

TSL Methods, Evaluations, and Benchmarks at North Carolina State University

Ayman I. Hawari Distinguished Professor & Director

Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

33rd Meeting of the NEA Working Party on International Nuclear Data Evaluation Co-operation May 10 – 14, 2021 • Zoom Meeting

Acknowledgment

- □ NNSA Nuclear Criticality Safety Program (NCSP)
 - collaboration with LLNL
- Naval Nuclear Propulsion Program (NNPP)
- Department of Energy NE
- LEIP team & collaborators

2020 – 2021 Activities

- Generation and benchmark of thermal neutron scattering cross sections in support of various applications including the design advanced and micro nuclear reactors
- Development, implementation, and testing of the FLASSH computational platform for thermal neutron scattering (TSL) analysis
- Development and implementation of a modern machine learning approach for TSL analysis
- Measurements in support of TSL analysis

TSL Methodology

DFT/LD approach

	≻ Crystal Structure: U_U	N		? ×			
	Material Selection: 12 - U	l in UN	~				
	Parameters [a b c [Â] α β γ	[°] (space group)]:	4.85945 4.85945 4.859	345 90 90 90 (Fm-3m)			
	Input unit cell vectors a, b,	and c, in the unit of i	λ				
	X	Y	z				
	a 4.85945	0.00000	0.00000	c			
	ь 0.00000	4.85945	0.00000				
	c 0.00000	0.00000	4.85945				
	Number of Non-Equivalent A	Atoms Sites 2	site	$x = a$ γ γ b			
	H: U_UN	_	□ ×				
Project Create Run Help							
		v for the primary scatterer					
		y for the primary seatcered					
Full L	aw Analysis Sco	attering Sy	stem Hub				
Do no	t distribute without explici (aihawari@	t permission from Incsu.edu)	Ayman Hawari				

LEIP LABORATORIES

MD approach

FLASSH

- Calculations and ENDF TSL library formatting modules implemented in FORTRAN 95 using a modular design
- Parallel computing realized by OpenMP 4.0 bindings
- GUI implemented by cross platform QT® C++ API
- Error checks
- Input Generator (for both FLASSH and NJOY)
- ENDF / ACE Formatting
- Warning Messages Based on Material Physics
- Crystal Structure Dependent Calculation

FLASSH GUI

Configuration (Defaults Shown)

> Project Configuraton: Graphite	? ×	
I/O Options	Calculation Configuration	
$S(\alpha,\beta) \mbox{ Source } Calculate \mbox{ S}(\alpha,\beta), elastic \mbox{ kinelastic cross sections } \lor$	Phonon Expansion Order 100 Apply SCT	
Non-Cubic S(σ, β) File Import	Summed S(a, β) Sum to the specified phonon order \checkmark	
Liquid Physics No diffusive treatment \checkmark	Integral Type Numerical V	
Convolution Tolerance (?)	Integral Tolerance (%) 0.1	
C Diffusive Parameters d		
	Temperature Configuration	
Elastic Output	Number of Temperatures 1 Temperature-Dependent DOS	
(?) Elastic Options Cubic approximation Combine Elastic Combine Elastic	Temperature (V), 295	
a, β Grid Automatic \vee		Dequired
Energy Grid Automatic V		Required
$\label{eq:print} Print Resolution \qquad \qquad$		User Input
$ A symmetric S(a,\beta) \qquad \ \ Do \ not \ print \qquad \qquad \lor \\$	Primary Scatterer Data	
Differential Cross Section Do not print V		
Incident Energy (eV)	Mass (amu) of the Primary Scatterer 12.0010952	•
Number of Scattering Angles	Free Atom σ_{tot} (b) of the Primary Scatterer 4.73918	
Scattering Angles (?)		
$\label{eq:grid} \mathfrak{g}_{rid} \ Scale \ with \ T \ (grids \ are \ T\text{-independent}) \qquad \lor$	Free Atom $\sigma_{\text{incoh}}(b)$ of the Primary Scatterer	
LEIP LABORATORIES	OK Cancel	

FLASSH GUI

Crystal Structure (Defaults Shown)

