

Maintaining Nuclear Data Evaluation tools – collaboration, portability, and continuity – Uppsala University experience

Georg Schnabel, Henrik Sjöstrand Uppsala University

It is mostly about communication

Steps in ND evaluations

- Retrieval/Selection of experimental data
- Weighting/Corrections/Adjustment of experimental data
- Fitting a physics model to experimental data
- Generation of ENDF file / random files / libraries
- Validation

UNIVERSITET

Complexities

- Formats / Data retrieval / Data storage (EXFOR, C4, CSV, ...)
- Algorithms (UMC-G/B, Kalman, BMC, ...)
- Variety of interacting codes (TALYS, EMPIRE, TEFAL, checking codes, ...)
- Variety of interacting programming languages (bash, Python, R, Perl, ...)
- Variety of interacting IT systems (Windows, Linux, hardware, clusters)

Choices / Opinions / Lock-in

Questions

- How can we ascertain the correct implementation?
- How can we facilitate deploying/sharing a pipeline for users?
- How can we facilitate development?
- How can we make a system adaptable/extendable and future-proof?
- How can we accelerate the building process of a pipeline?

UPPSALA

UNIVERSITET

- Quality assurance
- Streamlined deployment
- Good reusability
- Transparency

Interfaces / Example #1

SUBENT	23171003	20170913	20180129	20180126	2265		
BIB	BIB 11 26						
	REACTION (26-FE-56(N, 2N)26-FE-55, , SIG)						
	1 (VDG 2777GE	1) Van de Gr	aaff accele	ator at TRMM			
TAGILITI	2(ACCEL 2019	TRK) For AMS	(accelerate	nr mass spect	cometrv)		
	at VFRA la	b. for radio	nuclides 10	3e. 14C. 26Al	55Fe.		
	(CCW, 2GERDR	E)					
METHOD	1(ACTIV) AC	tivation tec	hnique combi	ined with			
	2(AMS) ma	ss spectrome	tric technic	ue			
SAMPLE	Natural ir	on samples w	ere irradiat	ed at TU Dres	sden		
	and IRMM.						
INC-SOUR	INC-SOURCE1(D-T) T(d.n)He-4 .						
INC-SPEC	T 1 Quasi-mond	energetic ne	utrons with	energies betw	veen		
	13.4 and 1	4.8 MeV;					
	2 from 13 to	20 MeV.					
FLAG	(1.) Experi	ment in 2007	yr, TUD∕\	/ERA			
	(2.) Experi	ment in 2010	yr, TUD∕\	/ERA			
	(3.) Experi	ment in 2010	yr, IRMM/	/VERA			
ERR-ANAL	YS (EN-ERR) fi	nite neutron	energy dist	ribution and	the		
absolute uncertainty in the neutron energy							
OTATUO	(namely it is EN-ERR+EN-RSL).						
STATUS	STATUS (PRELM) Preliminary results (decleared by A.wallner,						
2017-08-30) Under STATUS).							
HISTORY	(TABLE) Data received from the author were						
added ELAG was added BTB undate according to							
comments from author							
ENDBIB	26						
NOCOMMON	 0	Θ					
DATA	5	15					
EN	EN-ERR	DATA D	ATA-ERR FI	AG			
MEV	MEV	MB M	B NO)-DIM			
13	.35 0.15	300.	100.	3.			
13	.49 0.04	322.4	16.1	1.			
ENDDATA	17						
ENDSUBEN	т 48						

Hierarchical format

Interfaces / Example #1

library(MongoEXFOR)
db <- connectExfor("entries","exfor","mongodb://localhost")</pre>

```
queryStr <- makeQueryStr(and(
 'BIB.REACTION: { $regex: "26-FE-56.*SIG", $options: "" }',
 'BIB.REACTION: { $not: { $regex: "\\) *[+-*/] *\\(", $options: "" }}',
 'DATA.TABLE.DATA: { $exists: true }',
 'DATA.TABLE.EN: { $exists: true }'
))
```

```
resDt <- db$find(queryStr, {
    list(SUBENT = ID,
        REAC = BIB$REACTION)
})</pre>
```

	SUBENT	REAC
1:	10022010	(26-FE-56(N,P)25-MN-56,,SIG)
2:	10031005	(26-FE-56(N,P)25-MN-56,,SIG)
3:	10037004	(26-FE-56(N,EL)26-FE-56,,SIG)
4:	10037005	(26-FE-56(N,TOT),,SIG)
5:	10037015	(26-FE-56(N, INL)26-FE-56, PAR, SIG)

