.0014	0.0506	0.0027		
n = 2.0 28.69	28.69		28.7813	0.0093	0.0011	0.0235	0.0007	0.0349	0.0009				
n = 3.0 41.34	41.34		42.9832	0.0092	0.0004	0.0236	0.0005	0.0335	0.0006	0.0511	0.0014	0.0686	0.0014
n = 1.5 24.83	24.83	1	20.6644	-0.0169	0.0016	-0.0094	0.0013	-0.0037	0.0012	-0.0003	0.0014		
n = 3.0 46.32	46.32		41.3429	-0.0179	0.000	-0.0078	0.0006						
n = 4.25 61.16	61.16		58.5153							0.0022	0.0005		
n = 4.75 68.09	68.09		65.4638					-0.0027	0.0005				
n = 5.25 73.74	73.74		72.4778	-0.0166	0.0003	-0.0079	0.0004						
n = 7.0 81.97	81.97		96.5311					-0.0028	0.0003				
n = 7.25 90.51	90.51		98.2743							0.0022	0.0003		
n = 10 17.00	17.00		15.4812	-0.0155	0.0015			-0.0019	0.0018			-0.0036	0.0032
1 = 3.0 46.81	46.81		46.9136	-0.0159	0.0004			-0.0026	0.0007				
n = 0.25 3.19	3.19		1.6390			0.0050	0.0150	0.0150	0.0170				
n = 0.75 9.35	9.35		5.0369	-0.0130	0.0040	-0.0060	0.0040	0.0000	0.0050	0.0150	0.0080		
n = 1.49 18.08	18.08		10.0493	-0.0110	0.0020	-0.0010	0.0026	0.0034	0.0027			0.0436	0.0055
11.09	11.09		1.9658	0.048	0.011	0.040	0.012	0.069	0.011	0.094	0.021		
23.43	23.43		11.4861	0.032	0.002	0.047	0.002	0.062	0.002	0.091	0.004	0.113	0.006
5.91	5.91		1.0254	-0.040	0.019	-0.035	0.022	-0.054	0.019	0.041	0.070		
6.64	6.64	_	1.5411	-0.036	0.015	-0.041	0.018	-0.007	0.021	0.023	0.027		
9.15	9.15	-	2.8053	-0.045	0.008	-0.043	0.008	-0.014	0.007	0.014	0.014	0.081	0.016
7.26	7.26		1.6822	0.012	0.014	0.045	0.015	0.097	0.019	0.080	0.022		
13.01	13.01		6.5572	0.036	0.005	0.056	0.004	0.077	0.005	0.109	0.006	0.142	0.010

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error								
93 Zr	L	6.51	2.0661	-0.063	0.008	-0.041	0.016	-0.008	0.014	-0.020	0.016	0.096	0.024
	M	5.82	2.9523	-0.048	0.007	-0.023	0.008	0.004	00.0	0.046	0.013	0.116	0.020
	M	6.07	3.0644	-0.051	0.007	-0.025	0.007	0.006	00.0	0.061	0.012	0.110	0.018
96 Zr	K	13.19	2.3069	0.0060	0.0090	0.0320	0.0100	0.0370	0.0090	0.0680	0.0160		
	L	20.50	6.3264	-0.0020	0.0030	0.0210	0.0040	0.0470	0.0040	0.0860	0.0060	0.1310	0.0075
Nb	Ph = 1.0	16.06	15.7450	-0.2359	0.0012	-0.2619	0.0015	-0.2778	0.0014	-0.2660	0.0040	-0.1817	0.0051
	Ph = 2.0	30.78	31.5154	-0.2047	0.0007	-0.2299	0.0007	-0.2428	0.0007	-0.2325	0.0018		
	Ph = 3.0	44.24	46.9407	-0.1849	0.0036	-0.2132	0.0015	-0.2253	0.0005	-0.2151	0.0014	-0.1571	0.0012
Mo	Ph = 0.1	2.18	1.9389	-0.297	0.011	-0.285	0.010	-0.234	0.010	-0.197	0.012	-0.114	0.026
	Ph = 0.2	4.36	3.7923	-0.270	0.007	-0.237	0.006	-0.230	0.005	-0.175	0.011	-0.098	0.014
	Ph = 0.3	6.43	5.7577	-0.249	0.004	-0.234	0.004	-0.214	0.005	-0.180	0.008		
	Ph = 0.4	8.61	7.6166	-0.240	0.003	-0.223	0.003	-0.207	0.004			-0.083	0.006
	Ph = 0.8	16.90	15.3339			-0.203	0.002	-0.188	0.002	-0.149	0.003		
92 Mo	Н	5.43	0.5880	-0.016	0.035	-0.049	0.046	-0.064	0.050	-0.033	0.054		
	K	7.34	1.3247	-0.041	0.016	-0.037	0.019	-0.029	0.024	-0.061	0.019	0.014	0.040
94 Mo	Н	8.42	0.8727	-0.049	0.025	-0.070	0.030	-0.057	0.032	-0.014	0.046		
	Т	8.61	1.0912	-0.008	0.029	-0.079	0.031	-0.065	0.026	-0.047	0.023	-0.088	0.049
${}^{\rm OM}{}_{\rm S6}$	Н	5.25	0.6036	-0.519	0.033	-0.463	0.046	-0.470	0.046	-0.433	0.051	-0.273	0.086
	K	7.56	1.3668	-0.483	0.016	-0.452	0.024	-0.409	0.017	-0.349	0.018	-0.289	0.034
	L	11.48	3.5421	-0.428	0.005	-0.402	0.007	-0.379	0.009	-0.343	0.007		
00 Mo	Р	8.59	0.4592	-0.071	0.053	-0.114	0.065	-0.094	0.062	-0.008	0.095		
	S	11.26	0.8543	-0.089	0.026			-0.059	0.032	-0.023	0.040	-0.010	0.060
	Н	15.90	1.6493	-0.075	0.013	-0.042	0.017	-0.067	0.015	-0.020	0.022	-0.030	0.030
${}^{\rm OM}$	К	6.83	1.2320	-0.407	0.016	-0.407	0.024	-0.443	0.046	-0.397	0.025	-0.275	0.036
	0	8.77	2.0323	-0.388	0.011	-0.400	0.012	-0.437	0.013	-0.386	0.016	-0.259	0.022
	L	11.30	3.3182	-0.354	0.007	-0.392	0.008	-0.398	0.008	-0.368	0.007	-0.285	0.016
0 Mo	Т	18.69	2.2019	-0.058	0.010	-0.068	0.012	-0.067	0.013	-0.015	0.014		
	0	28.91	6.7008	-0.058	0.003	-0.050	0.003	-0.039	0.004	-0.005	0.004	0.033	0.008

Table A.2. STEK experimental results (cont.)

