

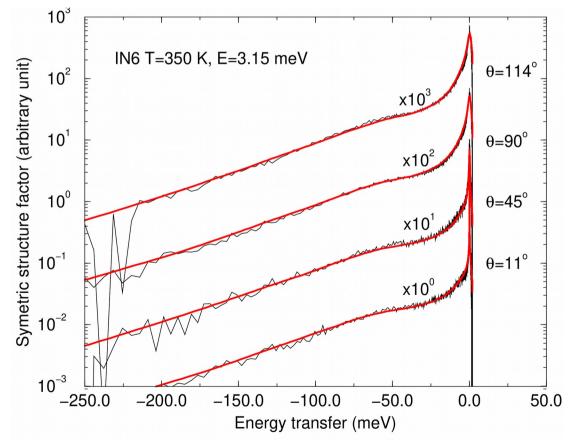
Status of the TSL activities at CEA/Cadarache in the framework of the Nausicaa collaboration

G. Noguere, Shuqi Xu, J.P. Scotta, A. Filhol, J. Ollivier,
E. Farhi, Y. Calzavara, L. Leal, V. Jaiswal,
J.I. Marquez Damian, L. Desgrange, P. Maldonado

WPEC/SG48, 13 May 2020

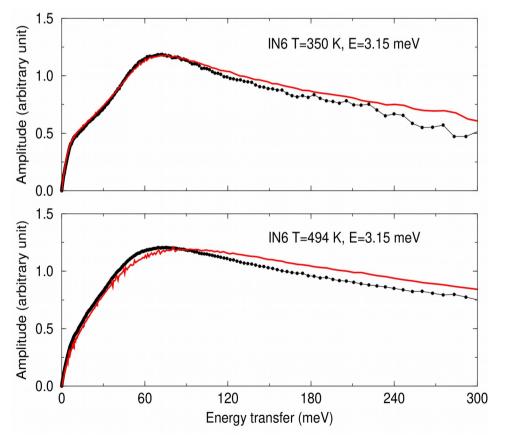
Outlines

- * H2O and UO2 measurements and Monte-Carlo analysis
- Generation of TSL covariances
- * Future TSL activities for SG48


Inelastic neutron scattering measurements on IN5, IN4 and IN6 time-of-flight spectrometers

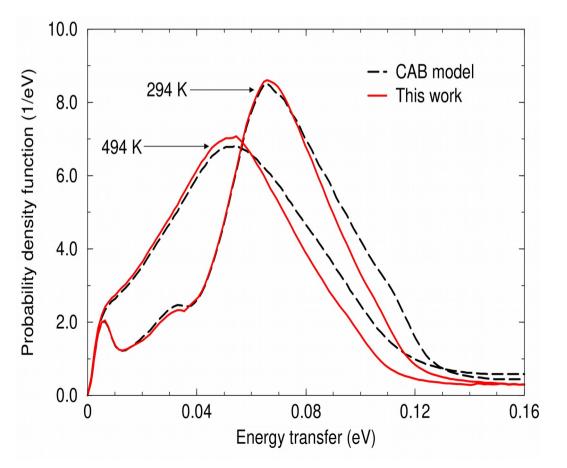
TOF	Author	Ref.	H_2O sample	λ	Ε	Temperature	Pressure
IN4	Farhi et al.	[34]	hollow cylinder	1.1 Å	67.6 meV	294, 311, 323 K	1 bar
	Farhi et al.	[34]	hollow cylinder	2.2 Å	$16.9~{\rm meV}$	294 K	1 bar
	Jaiswal et al.	[35]	cylinder	2.4 Å	$14.2~{\rm meV}$	$300,350,430,494~{\rm K}$	$1,42,94,115,147,176,185~{\rm bar}$
IN5	Farhi et al.	[34]	hollow cylinder	2.0 Å	20.5 meV	286, 293, 302 K	1 bar
	Farhi et al.	[34]	hollow cylinder	5.0 Å	3.27 meV	291, 302, 311 K	1 bar
	Qvist et al.	[36]	capilaries	5.0 Å	3.27 meV	283, 293 K	1 bar
	Qvist et al.	[36]	capilaries	8.0 Å	1.28 meV	283, 293 K	1 bar
	Qvist et al.	[36]	capilaries	12.0 Å	$0.57~{\rm meV}$	283 K	1 bar
IN6	Jaiswal et al.	[35]	cylinder	5.1 Å	$3.15~{\rm meV}$	350, 494 K	1, 70, 470 bar