→ FLASSH: Graphite - □ ×								
Project Create Run Help								
	Co	nfiguration						
	Cŋ	stal Structure						
Atom Properties								
DBW Matrix								
Density of States								
α, β, and Energy Grid								
Full ENDF-6 Formatting Advanced Options								
								Do not distribute without explicit permission from Ayman Hawari (aihawari@ncsu.edu)
LEIP LABORATORIES								

					Requ User	iired Input		
≻® C	rys	tal Structure: Graph	ite				?	×
Unit	Ce	ll Parameters						
Mat	eria	al Selection: 5 - Gra	aphite					
Sele	cte	d Material Parameter	s [a b c [Å] α β γ [°]	(space group)]:		c		
	2.4	1470 2.4470 2.4470 6	5.6600 90 90 120 (F	$4 \supset$		
Inpu	it u	init cell vectors a, b,	and c, in the unit of Å	ι.	/			
		X	Y	Z	1 /			
	a 2.44700000 0.0000000 0.00000000 b -1.22350000 2.11916416 0.00000000							
					x = a	γ		
	c	0.00000000	0.00000000	6.66000000				
Stoid	thic	ometric/Atomic Inform	nation		DOS Information			
Tota	al N	umber of Atoms in Cł	nemical Formula:	1	DOS Type	Weighted average (effect	tive) 🔻	/
Num	be	r of Scatterer Atoms	in Chemical Formula:	1	DOS Index (ipos)*	1		
Num	be	r of Non-Equivalent A	toms Sites:	2]			
Num	be	r of Atoms per Each S	Site:		*For DOS type 'weig	hted average,' i _{DOS} should	be set t	0
		1	2		ule last bos end y i	or the primary scatterer		
	A	tom Count 2	2		DOS type 'weighte entries DOS type 'atom sit	d average' uses the first i _{po} e' uses only DOS entry i _{pos}	₂₅ DOS	
	ЕI	p laboratori	es O			ОК	Cancel	

FLASSH GUI

Density of States

		Required User Input
		\bigwedge
DOS Energy Interval, A	Image: raphite ? X ME (eV) 0.001 0.001 DS 201 0.001	
Paste the DOS here in	comma separated format	
1	0.000000E+00, 2.389404E-04, 6.138146E-04, 🖌	
2	0.000000E+00, 2.389404E-04, 6.138146E-04,	
LEIP LABORAT	ORIES	
20000	OK Cancel	

Distinct TSL – 1st Order Inelastic

- Any material structure
- Generalized inputs
- Additional inputs: polarization file