(cont.
results
experimental
STEK
A.2 .
Table

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error								
$\rm oM^{001}$	Т	7.66	0.9585	-0.034	0.030	-0.041	0.029	-0.023	0.029	0.000	0.030		
	K	10.02	1.8044	-0.065	0.011	-0.053	0.013	-0.049	0.014	-0.018	0.018		
	L	15.59	4.6238	-0.051	0.005	-0.044	0.006	-0.042	0.006	-0.015	0.007	0.024	0.010
1^{-99} Tc	Р	3.26	0.1822	-1.100	0.120	-1.090	0.090	-1.120	0.110	-1.230	0.130	-0.690	0.290
	Н	7.52	0.8064	-1.050	0.030	-1.050	0.030	-1.060	0.030	-0.930	0.040	-0.790	0.060
	K	10.53	1.8934	-0.980	0.010	-0.970	0.010	-0.990	0.014	-0.950	0.020	-0.726	0.028
2^{-99} Tc	Gh = 19.5	6.25	0.4799	-1.140	0.040	-1.080	0.070	-1.150	0.060	-0.960	0.070		
	Gh = 23.0	9.01	1.2072	-1.030	0.020	-1.040	0.030	-1.030	0.030	-0.920	0.030		
	Gh = 16.5	9.92	1.2785	-1.000	0.030	-1.020	0.020	-1.000	0.020	-0.900	0.020		
101 Ru	Р	11.31	0.6409	-0.910	0.030	-0.944	0.025	-1.002	0.034	-0.980	0.070	-0.650	0.080
	Н	20.81	2.3230	-0.830	0.010	-0.874	0.012	-0.885	0.013	-0.840	0.020	-0.690	0.020
102 Ru	S	10.25	0.6979	-0.139	0.024	-0.165	0.028	-0.151	0.038	-0.123	0.058		
	Н	14.67	1.6137	-0.124	0.015	-0.100	0.017	-0.136	0.014	-0.108	0.019	-0.057	0.032
¹⁰⁴ Ru	Ρ	10.59	0.5926	-0.129	0.040	-0.117	0.030	-0.101	0.034	-0.086	0.063		
	Н	20.27	1.9765	-0.096	0.010	-0.093	0.016	-0.094	0.013	-0.080	0.020	-0.071	0.024
1- ¹⁰³ Rh	Ph = 0.05	1.24	1.1439	-1.6590	0.0190			-1.0720	0.0230	-0.9460	0.0320	-0.8080	0.0440
	Ph = 0.1	2.49	2.1977	-1.4040	0.0000	-1.0500	0.0110	-1.0230	0.0100	-0.9380	0.0150	-0.7060	0.0240
	Ph = 0.2	4.98	4.2845	-1.1610	0.0050	-0.9600	0.0055	-0.9300	0.0060	-0.8740	0.0080	-0.6920	0.0130
	Ph = 0.3	7.34	6.4822	-1.0300	0.0040	-0.8960	0.0034	-0.8800	0.0040	-0.8420	0.0054		
	Ph = 0.4	9.83	8.6162	-0.9520	0.0025	-0.8410	0.0028	-0.8420	0.0040	-0.8150	0.0040		
2^{-103} Rh	M	6.22	0.9876	-1.092	0.023					-0.846	0.027		
	M	6.22	2.0069			-0.895	0.009	-0.910	0.014	-0.870	0.021		
	M	6.22	3.0242	-1.048	0.009	-0.867	0.010	-0.903	0.00	-0.857	0.018		
	M	6.22	5.0308			-0.804	0.005	-0.864	0.006	-0.795	0.007		
3^{-103} Rh	Ph = 0.98	5.19	4.9597	-0.0530	0.0040								
	Ph = 1.47	7.62	7.4322	-0.0487	0.0026			0.0284	0.0032	0.0575	0.0046	0.0985	0.0063
	Ph = 2.45	12.19	12.3919	-0.0447	0.0016			0.0311	0.0024	0.0694	0.0030	0.0975	0.0044

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	(-500
isotope	code	$(\mathbf{g/cm}^2)$	(g)	₀d/q	Error	₀d/q	Error	p/p₀	Error	₀d/q	Error	₀d/q	Error
Pd	W	6.08	0.4787	-0.570	0.036	-0.550	0.054	-0.590	0.046			-0.462	0.119
	M	6.08	0.9570	-0.596	0.023					-0.480	0.024		
	M	6.08	2.5259	-0.596	0.009	-0.575	0.013	-0.557	0.010			-0.384	0.022
	M	6.08	2.9636							-0.444	0.015		
	W	6.08	5.4900							-0.435	0.010		
104 Pd	S	3.64	0.2765	-0.279	0.086	-0.367	0.093	-0.480	0.090	-0.230	0.160	-0.130	0.180
	S	3.79	0.2953	-0.281	0.082	-0.374	0.090	-0.230	0.100	-0.360	0.060	-0.190	0.160
Pd	Т	7.60	0.9208	-1.192	0.025	-1.255	0.025	-1.280	0.030	-1.239	0.040	-1.030	0.053
	K	7.48	1.2964	-1.191	0.019	-1.244	0.015	-1.250	0.020	-1.176	0.026	-0.907	0.038
	Ah = 0.54	1.67	0.7998	-1.361	0.031	-1.491	0.045	-1.380	0.030	-1.261	0.051		
	Ah = 1.09	3.24	1.6020	-1.273	0.018	-1.339	0.022	-1.310	0.020	-1.222	0.022		
pd^{301}	Н	11.76	1.350	-0.188	0.016	-0.211	0.017	-0.238	0.016	-0.214	0.027	-0.187	0.036
\mathbf{Pd}^{107}	Т	12.39	1.6316	-0.994	0.015	-1.021	0.016	-0.993	0.015	-0.879	0.023	-0.686	0.030
	K	15.88	2.8954	-0.961	0.012	-0.969	0.011	-0.976	0.00	-0.890	0.012	-0.684	0.016
	0	20.69	4.7670	-0.921	0.004	-0.934	0.007	-0.948	0.007	-0.878	0.007	-0.685	0.010
	Dh = 1.39	7.33	1.9947	-1.079	0.012	-1.081	0.018	-1.051	0.019	-0.902	0.019		
	$\mathbf{Dh} = 2.78$	13.33	4.0001	-1.051	0.007	-1.034	0.005	-1.018	00.0	-0.887	0.011		
pd^{801}	Н	6.49	0.6762	-0.366	0.030	-0.326	0.041	-0.267	0.040	-0.120	0.058		
	T	7.72	1.0064	-0.320	0.035	-0.278	0:030	-0.244	0.025	-0.176	0.030	-0.094	0.047
pd^{011}	S	3.60	0.2884	-0.075	0.078	0.062	0.086	-0.110	0.090	-0.200	0.140	-0.110	0.200
	S	3.69	0.2961	-0.095	0.067	-0.030	0.104	0.080	0.084	-0.130	0.070	-0.030	0.160
109 Ag	Ah > .07	>0.44	0.1997	-2.05	0.10	-2.22	0.12	-1.27	0.17	-1.27	0.12		
	Ah > .15	>0.85	0.4015	-2.04	0.04	-1.76	0.07	-1.24	0.08	-1.13	0.10		
	Р	5.88	0.3285	-1.40	0.06	-1.18	0.06	-1.15	0.07	-1.13	0.11	-0.96	0.16
	Н	10.57	1.1305	-1.17	0.02	-1.04	0.03	-1.01	0.02	-0.89	0.03	-0.68	0.05
^{III} Cd	Р	3.92	0.1950	-0.57	0.12	-0.66	60'0	-0.72	0.13	-0.71	0.22	-0.59	0.18
	Р	3.55	0.2014	-0.63	0.08	-0.64	0.11	-0.83	0.15	-0.74	0.10		
	S	5.07	0.3976	-0.54	0.07	-0.54	0.06	-0.67	0.07	-0.59	0.11	-0.55	0.13

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error								
In	Ph = 1.0	14.02	13.1201	-0.9226	0.0018			-0.7330	0.0030			-0.6191	0.0044
	Ph = 3.0	38.61	39.7639	-0.6862	0.0005			-0.6543	0.0009				
128 Te	0	21.86	4.9361	-0.011	0.005	-0.004	0.005	-0.008	0.005	0.008	0.005	0.042	0.010
130 Te	0	8.08	1.8713	0.023	0.014	0.005	0.012	0.025	0.014	0.032	0.015		
	L	7.25	3.0308	-0.003	0.009	0.012	0.009	0.025	0.010	0.015	0.008	0.020	0.014
\mathbf{I}^{27}	Eh = 9.71	11.62	1.0010	-0.580	0.026	-0.602	0.025	-0.529	0.022	-0.414	0.035		
	Dh = 4.71	13.69	4.0123	-0.514	0.006	-0.500	0.010	-0.462	00.0	-0.394	0.014		
	S	5.71	0.4336	-0.588	0.047	-0.507	0.040	-0.477	0.053	-0.381	0.093	-0.413	0.109
	Т	8.40	1.0209	-0.554	0.022	-0.532	0.020	-0.476	0.022	-0.444	0.035	-0.305	0.049
	0	13.80	3.1277	-0.490	0.008	-0.460	0.008	-0.440	0.009	-0.381	0.011	-0.261	0.014
I^{29}	Т	7.43	0.9030	-0.255	0.026	-0.254	0.030	-0.275	0.030	-0.233	0.042	-0.129	0.065
	K	10.99	1.7974	-0.258	0.011	-0.263	0.014	-0.268	0.032	-0.209	0.022	-0.159	0.025
¹³¹ Xe	RB	2.14	2.9700	-0.590	0.013	-0.334	0.009	-0.240	0.010	-0.172	0.013	-0.103	0.020
1^{-133} Cs	Ah = 0.48	2.07	0.9985	-0.9570	0.0180	-0.7590	0.0210	-0.7010	0.0220	-0.5060	0.0400	-0.3560	0.0530
	Ah = 1.45	5.95	2.9972	-0.7560	0.0070	-0.6440	0.0090	-0.5980	0.0080	-0.4870	0.0140	-0.3480	0.0180
	Bh = 4.3	15.34	8.9168	-0.5820	0.0030	-0.5250	0.0020	-0.5030	0.0030	-0.4420	0.0050		
	Н	8.75	0.9918	-0.7320	0.0240	-0.6240	0.0240	-0.5750	0.0260	-0.4620	0.0300	-0.4520	0.0490
	K	12.89	2.2296	-0.6410	0.0000	-0.5610	0.0130	-0.5410	0.0110	-0.4720	0.0160	-0.3340	0.0200
	L	18.90	6.0016	-0.5630	0.0040	-0.5150	0.0040	-0.4906	0.0046	-0.4360	0.0050	-0.3220	0.0084
	М	26.24	12.9431	-0.5060	0.0020	-0.4690	0.0020	-0.4567	0.0026	-0.4120	0.0030		
2^{-133} Cs	L	17.30	5.4638	-0.468	0.004	-0.417	0.006	-0.396	0.005	-0.310	0.005		
^{135}Cs	Т	7.55	0.9674	-0.424	0.026	-0.346	0.026	-0.299	0.037	-0.233	0.038	-0.185	0.047
	K	10.19	1.8085	-0.430	0.010	-0.339	0.013	-0.325	0.019	-0.298	0.023	-0.169	0.026
	0	15.18	3.4285	-0.392	0.007	-0.329	0.007	-0.313	0.009	-0.235	0.012	-0.165	0.015
	L	18.83	5.8041	-0.364	0.004	-0.315	0.005	-0.287	0.005	-0.196	0.007	-0.139	0.010
1^{-139} La	L	17.23	5.4665	-0.0170	0.0030	-0.0020	0.0040	0.0156	0.0036	0.0384	0.0067	0.0830	0.0000
	Z	23.96	24.6470	-0.0190	0.0010	-0.0013	0.0009	0.0152	0.0008	0.0381	0.0014	0.0702	0.0022
2^{-139} La	Μ	15.49	7.7975	-0.0200	0.0030	-0.0020	0.0030	0.0078	0.0038	0.0296	0.0040		