Data taken from PhD thesis of Qvist (2011), Ferran (2014), Scotta (2016), Jaiswal (2017)


Symmetric form of the water dynamic structure factor T=350

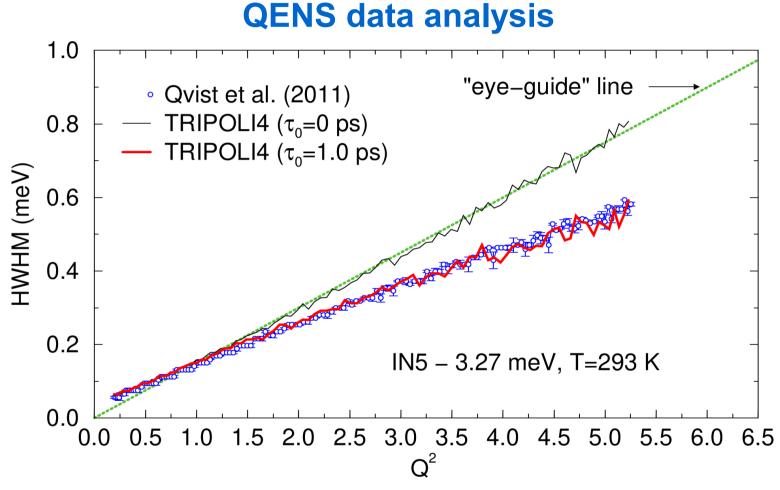
Analysis performed with the Monte-Carlo neutron transport code **TRIPOLI4** by using the **CAB model** for H in H2O (=ENDF\B-VIII)

Experimental density of states at 350 and 494 K



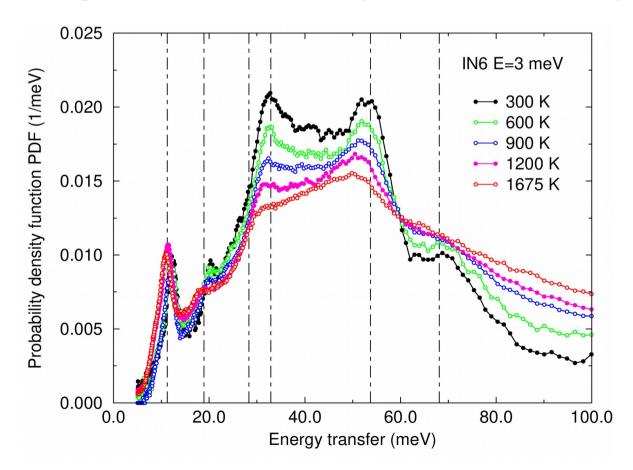
Water Librational mode:

- Reasonable agreement between the data and the TRIPOLI4 simulations (CAB model)
- Slight improvement is needed (frequency shift is overestimated at elevated temperature)