FLASSH

Generalized Elastic

- Any material structure
- Coherent and Incoherent

I/O Options Calculate S(α, β), elastic & inelastic cross sections S(α, β) Source Calculate S(α, β), elastic & inelastic cross sections I Non-Cubic S(α, β) File I Non-Cubic S(α, β) File I Non-Cubic S(α, β) File I Quid Physics No diffusive treatment I Quid Physics No diffusive treatment Convolution Tolerance (?) Diffusive Parameters C C (?) Diffusive Parameters C C (?) Elastic Output Cobsense talestic Cobsense talestic Combine Elastic C(?) Elastic Options Cubic approximation Combine Elastic Print Resolution α, β gridding resolution Asymmetric S(α, β) Io not print Number of Scattering Angles (?) Scattering Angles (?) Scattering Angles (?)	Project Configuraton:	Graphite		? >
S(α, β) Source Calculate S(α, β), elastic & inelastic cross sections Mon-Cubic S(α, β) File Iuquid Physics No diffusive treatment Liquid Physics No diffusive treatment Convolution Tolerance (2) Diffusive Parameters c d Combine Elastic (2) Elastic Options o, β Grid Automatic Energy Grid Automatic Primary Scatterer Data Differential Cross Section Differential Cross Section Do not print Primary Scatterer Data Mass (amu) of the Primary Scatterer 12.0010952 Free Atom σ _{tax} (b) of the Primary Scatterer 4.73918	I/O Options		Calculation Configuration	
$\begin{tabular}{ c c c c c } \hline Non-Cubic & S(\alpha, \beta) File & Import \\ \hline Uquid Physics & No diffusive treatment & \\ \hline Uquid Physics & No diffusive treatment & \\ \hline Convolution Tolerance & (?) \\ \hline Diffusive Parameters & d & (?) \\ \hline Diffusive Parameters & d & (?) \\ \hline Diffusive Parameters & d & (?) \\ \hline Elastic Output & \hline Coloreant elastic & \\ \hline O DBW Matrix & \\ \hline Cubic approximation & Combine Elastic \\ \hline (?) Elastic Options & \hline Cubic approximation & \\ \hline Cubic approximation & \\ \hline Cubic approximation & \\ \hline Crimer Gialing resolution & \\ \hline Aymmetric S(\alpha, \beta) & Do not print & \\ \hline Differential Cross Section & Do not print & \\ \hline Number of Scattering Angles & \\ \hline Scattering Angles & (?) \\ \hline \end{tabular}$	S(α, β) Source Calcu	late S(a, β), elastic & inelastic cross sections $~ \lor$	Phonon Expansion Order	100 Apply SCT
Liquid Physics No diffusive treatment Integral Type Numerical Convolution Tolerance (?) Integral Type Numerical Integral Type Diffusive Parameters c (?) Integral Tolerance (%) 0.1 Elastic Output Coherent elastic (?) Integral Tolerance (%) 0.1 Flastic Options Cubic approximation (?) Integral Tolerance (%) 0.1 (?) Elastic Options Cubic approximation (?) Integral Tolerance (%) 0.1 (?) Elastic Options Cubic approximation Combine Elastic Number of Temperatures (N); 296 Primary Scatterer Options 0.6 gridding resolution (?) Primary Scatterer Data Differential Cross Section Do not print Primary Scatterer Data Mass (amu) of the Primary Scatterer 12.0010952 Number of Scattering Angles (?) Primary Scatterer 1.73918	Non-Cubic	S(α, β) File Import	Summed S(a, β)	Sum to the specified phonon order $\qquad \lor$
Convolution Tolerance (?) Diffusive Parameters c d (?) Elastic Output Cobscant atestic (?) Elastic Options o, β Grid Automatic Print Resolution a, β gridding resolution Asymmetric S(a, β) Do not print Differential Cross Section Do not print Number of Scattering Angles (?)	Liquid Physics	No diffusive treatment $\qquad \checkmark$	Integral Type	Numerical \checkmark