Table A.2. STEK experimental results (cont.)

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	(g)	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error
¹⁴⁰ Ce	M	27.38	13.7840	0.0190	0.0020	0.0332	0.0014	0.0492	0.0017	0.0670	0.0040		
	Z	38.02	38.7447	0.0200	0.0010	0.0325	0.0006	0.0469	0.0006	0.0670	0.0014	0.0899	0.0014
142 Ce	0	16.65	3.8585	0.0200	0.0060	0.0328	0.0065	0.0500	0.0070	0.0930	0.0110		
	L	21.80	6.9082	0.0160	0.0030	0.0334	0.0032	0.0440	0.0040	0.0810	0.0060	0.1120	0.0080
$1 - {}^{141}Pr$	L	15.89	4.9766	-0.0860	0.0040	-0.0750	0.0044	-0.0640	0.0040	-0.0280	0.0040	0.0230	0.0110
	М	19.48	9.6044	-0.0810	0.0030	-0.0730	0.0020	-0.0590	0.0030	-0.0190	0.0050	0.0310	0.0060
2^{-141} Pr	Μ	18.71	9.4261	-0.0790	0.0020	-0.0710	0.0020	-0.0524	0.0037	-0.0140	0.0030	0.0324	0.0065
	Z	25.50	25.8065	-0.0740	0.0010	-0.0620	0.0010	-0.0457	0.0010	-0.0180	0.0020	0.0324	0.0020
1-Nd	Н	5.39	0.6104	-0.243	0.033	-0.243	0.048	-0.159	0.040	-0.149	0.093		
	L	10.48	3.1654	-0.243	0.007	-0.191	0.007	-0.170	0.009	-0.111	0.012		
2-Nd	L	10.21	3.2360	-0.205	0.007			-0.126	0.007	-0.066	0.011	-0.008	0.018
	М	11.65	5.8650	-0.196	0.004			-0.120	0.005	-0.066	0.005	0.021	0.00
	Z	22.01	22.8048	-0.166	0.001	-0.132	0.001	-0.108	0.001	-0.063	0.003	0.008	0.003
¹⁴² Nd	0	5.07	1.1798	-0.003	0.014	-0.014	0.019	0.029	0.017	0.088	0.034		
	L	6.39	1.9767	-0.025	0.012	0.009	0.015	0.017	0.014	0.059	0.015		
	М	8.65	4.3009	-0.015	0.007	0.005	0.006	0.025	0.007	0.038	0.010	0.055	0.014
143 Nd	Н	5.92	0.6724	-0.439	0.039	-0.383	0.039	-0.311	0.039	-0.174	0.057	-0.135	0.094
	L	14.59	4.6364	-0.347	0.005	-0.278	0.004	-0.251	0.006	-0.190	0.010	-0.069	0.012
¹⁴⁴ Nd	0	6.30	1.4722	-0.078	0.016	-0.045	0.016	-0.015	0.021	0.001	0.023		
	L	8.15	2.5295	-0.067	0.009	-0.034	0.009	-0.029	0.010	0.013	0.021		
	М	11.52	5.8087	-0.052	0.005	-0.035	0.004	-0.017	0.005	0.008	0.008	0.057	0.009
¹⁴⁵ Nd	S	4.85	0.3685	-0.747	0.066	-0.537	0.076	-0.558	0.071	-0.415	0.094	-0.320	0.100
	K	9.11	1.6272	-0.577	0.014	-0.522	0.016	-0.471	0.019	-0.392	0.030	-0.185	0.030
	0	10.89	2.5292	-0.537	0.009	-0.492	0.009	-0.446	0.011	-0.354	0.015	-0.151	0.022
¹⁴⁶ Nd	K	8.53	1.5565	-0.048	0.013	-0.040	0.015	-0.011	0.014	0.038	0.036		
	L	13.13	4.2247	-0.044	0.006	-0.029	0.006	-0.013	0.006	0.017	0.010	0.044	0.013
¹⁴⁸ Nd	Т	5.64	0.7152	-0.087	0.042	-0.084	0.036	-0.092	0.037	-0.043	0.072		
	K	7.80	1.4268	-0.128	0.017	-0.086	0.018	-0.056	0.018	-0.007	0.034		
	L	12.61	3.9100	-0.096	0.006	-0.085	0.006	-0.054	0.007	-0.021	0.009	0.016	0.014

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEF	-500
isotope	code	$(\mathbf{g/cm}^2)$	(g)	₀d/q	Error	₀d/q	Error	p/p₀	Error	₀d/q	Error	p/p₀	Error
pN^{150}	S	5.52	0.4064	-0.150	0.055	-0.102	0.069	-0.205	0.051	-0.093	0.080		
	Т	9.28	1.2100	-0.093	0.025	-0.074	0.020	-0.056	0.023	-0.025	0.040	-0.018	0.040
	K	11.50	2.0968	-0.084	0.012	-0.083	0.011	-0.077	0.013	-0.014	0.016	-0.008	0.020
	0	13.97	3.2441	-0.096	0.007	-0.074	0.007	-0.065	0.010	-0.016	0.008	0.038	0.014
147 Pm	Т	4.85	0.6215	-2.470	0.040	-2.090	0.040	-1.800	0.040	-1.320	0.060	-0.780	0.080
	K	6.33	1.1216	-2.300	0.020	-1.910	0.022	-1.750	0.025	-1.330	0.040	-0.830	0.050
	0	8.21	1.8521	-2.190	0.010	-1.870	0.013	-1.726	0.017	-1.310	0.016		
1^{-147} Sm	Gh = 26.4	4.94	0.5000	-2.050	0.040			-1.480	0.070	-1.060	0.090		
	Fh = 25.3	6.85	1.0000	-1.810	0.020			-1.440	0.040	-1.130	0.030		
	Eh = 30.0	9.39	2.0000	-1.690	0.010			-1.400	0.020	-1.000	0.020		
	Н	4.42	0.5098	-2.040	0.040	-1.747	0.055	-1.530	0.050	-1.150	0.060		
	Т	5.33	0.6988	-1.890	0.030	-1.710	0.037	-1.530	0.040	-1.110	0.055		
	K	6.71	1.1960	-1.810	0.020	-1.594	0.022	-1.480	0.026	-1.210	0.027		
2^{-147} Sm	S	4.51	0.2484	-1.960	0.080	-1.630	0.130	-1.630	0.110	-1.470	0.140	-0.630	0.210
	Т	8.14	1.1756	-1.680	0.020	-1.520	0.020	-1.420	0.020	-1.180	0.040	-0.740	0.044
	0	13.63	3.1680	-1.480	0.010	-1.380	0.010	-1.280	0.010	-1.080	0.010	-0.726	0.016
148 Sm	S	6.46	0.5100	-0.430	0.050	-0.337	0.053	-0.327	0.049	-0.177	0.069	0.010	0.110
	Н	9.12	1.0066	-0.370	0.020	-0.267	0.028	-0.228	0.027	-0.163	0.034	-0.060	0.045
	Т	9.71	1.2460	-0.330	0.030	-0.303	0.019	-0.192	0.024	-0.162	0.027	-0.120	0.040
149 Sm	Р	5.39	0.3015	-4.160	0.070	-3.475	0.073	-3.175	0.072	-2.620	0.130	-1.690	0.160
	S	7.32	0.5786	-3.860	0.040	-3.300	0.052	-2.968	0.047	-2.370	0.060	-1.450	0.070
	Н	9.27	1.0206	-3.570	0.020	-3.093	0.024	-2.844	0.030	-2.300	0.030	-1.560	0.050
	K	13.91	2.5424	-3.072	0.006	-2.767	0.010	-2.607	0.011	-2.180	0.010	-1.515	0.020
150 Sm	S	3.00	0.2248	-0.710	0.091	-0.597	0.089	-0.550	0.120	-0.275	0.160		
	Н	4.23	0.4887	-0.664	0.044	-0.558	0.055	-0.480	0.060	-0.371	0.080		
	Т	4.14	0.5292	-0.671	0.066	-0.492	0.047	-0.470	0.055	-0.354	0.080	-0.220	0.110
	K	5.93	1.0570	-0.657	0.020	-0.515	0.022	-0.470	0.025	-0.343	0.025	-0.230	0.050
	0	7.06	1.6340	-0.590	0.016	-0.487	0.015	-0.440	0.020	-0.371	0.023	-0.236	0.032