Interfaces / Example #2

From https://github.com/gschnabel/clusterSSH:

Now everything is set up to apply a function to an input list in parallel. Let's create a simple function that takes the numbers in the input list and adds one to them:

```
parFun <- function(input) {
    lapply(input, function(x) x+1)
}</pre>
```

This function can be applied to some input list:

```
input <- list(1,10,20)
clusterHnd$eval(parFun, input, pollTime=5)</pre>
```


Conclusions about interfaces

While building systems, interfaces are more important than implementation (Design by contract / Contract programming)

Advantages:

- Test-driven development / mockup (quality assurance)
- Coexistence of programming languages(?) (reusability, deployment)
- Broader expert participation(?)
- Higher level of abstraction

Where interfaces, there modules

Modules should be...

- easily available... (reusability)
- ...as open-source (transparency)
- under version control (quality assurance)

GitHub / GitLab / Bitbucket / ...

launch TALYS calculations in parallel on a cluster and retrieve results from R

2 commits	ំរុ ា branch	🗇 0 packages	⊘ 0 releases	1 contributor	sta MIT
Branch: master → New p	ull request			Find file	Clone or download -
gschnabel added READ	ME			Latest con	mmit besesba on Mar 27
🖿 R		first commit			8 months ago
i man		first commit			8 months ago
.Rbuildignore		first commit			8 months ago
.gitignore		first commit			8 months ago
		first commit			8 months ago
LICENSE.MIT		first commit			8 months ago
NAMESPACE		first commit			8 months ago
README.md		added REAI	DME		8 months ago

E README.md

clusterTALYS - R package

The package cluserTALYS enables launching calculations in parallel over an SSH connection on computers with multiple processors, clusters of work stations, or scientific computing clusters.

Requirements

This package makes use of the functionality of the R package clusterSSH to communicate with the cluster, which must therefore be installed together with its dependencies. Some of the required packages currently use the commands rsync,

Dependencies...

launch TALYS calculations in parallel on a cluster and retrieve results from R

2 commits	រ្ហ 1 branch	🗇 0 packages	⊘ 0 releases	🤽 1 contributor	MIT د <u>ڑ</u> ہ
Branch: master - New p	pull request			Find file	Clone or download -
gschnabel added READ	DME			Latest con	mmit besesba on Mar 27
R		first commit			8 months ago
🖬 man		first commit			8 months ago
.Rbuildignore		first commit			8 months ago
.gitignore		first commit			8 months ago
DESCRIPTION		first commit			8 months ago
LICENSE.MIT		first commit			8 months ago
NAMESPACE		first commit			8 months ago
README.md		added REA	DME		8 months ago

E README.md

clusterTALYS - R package

The package cluserTALYS enables launching calculations in parallel over an SSH connection on computers with multiple processors, clusters of work stations, or scientific computing clusters.

Requirements

This package makes use of the functionality of the R package clusterSSH to communicate with the cluster, which must therefore be installed together with its dependencies. Some of the required packages currently use the commands rsync,

Docker

Application/Mechanism to manage containers

Docker concepts

Image

Container

Script with instructions to assemble an image

prototype of a container (immutable)

containers are running mini-computers (initially clones of the prototype but can be altered, e.g., installation of new software) Technical drawing of a car

car prototype (immutable)

real cars used on the street (fresh out of the factory clones of the prototype but can be modified, e.g., installation of new radio)

Making Docker images using Dockerfiles

R interpreter Sequence of R scripts R packages Linux tools (rsync, ssh) MongoDB / EXFOR TALYS

https://github.com/gschnabel/eval-fe56-docker docker build -t eval-fe56-img:latest .

Containers in practice

Communication with containers

Communication with containers

Multiple containers

https://github.com/gschnabel/compEXFOR-docker https://github.com/gschnabel/eval-fe56-docker

Conclusions

- **Goals**: quality assurance, streamlined deployment, good reuseability, transparency
- Well-defined interfaces are important for quality assurance and reuseability
- Version control (e.g., git) is important for transparency and quality assurance
- Docker helps fast and streamlined deployment
- All these technical tools/utils have been beneficially applied for the creation of a nuclear data evaluation pipeline, which has already been successfully deployed at several research institutions on computers with Windows, iOs and Linux
- Pipeline has room for improvement, e.g.,
 - documentation of interfaces is not enough---in systems with several interacting modules/agents, it is equally important to document the data flows
 - creation of Docker containers to run on the cluster to facilitate the setup for distributed computing; let the individual tasks run in containers
 - semantic versioning of interface specifications and modules