Diffusive Parameters c c c d C c c c d C c c c Elastic Output Cobarant elastic C c c (?) Elastic Options C cubic approximation C combine Elastic C C a, β Grid Automatic C C C C C Print Resolution a, β gridding resolution C C C C Primary Scatterer Data Differential Cross Section Do not print C Mass (amu) of the Primary Scatterer 12.0010952 Free Atom σ _{iux} (b) of the Primary Scatterer 4.73918 Free Atom σ _{iux} (b) of the Primary Scatterer 4.73918	Convolution Tolera	nce (?)	Integral Tolerance (%)	0.1
d Temperature Configuration Elastic Output Cobic approximation Combine Elastic (r) Elastic Options Cubic approximation Combine Elastic a, β Grid Automatic Temperatures [1] Temperatures (k): 296 Print Resolution a, β gridding resolution Temperatures (k): 296 Primary Scatterer Data Differential Cross Section Do not print Primary Scatterer Data Number of Scattering Angles (r)	Diffusive Paramete	rs (?)		
Elastic Output Cobiceant elastic (r) Elastic Options O Lubic approximation α, β Grid Automatic Combine Elastic Combine Elastic Frengy Grid Automatic Print Resolution α, β gridding resolution Asymmetric S(α, β) Do not print Incident Energy (eV) Primary Scatterer Data Number of Scattering Angles (r)		d	Temperature Configuration	n
(1) Elastic Options Cubic approximation o, β Grid Automatic Energy Grid Automatic Print Resolution o, β gridding resolution Asymmetric S(a, β) Do not print Differential Cross Section Do not print Incident Energy (el') Mass (amu) of the Primary Scatterer Number of Scattering Angles (1)	Elastic Output	Coherent elastic DBW Matrix	Number of Temperatures	1 Temperature-Dependent DOS
α, β Grid Automatic Energy Grid Automatic Print Resolution α, β gridding resolution Asymmetric S(α, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Incident Energy (eV) Number of Scattering Angles (7)	(?) Elastic Options			
Energy Grid Automatic Print Resolution α, β gridding resolution Asymmetric S(α, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles (7)	α, β Grid	Automatic ~	Temperatures (K):	296
Print Resolution α, β gridding resolution Asymmetric S(α, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Price Atom σ _{tot} (b) of the Primary Scatterer Scattering Angles (7)	Energy Grid	Automatic ~		
Asymmetric S(α, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Free Atom σ _{tot} (b) of the Primary Scatterer Scattering Angles (7)	Print Resolution	a, β gridding resolution $\qquad \qquad \lor$		
Differential Cross Section Do not print Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Free Atom σ_{tot} (b) of the Primary Scatterer Scattering Angles (7)	Asymmetric S(a, β)	Do not print ~	Primary Scatterer Data	
Incident Energy (eV) Mass (amu) of the Primary Scatterer 12.0010952 Number of Scattering Angles Free Atom σ_{tot} (b) of the Primary Scatterer 4.73918 Scattering Angles (7) 10 10	Differential Cross Section	Do not print ~		
Number of Scattering Angles Free Atom σ _{tox} (b) of the Primary Scatterer 4.73918 Scattering Angles (2)	Incident Energy (eV)		Mass (amu) of the Primary	Scatterer 12.0010952
Scattering Angles (?)	Number of Scattering	a Angles	Free Atom (T., (b) of the l	Primary Scattoror 4 72019
	Scattering Angles	(?)	The Atom Otot (b) of the f	Hina y Statterer 4.73910
$a,\beta \mbox{ Grid Scaling} \label{eq:grid Scaling} Scale with T (grids are T-independent) \qquad \qquad$	ο, β Grid Scaling	Scale with T (grids are T-independent)	Free Atom $\sigma_{\text{incoh}}(b)$ of the	e Primary Scatterer