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	(-3000	STEK	-2000	STEK	-1000	STEF	(-500
isotope	code	$(\mathbf{g/cm}^2)$	(g)	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error
151 Sm	Gh = 29.0	7.01	0.7741	-2.020	0.030	-1.580	0.040	-1.255	0.040	-0.929	0.050		
	Fh = 18.0	9.22	1.0076	-1.940	0.030	-1.500	0.030	-1.240	0.030	-0.859	0.041		
	Eh = 30.0	11.83	2.5813	-1.720	0.010	-1.350	0.010	-1.180	0.010	-0.851	0.014		
	S	4.90	0.3898	-2.090	0.050	-1.580	0.050	-1.285	090.0	-0.961	0.076	-0.770	0.130
	Т	6.54	0.8670	-1.970	0.030	-1.530	0.030	-1.240	0.030	-1.023	0.045	-0.480	0.055
	0	11.30	2.6180	-1.770	0.010	-1.390	0.010	-1.214	0.010	-0.931	0.013	-0.565	0.034
152 Sm	Ρ	4.19	0.2366	-0.950	0.090	-0.650	0.100	-0.560	0.080	-0.500	0.170	-0.190	0.220
	S	6.14	0.4730	-0.810	0.040	-0.550	0.060	-0.490	0.056	-0.320	0.060	-0.240	0.120
	Т	9.09	1.2169	-0.690	0.040	-0.467	0.025	-0.410	0.020	-0.301	0.023	-0.130	0.040
	K	12.90	2.2912	-0.640	0.010	-0.422	0.010	-0.370	0.010	-0.283	0.014	-0.145	0.024
154 Sm	Н	8.47	0.9843	-0.215	0.026	-0.169	0.028	-0.100	0.030	-0.096	0.034	-0.110	0.050
	Т	8.80	1.1206	-0.198	0.021	-0.171	0.018	-0.165	0.024	-0.122	0.034	-0.080	0.050
	K	10.92	1.4928	-0.176	0.013					-0.072	0.021		
Eu	Н	4.83	0.5456	-5.770	0.040	-4.850	0.050	-4.418	0.048	-3.635	0.040	-2.698	0.086
	K	6.94	1.2474	-5.370	0.010	-4.600	0.020	-4.272	0.023	-3.564	0.017	-2.513	0.038
	L	9.72	3.0100	-5.044	0.005	-4.460	0.010	-4.159	0.011	-3.546	0.010	-2.535	0.019
¹⁵³ Eu	Н	3.67	0.4276	-4.200	0.060	-3.496	0.065	-3.220	0.060	-2.770	0.098	-1.950	0.120
	K	6.20	1.0914	-3.840	0.020	-3.322	0.025	-3.110	0.025	-2.626	0.032	-1.770	0.050
156 Gd	Р	3.79	0.2146	-0.52	0.11	-0.42	0.11	-0.49	0.10	-0.60	0.19		
	Ρ	4.04	0.2255	-0.49	0.10	-0.56	0.07	-0.45	0.12	-0.63	0.12	-0.35	0.23
¹⁵⁷ Gd	Р	4.38	0.2289	-2.46	0.11	-1.90	0.09	-1.71	0.13	-1.65	0.18		
	Ρ	4.84	0.2531	-2.41	0.10	-1.99	0.09	-1.79	0.08	-1.41	0.10	-0.75	0.14
$^{0.01}$	Ph = 0.025	0.35	0.2945	-2.630	0.080	-2.457	0.084	-2.190	0.060	-1.910	0.140	-1.290	0.150
	Ph = 0.05	0.70	0.6348	-2.570	0.040	-2.323	0.028	-2.180	0.030	-1.885	0.040	-1.360	0.080
	Ph = 0.075	1.05	0.9132	-2.480	0.030	-2.244	0.016	-2.140	0.030	-1.771	0.030	-1.160	0.060
	Ph = 0.1	1.40	1.2539	-2.430	0.020	-2.219	0.020	-2.090	0.020	-1.763	0.027		
	Ph = 0.125	1 75	1 5483	-7 380	0.010	-7 188	0,000		0000	-1 749	0.000	-1 200	0.034

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error
Hf	Н	8.51	0.9896	-1.120	0.020	-0.815	0.027	-0.665	0.027	-0.469	0.041	-0.324	0.049
	K	13.89	2.5091	-1.000	0.010	-0.734	0.012	-0.611	0.010	-0.449	0.031	-0.255	0.020
	L	27.25	8.6397	-0.812	0.002	-0.637	0.003	-0.553	0.003	-0.427	0.003	-0.245	0.006
M	Ph = 0.06	2.17	1.9799	-0.707	0.009			-0.365	0.016	-0.269	0.018	-0.122	0.024
	Ph = 0.12	4.33	3.9779	-0.591	0.005			-0.348	0.007	-0.256	0.008		
Au	Ph = 0.1	1.13	1.0148	-0.074	0.023			0.021	0.023	0.037	0.031		
1-Pb	0	44.35	8.0350	0.0114	0.0028			0.0250	0.0023	0.0320	0.0030	0.0480	0.0053
	М	55.63	28.0172	0.0122	0.0008	0.0184	0.0010	0.0240	0.0010	0.0331	0.0011	0.0376	0.0018
	Dh = 28.0	72.98	51.8082	0.0116	0.0004	0.0179	0.0010	0.0236	0.0007	0.0311	0.0006		
2-Pb	Ph = 3.84	73.05	0667.77							0.01410	0.00040		
	Ph = 4.2	78.05	84.2960					0.01000	0.00030				
	Ph = 5.0	90.80	101.2600	0.00490	0.00030	0.00779	0.00020	0.01010	0.00030				
	Ph = 8.8	140.30	180.2500	0.00500	0.00020	0.00753	0.00015	76600.0	0.00016				
	Ph = 17.5	215.50	349.8500	0.00494	0.00006							0.01662	0.00015
3-Pb	Ah = 1.5	10.38	5.2485			0.0360	0.0050						
	L	27.86	8.8355	0.0220	0.0020	0.0330	0.0020	0.0480	0.0034	0.0671	0.0036	0.0660	0.0060
	Ch = 6.02	28.28	17.7403	0.0230	0.0010	0.0340	0.0020	0.0440	0.0020	0.0645	0.0034		
	Ch = 6.12	28.63	18.0359			0.0360	0.0030						
1- ²³⁵ U	Ph = 0.14	4.93	4.5873	0.4170	0.0040	0.5060	0.0040	0.5900	0.0050	0.7170	0.0160	0.9110	0.0120
	Ph = 0.28	9.73	9.1077			0.5160	0.0020	0.5950	0.0030			0.9250	0.0050
	Ph = 0.42	14.35	13.5209	0.4290	0.0010	0.5210	0.0020	0.5940	0.0024	0.7150	0.0020	0.9330	0.0040
	Ph = 0.56	18.88	17.9017			0.5170	0.0020						
2^{-235} U	Ph = 0.6	3.34	2.8804			0.1100	0.0070	0.1340	0.0100				
	Ph = 1.2	6.02	5.3497	0.0820	0.0040					0.1740	0.0050		
	Ph = 1.8	9.48	8.6703			0.1120	0.0030	0.1370	0.0040				
	Ph = 3.6	17.78	17.5744			0.1120	0.0014	0.1370	0.0015			0.2240	0.0030
	Ph = 4.8	23.14	23.6028	0.0810	0.0010					0.1750	0.0014		
	Ph = 6.0	26.65	28.9524	0.0793	0.0007			0.1380	0.0010			0.2200	0.0020

