

NUCLEAR DATA AND BENCHMARKING NEEDS AND DPA RELATED MEASUREMENTS

MARIYA BROVCHENKO LUIZ LEAL

7 DECEMBER 2020

WPEC SG 47

Contents

Context

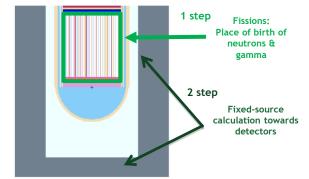
Ageing issues - General ND Needs

Focus on damages estimation

Feedback on SINBAD benchmark : FNG-ITER Dose Rate Experiment

Context

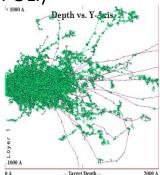
Motivation to have (validated) tools with precise physical phenomena description to


anticipate the ageing effects

IRSI

IRSN NEEDS:

nuclear reactor lifetime extension, new reactors: EPR, ITER, research reactors...



Different axis of R&D:

- > Validation of the fission distribution in the core: *R. Vuiart thesis, using SIMULATE diffusion code*
- Variance reduction methods benchmarking for the Monte-Carlo codes (MCNP + TRIPOLI)
- > Need: Nuclear data impact on different stages of these calculations
- Good » ageing indicators ?
 - > DPA comparison SRIM/DART/NJOY methods: SRIM & DART similar results
 - Sensitivity of these methods to composition/spectrum/binding energy E_d

Different sensitivities to the neutron spectrum between DART and SRIM

Material science issue

Ageing issues – ND needs

Isotopes in structural materials:

- Fe (54,56,58), Ni (58,59), Cr(52,53,54)
- Not structural: O16

Which type of data:

- Accurate capture cross sections above the inelastic threshold and uncertainties
- > Angular and energy distributions, that impact the RECOIL energy of the nucleus

Focus on damages estimation

DPA

- Is one of the estimators one can use to quantify the damages
- Can be used (carefully) in relative comparison

More physical

- Effect of irradiation may be comparable if looking at PKA spectrum
- Separation between the neutron-nucleus interaction and the atom-cascade
- > Nuclear physicists have to assure the precise PKA spectrum calculations

All ND that impact this

spectrum: in- & elastic,

particle distributions

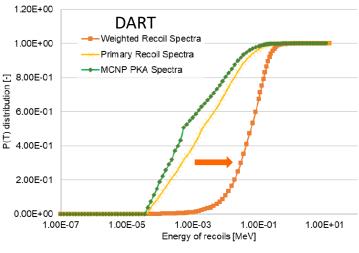
heavy secondary

(alpha, He3, ..)

Focus on damages estimation

Sensitivity analysis of PKA spectrum could lead to better identify the ND needs

- ➤ Literature ?
- Could be done via random sampling of ND...?

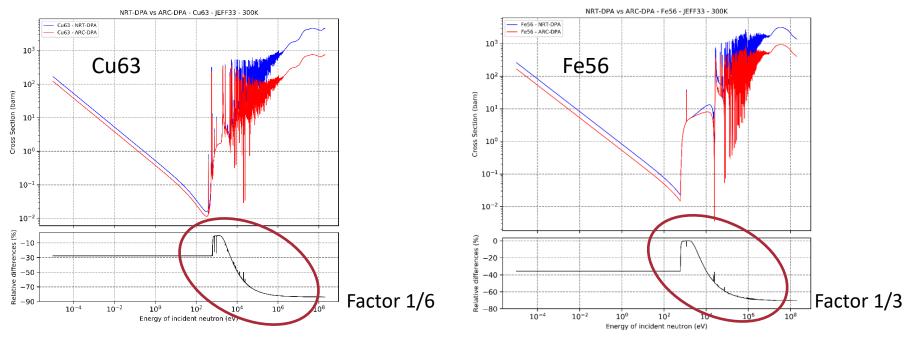

BEST would be :

IRSN

sensitivity analysis of weighted PKA spectrum

- > DART code provides PKA weighted by DPA
- Even better : PKA weighted by ARC-DPA (not available)

Better represents the number of displacements created during a cascade


Work performed with IDOM

R. VUIART PhD. thesis

DPA vs ARC-DPA

IRSN

Athermal recombination corrected-DPA

Impact of the ARC-DPA/DPA varies with energy Correction factors available only for a few elements Cst impact for E > 1 MeV

DPA measurements ?