FLASSH Liquids

Results from other codes are improved and even more are made possible with *FLASSH* Liquid Physics (LP)

I/O Options Calculator Computation S(α, β) Source Calculate S(α, β), elastic & inelastic cross sections I/O off I/O I/O off Integral Tolerance (%) Integral Tolerance (%) 0.1 Integral Tol	
S(α, β) Source Calculate S(α, β), elastic & inelastic cross sections Phonon Expansion Order 100 A Index Price Convolution Toil and Free gas Summed S(α, β) Sum to the specified phonon order Integral Type Numerical Integral Type Numerical Integral Type Numerical Integral Tolerance (%) 0.1 Diffusive Parameters d (?) Temperature Configuration Number of Temperatures 1 Temperatures (%): 296 Elastic Output Coherent elastic (cubic approximation) Number of Temperatures 1 Temperature: (%): 296 Print Resolution α, β gridding resolution Primary Scatterer Data Mass (amu) of the Primary Scatterer Number of Scattering Angles (2) Primary Scatterer	
Non-Cubic S(α, β) File Import Liquid Physics No diffusive treatment Integral Type No diffusive treatment Integral Type Convolution Toll rar Free pass Diffusive Parameters (?) Diffusive Parameters (?) Diffusive Parameters (?) Automatic ~ Print Resolution α, β gridding resolution Asymmetric S(α, β) Do not print Differential Cross Section Do not print Number of Scattering Angles Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer	Apply SCT
Liquid Physics No diffusive treatment Integral Type Numerical Convolution Toil range in the price gas Integral Type Integral Type Integral Type Diffusive treatment Free gas Integral Type Integral Type Integral Type Diffusive treatment Free gas Integral Type Integral Type Integral Type Diffusive treatment Free gas Integral Tolerance (%) 0.1 Elastic Output Coherent elastic (cubic approximation) Number of Temperatures 1 Temperature-Depend a, β Grid Automatic Integral Type Number of Temperatures 1 Temperature-Depend Print Resolution a, β gridding resolution Indident Energy (cl) Primary Scatterer Data Primary Scatterer Indident Energy (cl) Mass (anu) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer Free Atom σ _{tot} (b) of the Primary Scatterer	~
No diffusive treatment Convolution Tol real reag as Schonled Langevin Diffusive Parameters d (a) Pinfusive Parameters d (b) Elastic Output Coherent elastic (cubic approximation) a, β Grid Automatic Print Resolution a, β gridding resolution Vifferential Cross Section Do not print Vifferential Cross Section Number of Scattering Angles Free Atom σ _{tot} (b) of the Primary Scatterer	~
Lange with constraints Lange with constraints Diffusive Parameters d Coherent elastic (cubic approximation) remperature Configuration Number of Temperatures 1	
Elastic Output Coherent elastic (cubic approximation) ~ α, β Grid Automatic Print Resolution α, β gridding resolution Δsymmetric S(α, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Free Atom σ _{ixit} (b) of the Primary Scatterer	
a, β Grid Automatic Imperatures (K): 296 Energy Grid Automatic Imperatures (K): 296 Print Resolution a, β gridding resolution Imperatures (K): 296 Differential Cross Section Do not print Imperatures (K): 296 Incident Energy (el') Incident Energy (el') Mass (amu) of the Primary Scatterer Number of Scattering Angles Imperatures (K): 100 mot primary Scatterer	endent DOS
Energy Grid Automatic Imperatures (K): 290 Print Resolution α, β gridding resolution Imperatures (K): 290 Asymmetric S(α, β) Do not print Imperatures (K): 290 Differential Cross Section Do not print Imperatures (K): 290 Incident Energy (eV) Incident Energy (eV) Mass (anu) of the Primary Scatterer Number of Scattering Angles Free Atom σ _{tot} (b) of the Primary Scatterer	
Print Resolution a, β gridding resolution Asymmetric S(a, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Mass (anu) of the Primary Scatterer Number of Scattering Angles Free Atom σ _{tot} (b) of the Primary Scatterer	
Asymmetric S(α, β) Do not print Differential Cross Section Do not print Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Free Atom σ _{tot} (b) of the Primary Scatterer	
Differential Cross Section Do not print Primary Scatterer Data Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Free Atom σ_{tot} (b) of the Primary Scatterer	
Incident Energy (eV) Mass (amu) of the Primary Scatterer Number of Scattering Angles Free Atom σ_{tot} (b) of the Primary Scatterer	
Number of Scattering Angles Free Atom σ _{tot} (b) of the Primary Scatterer	
Free Atom σ_{tot} (b) of the Primary Scatterer	
Scattering Angles (1)	
o, β Grid Scaling Scale with T (grids are T-independent) \checkmark Free Atom σ_{ircoh} (b) of the Primary Scatterer	

