IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Quantifying the indicators of the ageing under irradiation

IRSN - Laboratory of neutronics

Mariya Brovchenko

12th May 2020

Paris, France

Meeting of Subgroup 47 on Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation

MEMBRE DE

IRSN : French Technical Support Organization

Safety assessment and R&D

<u>Laboratory of neutronics:</u> R&D to ensure the safety for NPPs, anticipate ageing of materials, criticality in installations, during transport, ...

Content

- Ageing under irradiation issues
- Variance reduction methods benchmarking
- Fluence calculations
- Ageing indicators: DPA, arc-DPA, RPA, ...
- Experimental validation

Ageing under irradiation issues

Motivation for nuclear safety

IRSN have to give a technical opinion on the safety assessment for:

the nuclear reactor lifetime extension, new reactors,...

Motivation to have (validated) tools with precise physical phenomena description to anticipate the ageing effects

Radiation characterisation in nuclear reactors

Calculate the fluxes $\phi(E)$ for neutrons and gamma

Several steps will be adressed in this presentation

Ageing under irradiation issues

To quantify the indicators of the ageing of materials (Fluence, DPA, ...)

We need to be able to :

Characterize the neutron/photon flux at distant positions

In NPP for example:

I step - Fission distribution in the core

Monte-Carlo or Deterministic codes

2 step - Shielding calculation

Monte Carlo codes using of variance reduction methods

 $\begin{array}{c} \text{Detectors} \\ \text{Where we want to know } \phi(E) \end{array}$

Fissions: Place of birth of neutrons & gamma

B3

DSA

B

D3

D1

<u>Methods comparison</u>

Using variance reduction methods wrongly can give *wrong answers* !

Benchmark the methods \implies <u>to better understand them!</u>

- Detectors placed in the concrete: neutron and gamma fluxes
- Methods used to generate the importance maps:
 - > WWG (MCNP)

B1

B3

ADVANTG

B1

C1

D3

D1

- > ADVANTG (DENOVO-MCNP), developed at ORNL, USA
- > DSA (MCNP), developed at ENEA, Italy

Code to code benchmarking

ETSON

Fluence calculations

Flux outside the vessel

IRSN & ENEA collaboration:

➤Use of different modelling choices

≻Nuclear Data bases

- IRSN: ENDF/B-VII.I
- ENEA: JEFF-3.1

Spectra $\Phi(E) \Rightarrow DPA$, activation, ...

Ageing indicators

Neutron DPA: number of displacements per atom

Methods comparison:

1) **NRT** formula (mono-atomic) using MCNP+NJOY $dpa = 0.8 * \frac{Ec}{2*Ed}$

2) DART code (CEA, France) with poly atomic solid target, solves ion-atom collisions analytically

3) MCNP + SRIM: MCNP handles neutron-ion collisions and SRIM: ion-ion collisions both using Monte-Carlo methods

	DPA	Code to code comparison: High impact factor 2-4
NRT	0.057	
DART	0.098	
SRIM	0.17	

Work performed by IDOM and JSI consertium

+ Other more precise methods will be tested in the future (collaboration with Materials R&D dep. at IRSN: molecular dynamics, ...) To <u>prioritize</u> the important parameters for safety: we look at the <u>sensitivities</u> to composition, spectra sensitivity, binding energy, ...

Ageing indicators

Neutron DPA

Neutron spectrum depends on the position on the vessel/capsule

Using NJOY DPA-NRT formula

Different behaviour at 0° and 28° azimuthal position

Is the damage caused by a 1 MeV neutron the same as 5 MeV ? Does the fluence surveillance cover these effects ?

Other indicators than DPA will be tested.

Experimental validation

Validation of each or all steps

Some experimental benchmarks were done, but many still need to be done!

Foreseen for this year:

SINBAD benchmark (NEA-1517/96) « H.B. Robinson-2 Pressure Vessel Dosimetry Benchmark ROBINSON »

SINBAD benchmark (NEA-1553/55) « FNG-ITER Dose Rate Experiment »

- Using MCNP6 + VESTA depletion code
- Testing different nuclear data for transport and for **dosimetry reactions** (IRDFF2.0, JEFF3.3/Act)
- Contributing to **new ND evaluations** (Fe, U5, Pu9,...) testing
- Testing modeling approximation + calculation methods

https://www.oecd-nea.org/science/docs/2000/nsc-doc2000-5.pdf

- IRSN as TSO is asked to give technical opinion on different ageing under irradiation issues
- For safety issues: need to have precise and validated tools that are able to characterize the neutron and gamma fluxes
- Additionally to "code to code" comparison, we increase the <u>experimental</u> <u>validation</u> data base for shielding applications; with critical experiments and PIE, it will provide a larger validation domain for the <u>new Nuclear Data</u> <u>evaluation</u>.

- Participate in European project <u>ENTENTE</u>: multi-scale tools and experimental database for <u>ageing of metallic material</u>; our contribution is the sensitivity analysis of the different descriptors to neutron spectrum
- Study different ageing descriptors: DPA (sensitivity of methods, neutron energy, composition, ...), other descriptor: ARC-DPA, RPA, PKA, gamma-DPA ...

BACK-UP

Damages prediction of reactor vessels

Estimation des caractéristiques matériaux à « VD4 + 10 ans »*

^{*} 4ème Visite Décennale + 10 ans = exploitation de la centrale après ses 40 ans pour 10 ans supplémentaire

> Formule de prévision de la fragilisation sous irradiation

LE VIEILLISSEMENT SOUS IRRADIATION DE L'ACIER DE CUVE, H.Churier-Bossennec, et al (EDF), Journées de la SFEN, 2011

Damages prediction of reactor vessels

<u>Limites et domaine de validité</u>

<u>Historique:</u>

• Programme ESTEREL :

 2 expériences d'irradiations réalisées (SILOE et OSIRIS) avec deux spectres proches de la cuve et des capsules du PSI

Recherche d'une grandeur <u>scalaire</u> permettant de prédire au mieux les dommages d'irradiation sur les échantillons de cuve

0,1 MeV et « dpa » (?)

Flux > 1 MeV retenue comme la plus pertinente (linéaire)

Simulation of irradiation effects in light water reactor vessel steels - experimental validation of RPV-1, S. Jumel, EDF, Journal of Nuclear Materials 366 (2007) 256-265

En réalité les neutrons <u>en dessous d'1 MeV</u>créent également des dommages

Fission distribution in the core

3D Monte Carlo fission distribution

- Time expensive calculations (many particles to be simulated)
- Thermal, burn-up, operational conditions, ...
 - \implies difficult to simulate in MC

≈35 000 fuel pins max std. dev. 0.5% in each pin

200 axial segments (unique distribution for the core)

.0 200 180 140 120 100 80 60 40 20 **Deterministic fission distribution**

- 2 sub-steps : Assembly level cross section \implies Diffusion 3D calculations
- Fast calculations
- Thermal, burn-up, operational conditions, ... can be easily followed
- Neutronics approximated (effect especially near the reflector)

×10⁻⁶ 0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0