Reproducibility in light-element evalautions

NEA/WPEC/Subgroup 49 Reproducibility in Nuclear Data Evaluation

Mark Paris & Gerry Hale

2020-11-16

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Outline

- EDA evaluation pipeline
 - Overview/reminder
- High-fidelity, unitary R-matrix approach
 - Simultaneous evaluation of all data
- Evaluation reproduction
 - Challenges in push-button/script-driven reproducibility for our approach

NB: our evaluation approach is currently heavily hand-spun

-Automation *limited* but *under development*

Overview/reminder Light-element evaluation

- Data-cull: observables from single experiments are compiled
- Evaluation: one set of variational parameters for all data
 - Unitary parametrization: highly constraining between different processes
 - Elastic & reaction cross sections are coupled in complex ways
 - Not simply drawing smooth curves
- Processing

R-matrix evaluation

⁵Li system

	Channel	a_c	(fm)	l_{max}		
	$d + {}^{3}\text{He}(\frac{1}{2}^{+})$	4.8		4		
	$p + 4 \operatorname{He}(\bar{0}^+)$	2.9		4		
	$p + {}^{4}\text{He}^{*}(0^{+}; 20.2 \text{ M})$	IeV)	3.4		2	
	$d_0 + {}^3\mathrm{He}(\frac{1}{2}^+)$		5	5.1 0		
Reaction	Energy Range	# D	ata	Observabl		rvables
	(MeV)	Poi	ints			
3 He $(d, d)^{3}$ He	$E_d = 0.32 - 10.0$	2	229	$\sigma(\theta), A_i, A_{ii},$		
$\Pi e(a, a)$ Πe		_,		$C_{i,j}, C_{ij,k}, K_{i,j'k'}, K_{ij,k'l'}$		
3 He $(d n)^{4}$ He	$E_1 = 0.13 - 10.0$	3,839		$\sigma(E), \sigma(\theta), A_i, A_{ii},$		
	$L_a = 0.10 + 10.0$			$C_{i,j}, K_{ij,k'}$		
$^{3}\text{He}(d,p)^{4}\text{He}^{*}$	$E_d = 3.70 - 6.70$		28	$\sigma(\theta)$		
${}^{4}\mathrm{He}(p,p){}^{4}\mathrm{He}$	$E_p = 0.92 - 34.3$		867	0	$\sigma(E), \sigma(\theta), A_y, P_y$	
	Total:	6	963			

Table 1: Channel configuration (top) and data summary (bottom) for the ⁵Li system analysis. The column labeled "Observables" indicates the following data types: $\sigma(E)$, integrated cross section; $\sigma(\theta)$, unpolarized angular distributions (energy-dependence suppressed); A initial-state analyzing power; P final-state polarization; C spin correlation coefficients; K polarization transfer coefficients. (We have suppressed the indices i, j, \ldots which take on values x, y, z for spins/polarization directions in configuration space.) All polarization and spin distributions are angular distributions, which depend on the angle of the outgoing particle. Chi-squared per degree of freedom for the analysis is $\chi^2/\text{dof} \simeq 2.7$ over 7,178 data points, 215 of which were discarded by eliminating individual data points which contribute to $\chi^2 > 40$.

Provide compound system to script: NN, ³H, ³He, ⁴He, ⁵He, ⁵Li, etc.

- ➡ python edaEvaluate --cs 5Li
- Data
 - Retrieve all available data from SG50's (future) relational database URL
 - ⁵Li: ⁴He(p,p)⁴He, ⁴He(p,d)³He, ³He(d,d)³He, ³He(d,p)⁴He, ³He(d,np)³He, ...
 - $\sigma(\theta), A_i, P_j, A_{ii}, C_{i,k}, C_{ij,k}, K_{i,j'k'}, K_{ij,k'l'}, \dots$
 - Construct internal/native code (EDA) representation (frames for Lab/CM, spectra, etc.)
 - [Construct data covariance for GLS]
 - [Import sets of detector instrument response functions]
- Evaluation configuration
 - Load partition (p+4He, d+3He, n+p+3He, etc.) and channel information from input deck
 - Load R-matrix parameters
 - Load code-run parameters (search method, convergence criteria, etc.)
- Execute evaluation

Evaluation reproduction Realistic Scenario

• Data

- Using "all" data in database is generally not feasible
- 'Data-cull' is complex, human-intensive endeavor
 - Consult original literature for meaning, interpretation, accuracy, etc.
 - Cull-out data beyond range of applicability of theory/fit
- Solution: specifiy details of evaluation data-selection
 - VERY COMPLEX

Evaluation configuration

- Generally straightforward
- Can get complex as code versions change
 - Improved physics models
 - Error/bug corrections, etc.
- Solution: detailed versioning required

Evaluation execution & testing

E. Thank you.

Follow-on material

NN evaluation: configuration & data

- Neutron energies $E_n \leq 50 \text{ MeV}$
- Charge-independent analysis

$$R(E) = \sum_{\lambda,T} \frac{\gamma_{\lambda}^{(T)} \tilde{\gamma}_{\lambda}^{(T)}}{E_{\lambda}^{(T)} - E},$$

- -T=1 (pp, np-isovector)
- -T=0 (np-isoscalar)
- Coulomb energy-level shift

$$E_{\lambda}^{(T=1)} = E^{(T=0)} + \Delta_Z$$

- Fit to $a_{nn} = -18.5 \text{ fm}$
- Predict nn scattering
- High-fidelity description $\chi^2/dof = 0.9$
- Planned evaluation
 - $-E_n \lesssim 250 \text{ MeV}$

TABLE II. Channel configuration (top) and data summary (bottom) for the charge-independent N - N analysis up to 50 MeV. Since the number of free parameters is 43 resonance parameters + 83 normalizations, the chi-squared per degree of freedom for the analysis is 0.90.

Channel	$a_c \ (\mathrm{fm})$	$l_{\rm max}$
p+p	3.26	3
n+p	3.26	3
$\gamma + d$	84.6	1
n+n	3.26	3

Reaction	# Pts.	χ^2	Observable Types
p(p,p)p	675	951	$\sigma(\theta), A_{y}(p), C_{x,x'}, C_{y,y'}, K_{x}^{x'}, K_{y}^{y'}, K_{z}^{x'}$
p(n,n)p	4815	3764	$\sigma_{\mathrm{T}}, \sigma(heta), A_y(n), C_{y,y'}, K_y^{y'}$
$p(n,\gamma)d$	86	179	$\sigma_{ m int}, \sigma(heta), A_y(n)$
$d(\gamma, n)p$	88	77	$\sigma_{\mathrm{int}}, \sigma(heta), \Sigma(\gamma), P_y(n)$
n(n,n)n	1	0	a_0
Norms.	80	86	
Total:	5745	5057	20