Elastic Scattering Format Options

- Compounds and nuclides exhibiting Coherent and Incoherent Elastic
 - Examples: UN
- Option 1: Current ENDF-6 Format
 - Calculates the total coherent elastic for the compound and stores the total coherent elastic in the ENDF file for one of the elements
 - Calculates the incoherent elastic and stores the incoherent elastic in the ENDF file for the other element
 - PROS: Works within the current ENDF-6 formatting standards
 - CONS: Must be a compound, element information is lost

Option 2: Mixed Elastic Scattering Format

- Allows the coherent and incoherent elastic for a given element to be stored in a single ENDF file
- Updated header options in the ENDF file
- Print both coherent and incoherent elastic in MF=7, MT=2
- PROS: Exact information stored with no limits for a give material
- CONS: Update required to ENDF formatting standard and associated codes which use standard ENDF format inputs

ACE Output Capability

- FLASSH generated ACE files are directly compatible with codes such as MCNP
- High resolution cross sections without requiring transfer of files

H1(CaH2.00t	9.99167E-01	2.960	00E+02 12/16	/2020					
H1	Lib80x	(jlconlin)	Ref.	see jlconlin	(ref	01/29/2918	7:54)		mat	8
	1008	0.	0	0.	0	0.	0		0.	
	0	0.	0	0.	0	0.	0		0.	
	0	0.	0	0.	0	0.	0		0.	
	0	0.	0	0.	0	0.	0		0.	
	334050	3	15	16	3	15		1	0	
	0	0	0	0	0	0		0	0	
	1	1146	2290	313458 3	14603	315747		0	0	
	0	0	0	0	0	0		0	0	
	0	0	0	0	0	0		0	0	
	0	0	0	0	0	0		0	0	
		1144	1.000	00000000E-11	2.	000000000000000000000000000000000000000	-11	з.	000000000	00E-11
	4.00000	000000E-11	5.000	00000000E-11	6.	000000000000000000000000000000000000000	-11	7.	000000000	00E-11
	8.00000	000000E-11	9.000	00000000E-11	1.0	000000000000000000000000000000000000000	-10	2.	000000000	00E-10
	3.00000	000000E-10	4.000	00000000E-10	5.	000000000000000000000000000000000000000	E-10	6.	000000000	00E-10
	7.00000	000000E-10	8.000	00000000E-10	9.0	00000000000000	-10	1.	000000000	00E-09
	2.00000	000000E-09	3.000	00000000E-09	4.0	000000000000000000000000000000000000000	-09	5.	000000000	00E-09
	6.00000	000000E-09	7.000	00000000E-09	8.	000000000000000000000000000000000000000	-09	9.	000000000	00E-09
	1.00000	000000E-08	1.100	00000000E-08	1.	200000000000	-08	1.	300000000	00E-08
	1.40000	000000E-08	1.500	00000000E-08	1.	600000000000	-08	1.	700000000	00E-08
	1.80000	000000E-08	1,900	00000000E-08	2.	0000000000000	-08	2.	100000000	00E-08
	2,20000	000000F-08	2.300	00000000F-08	2.	400000000000	-08	2.	500000000	00F-08
	2.60000	000000E-08	2.700	00000000E-08	2.	800000000000	-08	2.	900000000	00E-08
	3.00000	000000E-08	3.100	00000000E-08	3.	200000000000	-08	3.	300000000	00E-08
	3,40000	000000E-08	3,500	00000000E-08	3.	600000000000	-08	з.	700000000	00E-08
	3.80000	000000E-08	3,900	00000000E-08	4.	0000000000000	-08	4.	100000000	00E-08
	4,20000	000000E-08	4.300	00000000E-08	4.	400000000000	-08	4.	500000000	00E-08
	4.60000	000000E-08	4.700	00000000E-08	4.	800000000000	-08	4.	900000000	00E-08
	5.00000	000000F-08	5,100	00000000F-08	5.	200000000000	-08	5.	300000000	00F-08
	5.40000	000000E-08	5.500	00000000E-08	5.	600000000000	-08	5.	700000000	00E-08
	5.80000	000000F-08	5,900	00000000F-08	6.	000000000000000000000000000000000000000	-08	6.	100000000	00F-08
	6.20000	000000E-08	6.300	00000000E-08	6.	400000000000	-08	6.	500000000	00E-08
	6.60000	000000F-08	6.700	00000000F-08	6.	800000000000	-08	6.	900000000	00F-08
	7.00000	000000E-08	7.100	00000000E-08	7.	200000000000	-08	7.	300000000	00E-08
	7.40000	000000E-08	7.500	00000000E-08	7.	60000000000	-08	7.	700000000	00E-08
	7.80000	000000F-08	7,900	00000000F-08	8.	000000000000000000000000000000000000000	-08	8.	100000000	00F-08
	8.20000	000000E-08	8.300	00000000E-08	8.	400000000000	-08	8.	500000000	00E-08
	8,60000	000000F-08	8.700	00000000F-08	8.	800000000000	-08	8.	900000000	00F-08
	9,00000	000000E-08	9,919	19190000E-08	9.	95603330000	-08	9.	992874600	00E-08
	1.00297	160000E-07	1.006	65573000E-07	1.	01033987000	-07	1.	014024010	00E-07
	1.01770	814000E-07	1.021	39228000E-07	1.0	02507641000	-07	1.	028760550	00E-07
	1.03244	469000F-07	1.036	12882000F-07	1.0	03981296000	-07	1.	043497090	30F-07
	1.04718	123000F-07	1.050	86537000F-07	1.0	05454950000	-07	1.	058233640	00F-07
	1.06191	777000F-07	1.065	60191000F-07	1.	06928604000	-07	1.	072970180	00F-07
	1.07665	432000E-07	1.080	33845000E-07	1.0	08402259000	-07	1	087706720	00E-07
	1.09139	086000E-07	1.095	07500000E-07	1.0	09875913000	-07	1	102443270	00E-07
	1.10304	130000E-07	1.103	63932000E-07	1	10423735000	-07	1.	104835370	00E-07
	1.10543	340000E-07	1.106	03143000E-07	1.	10662945000	-07	1.	107227480	00E-07
	1.10782	550000E-07	1.108	42353000E-07	1.	10902156000	-07	1.	109619580	00E-07