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error	₀d/q	Error	p/p₀	Error	₀d/q	Error	p/p₀	Error
Ω^{236} U	$Ah = 1^*.5$	3.67	1.7546	0.053	0.013	0.178	0.009	0.297	0.011	0.435	0.018	0.690	0.030
	$Ah = 2^{*}.5$	7.14	3.5091	0.058	0.012	0.173	0.007	0.298	0.007				
	Ah = 3*.5	10.42	5.2634	0.061	0.007	0.186	0.006			0.430	0.012	0.661	0.026
	$Ah = 4^{*}.5$	13.53	7.0181			0.171	0.010	0.256	0.017				
1^{-238} U	Ph = 0.1	0.64	0.5825			-0.046	0.019	-0.082	0.055				
	Ph = 0.2	1.28	1.1657					0.026	0.024				
	Ph = 0.3	1.90	1.7534			-0.040	0.014	0.010	0.017				
	Ph = 0.4	2.52	2.4849			-0.019	0.010						
	Ph = 0.6	3.76	3.3272	-0.061	0.006	-0.016	0.005	0.014	0.008	0.058	0.010	0.116	0.016
	Ph = 0.8	4.91	4.1496	-0.064	0.005								
	Ph = 1.2	7.29	6.6349	-0.050	0.004	-0.011	0.004	0.020	0.004	0.057	0.007	0.103	0.006
2^{-238} U	Ph = 0.14	5.15	4.6364	-0.2570	0.0040	-0.1970	0.0040	-0.1580	0.0040	-0.0810	0.0080	0.0075	0.0109
	Ph = 0.28	10.23	9.5822			-0.1700	0.0020	-0.1390	0.0030	-0.0780	0.0040	0.0122	0.0055
	Ph = 0.42	15.27	14.2177	-0.1870	0.0020	-0.1520	0.0020	-0.1230	0.0020	-0.0770	0.0030	0.0157	0.0036
^{139}Pu	DC	2.57	0.4640	0.619	0.037	0.843	0.041	0.960	0.040	1.174	0.061		
	DC	8.28	1.3980	0.657	0.022	0.816	0.017	0.990	0.020	1.295	0.018		
	DC	12.00	2.0270	0.627	0.014	0.819	0.011	0.970	0.010	1.254	0.011		
	DC	16.56	2.8120	0.657	0.009	0.825	0.00	1.000	0.010	1.281	0.009		
	0	2.74	0.4590	0.584	0.050			0.815	0.045	1.097	0.057	1.540	0.110
	0	7.71	1.3880	0.578	0.015			0.895	0.020	1.139	0.023	1.620	0.030
	0	11.94	1.9520	0.599	0.011			0.880	0.014	1.112	0.018		
	0	13.87	2.7550	0.605	0.008			0.881	0.010	1.128	0.012	1.570	0.020
1^{-240} Pu	D	66.0	0.1820	-0.34	0.09	0.29	0.11	0.27	0.10	0.66	0.11		
	D	2.50	0.4570	-0.16	0.03	0.27	0.05	0.36	0.05	0.60	0.05		
	D	5.01	0.9120	0.09	0.02	0.41	0.03	0.56	0.02	0.86	0.03		
	0	0.81	0.1750	-0.60	0.12			0.25	0.11	0.30	0.18		
	0	2.45	0.4530	-0.27	0.05			0.38	0.04	0.63	0.08		
	0	5.35	0.9060	-0.04	0.02			0.43	0.03	0.61	0.04		

ID & main	Packing	10*l*d	Weight	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	(g)	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error	p/p₀	Error
2^{-240} Pu	D	0.59	0.0830	-1.29	0.24	0.18	0.22	0.09	0.22	0.70	0.26		
	0	0.54	0.0820	-1.71	0.26			0.05	0.23	0.11	0.38		
0	AI_2O_3		1.0000	0.0935	0.0028							0.3480	0.0080
	Fe_2O_3		1.0000	0.0908	0.0019							0.3370	0.0080
	PbO		1.0000	0660.0	0.0056							0.3250	0.0240
	H_2O		1.0000	0.0920	0.0020	0.1390	0.0020	0.1890	0.0020	0.2640	0.0030	0.3420	0.0060
Н	H_2O		1.0000	27.6700	0.0700	35.5800	0.1400	46.3200	0.1400	66.8800	0.1400	96.5800	0.2100
H_2O			1.0000	3.1780	0.0080	4.1040	0.0160	5.3510	0.0160	7.7180	0.0160	11.1100	0.0240
В	Natural B		1.0000	-16.8400	0.4040	-12.4700	0.1995.2	-11.3800	0.1138	-9.7200	0.0680	-7.4600	0.0522

Table A.2. STEK experimental results (cont.)

ID & main	Packing	10*l*d	Av((C/E)r)	STEK.	4000	STEK	-3000	STEK	-2000	STEK	-1000	STEI	K-500
isotope	code	$(\mathbf{g/cm}^2)$	Av((C/E)r)sc	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r
Н	Ρ	1.80											
	Ρ	3.44						-					
Γ_{τ}	М	9.55											
	Z	13.85										_	
$1^{-10}B$	Ph = 0.75	3.26											
	Ph = 1.50	6.30											
	Ph = 2.25	9.16											
	Ph = 3.00	11.84											
$2^{-10}B$		0.0038											
		0.0150											
$3^{-10}B$		0.0130											
C	Ph = 3.0	8.94											
	Ph = 3.5	10.26											
	Ph = 5.0	13.72											
	Ph = 9.7	23.21				_ = = =		_ = = 3					
	Ph = 11.2	25.08											
	Ph = 16.8	32.03											
	Ph = 21.0	35.22											
	Ph = 31.5	43.47											
1-N	М	17.51											
	R	29.85											
2-N	Μ	18.26											
	R	29.00											
1-0	Μ	11.30											
	z	17.92											
	R	13.65											
2-O	Z	22.40											
	R	20.75	. <u> </u>										

ID & main	Packing	10*l*d	Av((C/E)r)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEF	C-500
isotope	code	(g/cm^2)	Av((C/E)r)sc	(C/E)0	(C/E)r								
AI	Ph = 2.1	10.52											
;	Ph = 3.0	14.17											;
	Ph = 3.4	15.77											
	Ph = 4.0	18.00											
	Ph = 4.7	20.97											
	Ph = 5.7	24.33											
	Ph = 6.1	25.78											
	Ph = 10.3	37.52											
	Ph = 13.9	45.61											
	Ph = 14.7	47.12											
Si	М	13.01		0.600		0.658		0.607					
	U	11.25		0.696		0.711		0.690		0.604			
	R	33.26		0.668		0.696		0.672		0.650			
CI	D	13.02											
	D	13.71											
	L	16.17											
	М	19.13											
>	Ph = 4.56	22.33											
	Ph = 5.61	27.06											
	Ph = 6.05	27.38											
	Ph = 10.9	43.04											
	Ph = 13.3	48.84											
	Ph = 17.7	58.48											
Cr	Ph = 1.94	15.91											
	Ph = 3.06	23.92											
	Ph = 3.76	28.55											
	Ph = 4.75	34.70											
	Ph = 5.7	40.18											
	Ph = 9.22	57.55											
	Ph = 12.2	69.75											
Mn	Ph = 0.1	1.09											