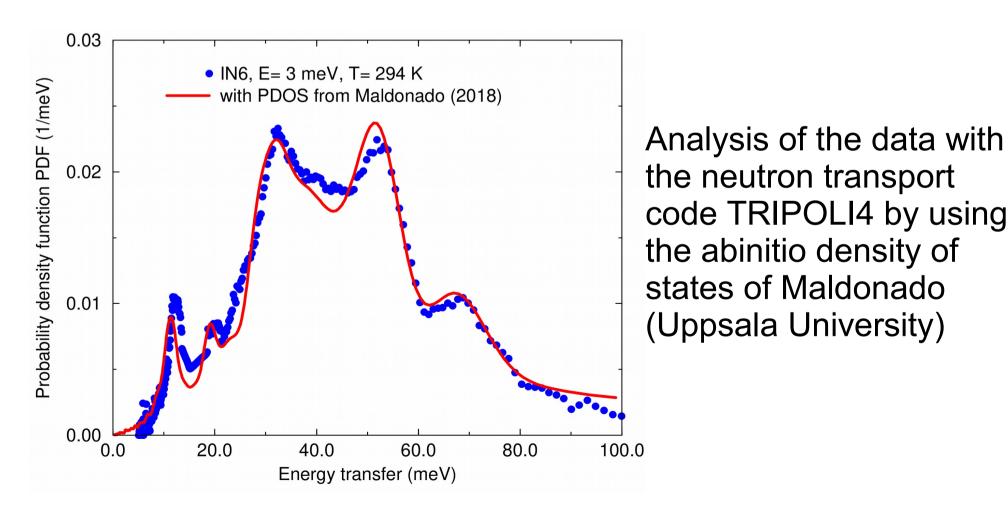


Iterative Bayessian least-squares fitting procedure implemented in the nuclear data code CONRAD

ILL data provide a narrower water librational band than predicted by MD simulations



Translational diffusion part : Egelstaff-Schofield diffusion model with a Singwi-Sjolander residence time correction


Inelastic neutron scattering measurements on IN6 time-offlight spectrometer (T=294 to 1675 K)

Data taken from PhD thesis of Scotta (2016) and Xu (ongoing)

Experimental density of states at 294 K

Generation of TSL covariances

Different strategies were investigated:

- Covariance matrix between MD parameters
- Covariance matrix between LEAPR parameters
- Covariance matrix between S(alpha,beta)

Propagation of TSL uncertainties to integral parameters via direct perturbation method, Iterative Fission Probability and TMC

Generation of TSL covariances

Table 6. Example of uncertainties on the reactivity (UOX configuration at room temperature) in pcm due to the nuclear data. The contribution of 1 H in H₂O comes from the present work. The other contributions were calculated with the covariance data base COMAC [32] developed at the CEA of Cadarache.

Isotopes	(n,f)	Capture	(n,n)	(n,n')	(n,xn)	v_{tot}	χ_{fast}	χ_{th}	Total
1 H in H ₂ O		150	71						166
^{10}B		26							26
¹⁶ O		97	14	2					98
90 Zr		11	72	4					72
91 Zr		27	30	2					40
92 Zr		27	20	2					33
94 Zr		2	8	2					8
96 Zr		2	6						6
234 U	1	6	2						6
235 U	104	174	13			276		142	371
^{236}U		1							1
238 U	29	165	83	38	18	32	9		195
Total	108	303	137	39	18	277	9	142	470

Generation of TSL covariances

Table 7. Example of uncertainties on the reactivity (MOX configuration at room temperature) in pcm due to the nuclear data. The contribution of ¹H in H₂O comes from the present work. The other contributions were calculated with the covariance data base COMAC [32] developed at the CEA of Cadarache.

Isotopes	(n,f)	Capture	(n,n)	(n,n')	(n,xn)	v_{tot}	χ_{fast}	χ_{th}	Total
^{1}H in $H_{2}O$		46	110						119
^{10}B		8							8
¹⁶ O		114	24	4					117
90 Zr		11	24	7					27
91 Zr		13	16	4					21
^{92}Zr		8	22	4					24
94 Zr		2	59	3					59
^{96}Zr		2	13	1					14
^{235}U	2	6	3	1		5		4	9
^{238}U	114	88	80	-60	25	35	12		160
²³⁸ Pu	1	70	-20	1		9	1		67
²³⁹ Pu	278	371	26	5		57	0	126	484
240 Pu	42	178	-16	-5	1	2	9		182
241 Pu	108	96	8			88	58		179
242 Pu	3	131	10	2		2	1		131
^{241}Am	-3	47	2	29		1			47
Total	322	475	156	-59	25	111	60	126	619

Future TSL activities for SG48

Future experimental program:

- Actinide oxides:ThO2, NpO2
- * Low enriched fuels: U3Si2, UMo, UZrH
- Structural materials: ZrY4, Nb

New processing code:

 CINEL (from Shuqi Xu) in replacement of LEAPR+NCRYSTAL developed in Python with GPU acceleration