Contributed TSL Evaluations

Material	Motivation	Theory	Validation
FLiBe (beyllium) FLiBe (flourine) FLiBe (lithium)	DOE NE Advanced nuclear reactors No TSL data in ENDF/B-VIII.0	MD FLASSH	Ongoing against IRPhEP benchmark
Liquid hydrogen fluoride (hydrogen)	NCSP applications No TSL data in ENDF/B-VIII.0	MD <i>FLASSH</i>	Ongoing total cross section
Heavy oil (hydrogen)	NCSP/NR applications No TSL data in ENDF/B-VIII.0	MD <i>FLASSH</i>	Ongoing total cross section
Sapphire (Al in Al2O3) Sapphire (O in Al2O3)	Neutron science / Research Reactors No TSL data in ENDF/B-VIII.0 (cryogenic temperatures)	DFT/LD <i>FLASSH</i>	Total cross section
Polyethylene (hydrogen)	NCSP applications Extended ENDF/B-VIII.0 to cryogenic temperature	MD FLASSH	Total cross section & benchmarks

Molten Salt FLiBe Data (Advanced/Micro Reactors)

20% Porous Nuclear Graphite (Advanced/Micro Reactors)

Graphite / Slowing-Down-Time Benchmark

Graphite / Slowing-Down-Time Benchmark

Graphite PROTEUS Benchmark

Graphite VHTRC Testing - JAEA

0.996

0.994

Effectiv

JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY https://doi.org/10.1080/00223131.2021.1899997

Check for upda

ARTICLE

A pseudo-material method for graphite with arbitrary porosities in Monte Carlo criticality calculations

Shoichiro Okita 100°, Yasunobu Nagaya^b and Yuji Fukaya^a

*Sector of Fast Reactor and Advanced Reactor Research and Development, Japan Atomic Energy Agency, Ibaraki, Japan; *Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, Japan

ABSTRACT

The latest ENDF/8-VIII library adapted new porosity-dependent cross-section data of graphite. However, the porosity of the actual graphite does not necessarily correspond to the porosity given in the data. We have proposed a method to perform neutronic calculations at the desired porosity on the basis of the pseudo-material method. We have also compared the k_{atr} values calculated by the pseudo-material method with the experimental values for the VITRC. In addition, we have investigated the temperature dependance of the calculation values obtained by this method. From these results, we have concluded that this method allows us to perform the neutronic calculations in which we can reflect detailed information on the porosity of graphite.

ARTICLE HISTORY Received 8 January 2021

Accepted 26 February 2021 **KEYWORDS** ENDF/b-vili; graphite; porosity-dependent crosssection data; vhtrc; pseudomaterial method

20

Porosity [%]

10

Neural Thermal Scattering (NeTS)

New TSL paradigm

- ML/DL Neural Thermal Scattering (NeTS) modules
- See papers and presentations
 - ANS 2019 Winter Meeting, Washington, DC, USA
 - PHYSOR 2020
 Meeting,
 Cambridge, UK

🗘 PyTorch

Example NeTS Output

(corresponding to lowest temperature)

 Accuracy levels for 2/3-D cases of <1% median deviations and single-digit max % deviations Current model size describing full T range is ~100kB compared to tens of MBs for typical, discrete T evals.

• Optimizing network architecture (activation, hidden layers, etc.)

Measurements at PULSTAR Reactor

NPDF – Dual Purpose:

Diffraction/PDF Measurements: 15 New Position Encoding Modules (PEM) – improved diffraction measurement resolution ∆d/d of 2.9x10⁻³ for 3mm holder

Transmission Measurement Capabilities:

- Monochromator capable of providing beam wavelengths of 1.085 Å, 1.180 Å, 1.479 Å, and 1.762 Å
- Transmission Detection Apparatus with collimator.
- Facilities for Nano Materials Examination at the PULSTAR Reactor, Al Hawari, M Liu, Q Cai, PHYSOR 2020

Summary

- TSL activities continue including evaluations and methods development
- Several evaluations are contributed to NNDC
- □ FLASSH testing in the performance of TSL evaluations is underway
- ML/DL NeTS approach is under testing
- Activities in data measurements and benchmark development are underway at NCSU PULSTAR reactor