ID & main	Packing	10*l*d	Av((C/E)r)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	Av((C/E)r)sc	(C/E)0	(C/E)r								
Fe	Ph = 1.0	15.01											
	Ph = 2.0	28.69											;
	Ph = 3.0	41.34											
1-Ni	Ph = 1.5	24.83											
	Ph = 3.0	46.32											
	Ph = 4.25	61.16											
	Ph = 4.75	68.09											
	Ph = 5.25	73.74											
	Ph = 7.0	81.97											
	Ph = 7.25	90.51											
2-Ni	Ph = 10	17.00											
	Ph = 3.0	46.81											
Zr	Ph = 0.25	3.19	0.4580			-4.670	-4.742	-1.210	-1.232				
	Ph = 0.75	9.35	1.3234	1.571	1.592	2.986	3.033			-0.171	-0.175		
	Ph = 1.49	18.08		1.510	1.532	13.814	14.045	-2.631	-2.684			0.349	0.356
90 Zr	Κ	11.09	0.7415	0.474	0.479	0.887	0.899	0.688	0.700	0.701	0.714		
	М	23.43	-0.5701	0.732	0.740	0.774	0.784	0.782	0.795	0.735	0.749	0.762	0.776
91 Zr	K	5.91	0.5837	1.402	1.422	1.383	1.406	0.614	0.627	-0.004	-0.007		
	0	6.64	1.0446	1.491	1.513	1.120	1.140	1.120	4.506	0.065	0.060		
	L	9.19		1.051	1.067	0.915	0.932	1.766	1.807	0.430	0.429	0.627	0.637
92 Zr	0	7.26	0.5403	1.277	1.289	0.591	0.598	0.400	0.407	0.715	0.728		
	М	13.01	0.5403	0.479	0.484	0.522	0.529	0.541	0.549	0.552	0.562	0.579	0.590
93 Zr	L	6.51	0.6956	0.888	0.902	0.997	1.015	2.551	2.616	-0.881	-0.891	0.673	0.685
	Μ	5.82	1.0550	1.207	1.226	1.853	1.889	-5.473	-5.615	0.364	0.368	0.555	0.564
	Μ	6.07		1.121	1.139	1.678	1.711	-3.555	-3.648	0.280	0.283	0.586	0.596
96 Zr	К	13.19	0.6599	-0.614	-0.634	0.335	0.337	0.738	0.748	0.817	0.832		
	L	20.50	1.0354	-0.560	-0.512	0.734	0.739	0.668	0.677	0.676	0.688	0.667	0.679
Nb	Ph = 1.0	16.06	0.9802		0.981		1.020		0.992		0.985		1.014
	Ph = 2.0	30.78	0.9830		0.964		0.995		0.975		0.977		
	Ph = 3.0	44.24			0.969		0.976		0.956		0.964		0.945

ID & main	Packing	10*l*d	Av((C/E)r)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
isotope	code	(g/cm^2)	Av((C/E)r)sc	(C/E)0	(C/E)r								
Mo	Ph = 0.1	2.18	1.0110		1.003		0.971		1.070		1.008		1.034
	Ph = 0.2	4.36	1.0230		0.971		1.059		1.006		1.079		1.171
	Ph = 0.3	6.43			0.977		1.010		1.029		1.014		
	Ph = 0.4	8.61			0.956		1.012		1.023				1.332
	Ph = 0.8	16.90					0.992		1.020		1.106		
92 Mo	Н	5.43	0.9107		2.847		1.027		0.800		1.517		
	K	7.34	0.9799		1.066		1.302		1.687		0.783		-2.859
94 Mo	Н	8.42	1.0264		1.522		1.109		1.340		5.204		
	T	8.61	1.0728		9.276		0.978		1.169		1.543		0.640
95 Mo	Н	5.25	1.0269		0.965		1.042		0.980		0.949		1.093
	K	7.56	1.0203		0.953		0.996		1.062		1.128		1.003
	L	11.48			0.973		1.030		1.066		1.085		
${\rm oM}^{96}$	Ρ	8.59	0.9383		1.284		0.729		0.755		6.423		
	S	11.26	0.9932		0.941				1.102		2.043		2.164
	Н	15.90			1.001		1.625		0.863		2.066		0.596
^{00}Mo	K	6.83	0.9732		0.931		1.034		0.957		0.982		0.979
	0	8.77	0.9758		0.933		1.010		0.935		0.980		1.017
	L	11.30			0.974		0.987		0.986		0.993		0.901
$^{0}M^{86}$	L	18.69	1.0167		1.197		1.043		0.969		3.323		
	0	28.91	1.1040		1.001		1.166		1.341		7.760		-0.303
100 Mo	Т	7.66	1.0587		1.998		1.709		2.738				
	K	10.02	1.0975		0.969		1.218		1.172		2.244		
	L	15.59			1.077		1.258		1.145		2.140		0.116
1^{-99} Tc	Р	3.26	0.8218	0.907	0.919	0.837	0.850	0.790	0.805	0.676	0.689	0.970	0.990
	Н	7.52	0.8295	0.814	0.823	0.787	0.798	0.776	0.790	0.853	0.870	0.827	0.844
	K	10.53		0.808	0.823	0.810	0.824	0.799	0.815	0.813	0.830	0.886	0.904
2^{-99} Tc	Gh = 19.5	6.25	0.8122		0.787		0.795		0.741		0.853		
	Gh = 23.0	9.01	0.8152		0.809		0.786		0.797		0.868		
	Gh = 16.5	9.92			0.817		0.791		0.812		0.880		
101 Ru	Ь	11.31	0.9564	0.983	0.997	0.989	1.005	0.929	0.946	0.887	0.905	1.057	1.079
	Н	20.81	0.9641	0.923	0.935	0.938	0.952	0.938	0 956	0.950	0.970	0.946	0.965

nt.
<i>03</i>)
lts
esu
IS L
iot
rev
d p
an
vsis
lal
t ar
Cent
rec
en
twe
be
son
aris
np:
C01
E)r
5
3. (
Ā
ble
Ta

Packing 10*1*d	10*l*d		Av((C/E)r)	STEK	-4000	STEK	3000	STEK	-2000	STEK	-1000	STE	K-500
code (g/cm) Av((C/E)r)sc (C/)	(g/cm) = AV((C/E)r)sc = (C/)	AV((C/E)r)sc (C/	(C)	E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r
S 10.25 1.0745 H 14.67 1.0760	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0745 1.0760			0.961 1.017		0.925 1.437		1.052 1.099		1.278 1.371		2.054
P 10.59 1.0753	10.59 1.0753	1.0753		_	0.906		1.125		1.314		1.425		
H 20.27 1.0658	20.27 1.0658	1.0658			0.996		1.165		1.166		1.283		1.018
$Ph = 0.05 \qquad 1.24 \qquad 0.9692$	1.24 0.9692	0.9692			0.988				0.975		0.996		0.900
$Ph = 0.1 \qquad 2.49 \qquad 0.9705$	2.49 0.9705	0.9705			0.974		0.992		0.954		0.963		1.011
Ph = 0.2 4.98	4.98				0.961		0.963		0.964		0.978		1.004
Ph = 0.3 7.34	7.34				0.963		0.960		0.965		0.978		
Ph = 0.4 9.83	9.83				0.952		0.967		0.965		0.980		
W 6.22 1.0114	6.22 1.0114	1.0114			0.969						0.994		
W 6.22 1.0040	6.22 1.0040	1.0040					0.999		0.960		0.967		
W 6.22	6.22				1.009		1.031		0.968		0.981		
W 6.22	6.22						1.112		1.012		1.058		
Ph = 0.98 5.19 0.9716	5.19 0.9716	0.9716			1.061								
$Ph = 1.47 \qquad 7.62 \qquad 1.1499$	7.62 1.1499	1.1499			1.072				0.770		0.868		0.843
Ph = 2.45 12.19	12.19				1.040				0.729		0.722		0.848
W 6.08 1.0495	6.08 1.0495	1.0495			1.078		1.080		0.962				0.819
W 6.08 1.0441	6.08 1.0441	1.0441			1.031						1.046		
W 6.08	6.08				1.031		1.034		1.019				0.986
W 6.08	6.08										1.130		
W 6.08	6.08										1.154		
S 3.64 1.1400	3.64 1.1400	1.1400			1.497		1.220		0.931		1.790		2.470
S 3.79 1.1377	3.79 1.1377	1.1377			1.476		1.190		1.932		1.139		1.686
T 7.60 0.9969	7.60 0.9969	0.9969			0.960		0.977		0.974		0.964		0.932
K 7.48 0.9942	7.48 0.9942	0.9942			0.963		0.988		0.999		1.017		1.059
Ah = 0.54 1.67	1.67				1.020		0.954		1.019		1.025		
Ah = 1.09 3.24	3.24				1.016		1.007		1.029		1.030		
H 11.76 1.1932	11.76 1.1932	1.1932			1.181		1.226		1.149		1.294		1.269
1.1693	1.1693	1.1693											