Vacancies measurements

Material properties analysis : new technique of laser-induced Transient Grating Spectroscopy (TGS) Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique <u>MRS Bulletin</u>, <u>Volume 44</u>, <u>Issue 5: Acoustic Processes in Materials</u>, May 2019, pp. 392 - 402 DOI: <u>https://doi.org/10.1557/mrs.2019.104</u>, <u>Felix Hofmann</u>, <u>Michael P. Short</u> and <u>Cody A. Dennett</u>

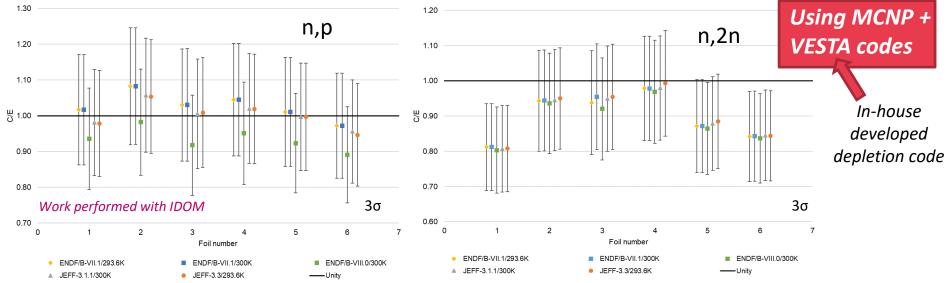
Transmission electron microscopy (TEM), positron annihilation spectroscopy (PAS) to count the **number of vacancies** before thermal recombination ? **Comparable to simulations ?**

European Project H2020 ENTENTE

EUROPEAN DATABASE FOR MULTISCALE MODELLING OF RADIATION DAMAGE

Goal: To design and maintain a unique experimental/modelling database for model validation and calibration, to be used in an international framework

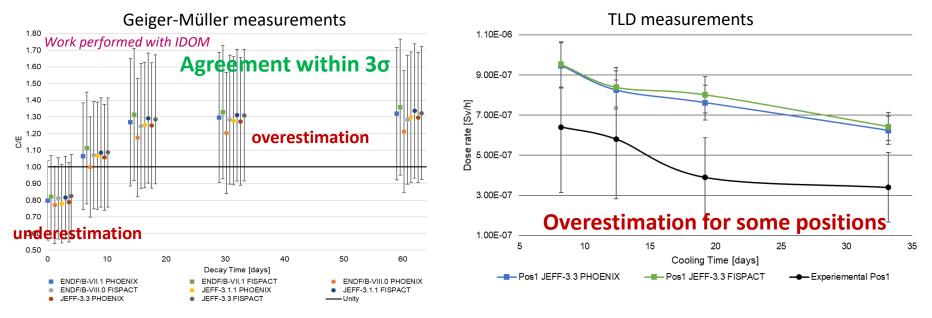
IRSN task: To evaluate the sensitivity of the models/experiments to the *neutron spectrum* via dpa, fast flux, ...


we expect: to have an insight of the importance of the *needed precision of neutronics*

SINBAD benchmarks feedback

SINBAD benchmark (NEA-1517/96) « H.B. Robinson-2 Pressure Vessel Dosimetry Benchmark ROBINSON »

- Missing information (activations foils) -> preliminary results : discrepancies ~20-30%, ongoing analysis
- SINBAD benchmark (NEA-1553/55) « FNG-ITER Dose Rate Experiment »
- Inconsistencies in compositions; no isotopic content of the <u>Ni58 activation foils</u>; some geometry issues; ...



IRSN

SINBAD benchmarks feedback

SINBAD benchmark (NEA-1553/55) « FNG-ITER Dose Rate Experiment »

Shut down measurements

Concluding remark: SINBAD should include more information to help on practical applications

Using MCNP + VESTA codes

Summary - Conclusion

ND needs concern:

- Transport -> neutron flux and spectrum
- Recoil energy of the nucleus -> PKA, we will focus our analysis on PKA (DPA, weighted PKA, ARC-DPA, ..)
- Other material damages indicators:
- ARC-DPA data is not available for all elements & same corrections for all isotopes ?
- Future: Measurements of the vacancies ? (before thermal recombination ?)
- Future: Feedback from the European project ENTENTE on the sensitivity to the precision of the indicator

Multi-scale software and experimental data

- Feedback on the SINBAD benchmarks:
- FNG-ITER dose rate experiments: missing information, inconsistencies, some discrepancies in the results...
- H.B. Robinson-2 Pressure Vessel Dosimetry Benchmark : missing information, some discrepancies in the results

How to share this feedback with the SINBAD community ?

NRT-DPA

$$N_d(T_d) = \begin{bmatrix} 0 & , & T_d < E_d \\ 1 & , & E_d < T_d < \frac{2E_d}{0.8} \\ \frac{0.8T_d}{2E_d} & , & \frac{0.8T_d}{2E_d} < T_d < \infty \end{bmatrix}$$

ARC-DPA

$$N_d(T_d) = \begin{bmatrix} 0 & , & T_d < E_d \\ 1 & , & E_d < T_d < \frac{2E_d}{0.8} \\ \frac{0.8T_d}{2E_d} \xi_{arcdpa}(T_d) & , & \frac{0.8T_d}{2E_d} < T_d < \infty \end{bmatrix}$$

$$\xi_{arcdpa}(T_d) = \frac{1 - c_{arcdpa}}{(2E_d/0.8)^{b_{arcdpa}}} T_d^{b_{arcdpa}} + c_{arcdpa}$$

IRSN