

Observations of different thermal scattering models in view of graphite based materials

R. Dagan

Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany

Karlsruhe Institute of Technology

www.kit.edu

The full free gas vs. the full solid state models (both energy dependent)

Solid state based expression of Word & Trammel (1980)

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{R}}}{\mathrm{d}\Omega \mathrm{d}E} = \frac{\upsilon}{2\pi} \left(\frac{\Gamma_{\mathrm{n}}}{2k_{\mathrm{i}}}\right)^2 \left(\frac{E_{\mathrm{f}}}{E_{\mathrm{i}}}\right)^{1/2} \int_{-\infty}^{\infty} \mathrm{d}T \exp(+iET) \int_{0}^{\infty} \mathrm{d}t \exp[a(t)] \int_{0}^{\infty} \mathrm{d}t' \\ \times \exp[a^*(t')] \times W(T, t, t'),$$

$$W(T, t, t') = \left\langle \exp\left[-i\overrightarrow{k}_{i}\overrightarrow{r}(T-t')\right] \exp\left[i\overrightarrow{k}_{f}\overrightarrow{r}(T)\right] \\ \exp\left[-i\overrightarrow{k}_{f}\overrightarrow{r}\right] \exp\left[i\overrightarrow{k}_{i}\overrightarrow{r}(-t)\right] \right\rangle.$$

 $a(t) = -i(E_{\rm r} - E_{\rm i} - i\Gamma/2)t.$

Solid state based phonon expansion scattering

Phonon Expansion:
$$S(\alpha, \beta) = e^{-\alpha\lambda} \sum_{n=0}^{\infty} \frac{1}{n!} [\alpha\lambda]^n \mathcal{T}_n(\beta)$$

$\mathcal{T}_0(\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} dt = \delta(\beta);$
$\mathcal{T}_1(\beta) = \frac{P(\beta)e^{-\frac{\beta}{2}}}{\lambda};$
$\mathcal{T}_n(\beta) = \int_{-\infty}^{\infty} \mathcal{T}_1(\beta') \mathcal{T}_{n-1}(\beta - \beta') d\beta';$
 $\mathcal{T}_n(\beta) = e^{-\beta} \mathcal{T}_n(-\beta);$
$\beta = \frac{E - E'}{kT}; \alpha = \frac{E' + E - 2(EE'\mu)^{\frac{1}{2}}}{AkT};$
$P(\beta) = \frac{\rho(\beta)}{2\beta sinh(\frac{\beta}{2})}; \lambda = \int_{-\infty}^{\infty} P(\beta)e^{-\frac{\beta}{2}} d\beta;$
$\rho(k, k', + t) = \frac{k \cdot k'}{2M} \int_{0}^{\infty} \frac{\rho(\omega)}{\omega} \left[\operatorname{coth}\left(\frac{\omega}{2kT}\right) \operatorname{cos}(\omega t) - isin(\omega t) \right] d\omega$

• *How important is the resonance treatment in low energies?*

• Should Optical Model based scattering replace this method? case in which the elastic coherent is dominant, like Graphite.

Other scattering models ???

Duderstadt (1976): "Although one introduces several horrifyingly brutal approximations, at least to the solid state physicist, for nuclear engineer they are acceptable".. This will mean that neutrons behave like light, or X-ray

How "horrifying" is the solid state physicists' approximations?

Two options for X ray based scattering

Bragg scattering:

- $2d\sin\theta = n\lambda$
- λ Wavelength
- n an integer (depth of the layer)

source : R. Tipler , R. Llewellyn "Modern Physics"

- Small angle Diffusive scattering kernel based on x-ray rough surface scattering
- "assumingmolecular structure can be neglected..."

Source: P. Müller-Buschbaum, Polymer Journal (2013) 45, 34–42

Scattering kernels for investigation Li-Ion Battery based on Bragg scattering (coherent- elastic)

- Calculated positions of Bragg peaks in charged and discharged state of Li-Ion Battery, when the anode is Graphite
- Inelastic-incoherent completely ignored

Reference: Fatigue Process in Li-Ion Cells: An In Situ Combined Neutron Diffraction and Electrochemical Study, O. Dolotko et al., *Journal of The Electrochemical Society*, 159 (12) A2082-A2088 (2012)

 $2d\sin\theta = n\lambda$

- λ Wavelength
- n an integer (depth of the layer)

Schematic of the scattering geometry used in GISANS (Grazing incidence small Angle neutron scattering)

- The sample is placed in the (x, y) plane, and the incident neutron beam is along the x axis.
- The resulting scattering pattern is anisotropic and typically exhibits a Yoneda peak (marked with Y) and a specular peak (marked with S)
- The scattering kernel approach is based upon Fresnel transmission and reflection coefficients

 Reference: Grazing incidence small-angle neutron scattering: challenges and possibilities,

Source: P. Müller-Buschbaum, Polymer Journal (2013) 45, 34–42

Coupling chemical binding and free gas model via the effective temperature: validity of the SCT approximation

Graphite: Comparison between SCT app. and phonon expansion at E=0.0327 ev (n=12) (via MATLAB)

8

Deriving the equation for agitating target: connection to the azimuth angle

$$\sigma_s^T \left(E \to E', \vec{\Omega} \to \vec{\Omega'} \right) = \frac{1}{2\pi} \sigma_s^T \left(E \to E', \mu_0^{lab} \right) = \frac{1}{2\pi v} \left(\frac{A+1}{A} \right)^4 \left(\frac{A}{\pi} \right)^{3/2}$$

$$\int 2\pi u^2 du \int d\mu_u \int c^2 dc \int (u')^2 du' \int d\mu_{u'} \int \frac{2}{\sin \varphi} \frac{\delta(u'-u)}{(u')^2} \exp\left[v^2 - (A+1)\left(\frac{u^2}{A} + c^2\right)\right]$$

$$\frac{4\mathrm{vv}'c^2}{B_0'}\delta(\cos\varphi-\cos\hat{\varphi})u\sigma_s(E_r)\frac{P(u,\mu_0^{cm})}{2\pi}d\cos\varphi$$

$$\frac{1}{uvc}\delta\left[\mu_{u}-\frac{(v^{2}-c^{2}-u^{2})}{2uc}\right]\frac{1}{2u'ck_{B}T}\delta\left[\mu_{u'}-\frac{(v')^{2}-(u')^{2}-c^{2}}{2u'c}\right]$$

- The derivation of the equation is based on the fulfillment of all constraints marked by δ
- Note the azimuth angle is connected to the polar angle

$$(\vec{\Omega} \cdot \vec{\Omega}') = \mu_0^{lab}$$
; $\varphi = \varphi_{u'} - \varphi_u$

$$\cos\hat{\phi} = R = \left\lceil \left(4vv'c^{2}\mu_{0}^{lab} - C_{0}^{'}\right) / B_{0}^{'} \right\rceil$$

• not incorporated in DBRC or $S(\alpha, \beta)$

Summary

- Thermal scattering analysis based on suggestions by J. Rowlands could help to better understanding of the different approaches
- More experiments in the thermal range for graphite based materials are under consideration.
- For thermal scattering: OMP can't comply with temperature, chemical binding or energy dependency, yet the idea of "optical model" is being used for Batteries and Photovoltaic cells.
- The azimuth angle, elastic coherent data should be considered for MC codes. In those cases the inelastic incoherent part could be presented by SCT approximation.
- Response to Duderstadt (1976): The solid state physicists' approximations are " quite horrifying" as well.