ID & main	Packing	10*l*d	Av((C/E)r)	STEK.	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	<u>c-500</u>
isotope	code	(g/cm^2)	Av((C/E)r)sc	(C/E)0	(C/E)r								
\mathbf{pd}_{tot}	Т	12.39	1.0105	0.985	0.999	0.992	1.008	1.011	1.030	1.057	1.080	1.064	1.086
	K	15.88	1.0166	0.978	0.993	1.013	1.030	1.002	1.022	1.026	1.048	1.057	1.079
	0	20.69		0.975	0.992	1.014	1.032	1.002	1.022	1.019	1.042	1.044	1.066
	Dh = 1.39	7.33		0.849	0.995	0.891	1.010	0.891	1.021	0.994	1.085		
	Dh = 2.78	13.33		0.824	0.934	0.890	0.987	0.910	0.998	0.986	1.065		
$\mathbf{pd}^{\mathbf{s}01}$	Н	6.49	1.1095		1.111		0.997		1.044		1.866		
	Т	7.72	1.1023		1.205		1.116		1.097		1.236		1.774
pd_{011}	S	3.60	0.7482		1.722		-2.132		1.170		0.588		0.744
	S	3.69	0.9243		1.355		4.393		-1.605		0.903		2.724
109 Ag	Ah > .07	>0.44	0.8997		1.190		0.728		1.032		0.795		
	Ah > .15	>0.85	0.8969		1.031		0.839		0.998		0.871		
	Р	5.88			0.909		0.892		0.846		0.767		0.704
	Н	10.57			0.918		0.899		0.881		0.921		0.967
^{III} Cd	Р	3.92	1.0972		1.170		1.092		1.029		1.034		1.089
	Р	3.55	1.0899		1.072		1.132		0.899		0.997		
	S	5.07			1.193		1.310		1.084		1.230		1.163
In	Ph = 1.0	14.02	1.0160		0.990				1.041				1.053
	Ph = 3.0	38.61	1.0043		0.973				1.016				
128 Te	0	21.86	0.3816		0.785		1.594		0.324		0.477		0.342
			0.9543										
130 Te	0	8.08	0.4823		0.264		2.160		0.607		0.655		
	L	7.25	0.5858		-2.008		0.894		0.604		1.392		1.448
I_{221}	Eh = 9.71	11.62	0.8797		0.784		0.737		0.796		0.878		
	Dh = 4.71	13.69	0.8826		0.849		0.859		0.888		0.906		
	S	5.71			0.918		1.000		0.983		1.020		0.645
	Т	8.40			0.889		0.888		0.931		0.846		0.860
	0	13.80			0.889		0.932		0.931		0.936		0.981
1 ²⁹ I	Τ	7.43	1.0735		1.160		1.148		1.010		1.025		1.303
	Κ	10.99	1.0661		1.083		1.059		0.997		1.113		1.043
¹³¹ Xe	RB	2.14	1.0740		0.936		1.086	_	1.185		1.170		1.146

																														_
ζ-500	(C/E)r	0.878	0.858		0.646	0.850	0.854			0.864	0.932	0.934	1.094	0.568	0.680				0.716		0.597	0.537	0.452	0.537	0.452			3.415	-1.282	-3.098
STEH	(C/E)0																					0.532	0.447							
-1000	(C/E)r	0.936	0.880	0.857	0.886	0.823	0.842	0.845		1.026	0.779	0.945	1.104	0.715	0.753	0.915		0.773	0.773	0.554	0.639	1.216	1.599	1.216	1.599	0.926	1.177	1.253	1.234	1.193
STEK	(C/E)0																					1.187	1.559							
-2000	(C/E)r	0.864	0.870	0.868	0.846	0.836	0.853	0.854		1.017	0.896	0.873	0.917	0.683	0.825	1.286		0.784	0.824	0.735	0.841	1.002	1.000	1.002	1.000	1.149	0.997	0.998	1.029	1.044
STEK	(C/E)0																					0.982	0.979							
-3000	(C/E)r	0.913	0.893	0.890	0.850	0.867	0.863	0.875		1.000	0.968	0.925	0.925	0.426	-1.138	0.826		0.889	0.910	0.830	0.822	1.031	0.982	1.031	0.982	0.849	0.992			1.006
STEK	(C/E)0																					1.013	0.965							
-4000	(C/E)r	0.899	0.895	0.900	0.835	0.858	0.875	0.885		0.993	0.917	0.917	0.937	0.925	0.673	0.838		1.009	0.961	0.801	1.017	0.986	0.978	0.986	0.978	0.975	0.886	0.870	0.892	0.948
STEK	(C/E)0																					0.972	0.963							
Av((C/E)r)	Av((C/E)r)sc	0.8683	0.8753							0.9289	0.9382			0.6947	0.9801	0.8819	0.9644	0.8182	-0.4884	0.6478	-0.2248	0.9880	1.0337	1.0183	1.0789	0.9423	1.0168	0.9557	1.0772	
10*l*d	(g/cm^2)	2.07	5.95	15.34	8.75	12.89	18.90	26.24	17.30	7.55	10.19	15.18	18.83	17.23	23.96	15.49		27.38	38.02	16.65	21.80	15.89	19.48	18.71	25.50	5.39	10.48	10.21	11.65	22.01
Packing	code	Ah = 0.48	Ah = 1.45	Bh = 4.3	Н	X	L	M	L	Ц	K	0	L	L	z	M		M	Z	0	L	L	M	M	z	Н	L	L	M	Z
ID & main	isotope	1- ¹³³ Cs							2- ¹³³ Cs	¹³⁵ Cs		-	. *	1- ¹³⁹ La	<u> </u>	2- ¹³⁹ La		¹⁴⁰ Ce		¹⁴² Ce		1- ¹⁴¹ Pr		2^{-141} Pr		1-Nd		2-Nd		

ID & main	Packing	10*l*d	Av((C/E)r)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEP	<u> </u>
isotope	code	$(\mathbf{g/cm}^2)$	Av((C/E)r)sc	(C/E)0	(C/E)r								
¹⁴² Nd	0	5.07	-0.0156		12.891		1.674		-0.480		-0.011		
	L	6.39	1.5820		1.530		-2.560		-0.797		-0.011		
	Μ	8.65			2.507		-4.487		-0.519		-0.004		0.209
¹⁴³ Nd	Н	5.92	0.9194		0.911		0.858		0.929		1.247		0.901
	L	14.59	0.9473		0.905		0.931		0.919		0.949		1.560
¹⁴⁴ Nd	0	6.30	0.6188		0.598		0.786		1.586		-2.903		
	L	8.15	0.9927		0.662		0.973		0.746		-0.101		
	М	11.52			0.797		0.862		1.110		0.088		0.438
¹⁴⁵ Nd	S	4.85	0.8778		0.752		0.959		0.854		0.943		0.768
	K	9.11	0.9022		0.836		0.865		0.900		0.911		1.252
	0	10.89			0.858		0.882		0.917		0.980		1.505
¹⁴⁶ Nd	К	8.53	0.6173		0.876		0.846		2.122		-0.120		
	L	13.13	1.0268		0.874		1.039		1.522		-0.103	-	0.574
¹⁴⁸ Nd	Т	5.64	0.8179		1.098		0.974		0.691		0.660		
	K	7.80	0.9002		0.694		0.876		1.033		3.493		
	L	12.61			0.829		0.783		0.926		0.904		1.498
pN^{021}	S	5.52	0.7171		0.659		0.861		0.352		0.451		
	Т	9.28	0.8675		0.892		0.991		1.064		1.328		-0.343
	K	11.50			0.916		0.818	# #	0.711		2.126		-0.975
	0	13.97			0.749		0.854		0.778		1.673		0.243
147 Pm	Т	4.85	0.9161		0.935		0.906		606.0		0.927		0.929
	K	6.33	0.9143		0.943		0.945		0.900		0.897		0.862
	0	8.21			0.929		0.919		0.877		0.886		
1^{-147} Sm	Gh = 26.4	4.94	0.9239	0.878	0.893			0.955	0.974	1.031	1.053		
	Fh = 25.3	6.85	0.9405	0.903	0.920			0.918	0.938	0.922	0.942		
	Eh = 30.0	9.39		0.879	0.896			0.882	0.902	0.991	1.014		
	Н	4.42		0.912	0.926	0.933	0.949	0.945	0.963	0.965	0.985		
	Т	5.33		0.933	0.948	0.913	0.928	0.911	0.929	0.974	0.995		
	K	6.71		0.911	0.925	0.926	0.942	0.899	0.916	0.899	0.883		

ID & main	Packing	10*l*d	Av((C/E)r)	STEK	-4000	STEK	-3000	STEK	(-2000	STEK	-1000	STEK	-500
isotope	code	$(\mathbf{g/cm}^2)$	Av((C/E)r)sc	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r	(C/E)0	(C/E)r
2^{-147} Sm	s	4.51	0.9184		0.972		1.015		0.900		0.766		1.074
	Т	8.14	0.9124		0.959		0.948		0.919		0.877		0.874
	0	13.63			0.932		0.916		0.910		0.881		0.848
148 Sm	S	6.46	0.9104	0.833	0.847	0.825	0.841	0.727	0.743	1.004	1.027	-11.106	-11.338
	Н	9.12	0.9340	0.891	0.905	0.966	0.985	0.972	0.992	1.027	1.050	1.027	1.818
	Т	9.71		0.981	1.000	0.840	0.856	1.139	1.163	1.022	1.045	0.884	0.902
149 Sm	Ρ	5.39	0.8900	0.876	0.889	0.872	0.886	0.847	0.864	0.807	0.824	0.784	0.800
	S	7.32	0.8870	0.863	0.878	0.863	0.878	0.864	0.881	0.866	0.884	0.901	0.920
_	Н	9.27		0.873	0.885	0.878	0.892	0.868	0.884	0.870	0.888	0.828	0.845
	K	13.91		0.886	0.908	0.890	0.911	0.876	0.896	0.870	0.891	0.829	0.847
150 Sm	S	3.00	0.8141	0.943	0.928	0.830	0.798	0.771	0.728	1.227	1.121		
	Н	4.23	0.8337	0.919	0.906	0.824	0.791	0.830	0.782	0.871	0.793		
	Т	4.14		0.915	0.901	0.939	0.901	0.851	0.802	0.915	0.833	1.073	0.941
	K	5.93		0.848	0.835	0.829	0.793	0.796	0.747	0.900	0.817	1.000	0.875
	0	7.06		0.899	0.886	0.843	0.806	0.822	0.771	0.812	0.736	0.961	0.840
¹⁵¹ Sm	Gh = 29.0	7.01	0.9465	0.920	0.941	0.888	0.905	0.937	0.954	0.928	0.941		
	Fh = 18.0	9.22	0.9443	0.889	0.920	0.887	0.909	0.909	0.930	0.976	0.992		
	Eh = 30.0	11.83		0.947	0.978	0.943	0.967	0.922	0.943	0.961	0.977		
	S	4.90		0.965	0.983	0.942	0.958	0.960	0.976	0.926	0.938	0.677	0.679
	Т	6.54		0.959	0.979	0.928	0.945	0.958	0.975	0.848	0.860	1.074	1.076
	0	11.30		0.936	0.962	0.926	0.947	0.904	0.923	0.884	0.897	0.888	0.890
¹⁵² Sm	Ρ	4.19	0.8556	0.860	0.874	0.775	0.787	0.709	0.720	0.590	0.598	1.006	1.011
	S	6.14	0.8730	0.895	0.906	0.823	0.834	0.737	0.748	0.859	0.870	0.765	0.769
	Т	9.09		0.905	0.931	0.857	0.874	0.794	0.807	0.845	0.856	1.350	1.356
	K	12.90		0.865	0.886	0.855	0.870	0.803	0.815	0.839	0.849	1.161	1.165
154 Sm	Н	8.47	0.8695	0.782	0.819	0.841	0.896	1.236	1.337	0.943	1.050	0.372	0.445
	Т	8.80	0.9075	0.840	0.879	0.822	0.876	0.741	0.802	0.734	0.818	0.506	0.607
	K	10.92		0.892	0.930					1.174	1.311		
Eu	Н	4.83	0.8604		0.882		0.874		0.860		0.842		0.754
	K	6.94	0.8583		0.884		0.882		0.861		0.843		0.803
	L	9.72			0.876		0.869		0.855		0.830		0.789

ID & main	Packing	10*l*d	Av((C/E)r)	STEK	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEH	(-500
isotope	code	(g/cm^2)	Av((C/E)r)sc	(C/E)0	(C/E)r								
¹⁵³ Eu	Η	3.67	0.9482		0.959		0.981		0.959		0.899		0.844
	K	6.20	0.9447		0.951		0.964		0.942		0.918		0.917
¹⁵⁶ Gd	Р	3.79	1.0321		1.227		1.470		1.184		0.804		
	Р	4.04	1.0345		1.278		1.085		1.271		0.758		0.926
157 Gd	Ρ	4.38	0.8485		0.850		0.900		0.886		0.713		0.000
	Р	4.84	0.8519		0.848		0.846		0.835		0.827		0.948
159 Tb	Ph = 0.025	0.35	1.0599		1.071		1.034		1.074		1.038		1.081
	Ph = 0.05	0.70	1.0602		1.044		1.062		1.057		1.041		1.021
	Ph = 0.075	1.05			1.043		1.074		1.059		1.097		1.192
	Ph = 0.1	1.40			1.032		1.065		1.069		1.093		
	Ph = 0.125	1.75			1.027		1.061		1.055		1.093		1.145
Hf	Н	8.51											
	K	13.89											
	L	27.25											
M	Ph = 0.06	2.17											
	Ph = 0.12	4.33											
1-Pb	0	44.35											
	М	55.63											
	Dh = 28.0	72.98											
2-Pb	Ph = 3.84	73.05											
	Ph = 4.2	78.05											
	Ph = 5.0	90.80											
	Ph = 8.8	140.30											
	Ph = 17.5	215.50											
3-Pb	Ah = 1.5	10.38											
	L	27.86											
	Ch = 6.02	28.28											
	Ch = 6.12	28.63											

& main	Packing	10*l*d	Av((C/E)r)	STEK	4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	-500
otope	code	(g/cm [*])	Av((C/E)r)sc	(C/E)0	(C/E)r								
Ŭ	Ph = 0.14	4.93											
	Ph = 0.28	9.73											;
	Ph = 0.42	14.35											
	Ph = 0.56	18.88											
n,	Ph = 0.6	3.34											
	Ph = 1.2	6.02											
	Ph = 1.8	9.48											
	Ph = 3.6	17.78											
	Ph = 4.8	23.14											
	Ph = 6.0	26.65											
	$Ah = 1^*.5$	3.67											
	Ah = 2*.5	7.14											
	Ah = 3*.5	10.42											
	$Ah = 4^*.5$	13.53											
Ŋ	Ph = 0.1	0.64											
	Ph = 0.2	1.28											
	Ph = 0.3	1.90											
	Ph = 0.4	2.52											
	Ph = 0.6	3.76											
	Ph = 0.8	4.91		••••									
	Ph = 1.2	7.29											
Ű	Ph = 0.14	5.15											;
	Ph = 0.28	10.23											
	Ph = 0.42	15.27											
-	DC	2.57		0.957		0.919		0.921		0.943			
	DC	8.28		0.922		0.960		0.900		0.858			
	DC	12.00		0.973		0.959		0.921		0.887			
	DC	16.56		0.933		0.954		0.895		0.869			
	0	2.74		1.018				1.084		1.009		0.972	
	0	7.71		1.053				0.992		0.973		0.923	
	0	11.94		1.024				1.024		0.998			
	0	13.87		1.016				1.009		0.983		0.951	

ID & main	Packing	10*l*d	Av((C/E)r)	STEK.	-4000	STEK	-3000	STEK	-2000	STEK	-1000	STEK	<u>c-500</u>
isotope	code	$(\mathbf{g/cm}^2)$	Av((C/E)r)sc	(C/E)0	(C/E)r								
1^{-240} Pu	D	0.99		2.818		0.352		1.479		1.005			
	D	2.50		3.029		0.838		1.236		1.127			
	D	5.01		-1.922		0.761		0.854		0.799			
	0	0.81		0.953				1.688		2.229			
	0	2.45		0.574				1.226		1.082			
	0	5.35		-1.080				1.148		1.133			
2^{-240} Pu	D	0.59											_
	0	0.54											
0	Al_2O_3												
	Fe_2O_3												
	PbO												
	H_2O												
Н	H_2O												
H_2O													
В	Natural B												