

Benchmark experiment on slab iron for validation of evaluated nuclear data

Content

Experimental arrangement

Measure the neutron leakage spectrum from slab samples for different angles by Time-of-Flight technique with a 14 MeV D-T neutron source

Pulse Frequency: 1.5MHz; Pulse Width: about 1.5ns; Neutron Yield: about 2×10⁹ Flight Distance: about 8m

Fig. 1 Experimental arrangement for benchmark validation at CLAE

The neutron source

Fig. 2 The detailed dimensions with the T-Ti target

✓ The source neutron yield at the target position can be estimated by the following equations:

$$N_{n} = \frac{N_{\alpha} \times A_{\alpha} \times \sigma_{tot}}{\Delta \Omega \times \sigma(\theta)}$$

$$\Delta \Omega = \frac{\pi \times r^2}{L^2}$$

The Samples

Table.1 The integral experiments on iron have been performed at CIAE

Comple	Area	Thickness	Density	Angle
Sample	(cm)	(cm)	(g/cm³)	(°)
Fe	Ф13	5,10,15	7.86	60,120
Fe	30×30	5,10,15	7.86	60,120

 Table.2 The compositions of the sample (in weight)

Nuclide	Fe	Si	С	Mn	Al	Impurity (Pb+Sn +Bi
						Cu+S+P)
mass ratio	99.900%	0.03%	0.015%	0.02%	0.02%	0.015%

The electronics

Fig. 3 Block diagram of the electronic circuit for the experiment

The neutron detector efficiency

1. Use double scintillation detector to measure relative detection efficiency of BC501A;

2、Use D-D neutron source to measure absolute detection efficiency of BC501A

Fig.4 Experimental arrangement for relative detection efficiency calibration Fig.5 Experimental arrangement for absolute detection efficiency calibration

3 Use NEFF code to simulate detection efficiency curve

System verification with standard sample

Fig.7 Leakage neutron spectra from polyethylene sample of Φ13cm×6cm at 60°

Fig.8 Leakage neutron spectra from polyethylene sample of 30cm×30cm×6cm at 60°

sample	n-p scattering	n-p scattering	C/E
	(Experiment)	(Calculation)	
Ф13cm×6cm	4.269E-11	4.349E-11	1.019
30 cm imes 30 cm imes 6 cm	9.360E-11	9.619E-11	1.015

These results indicate that the experimental apparatus work well.

Uncertainties of experimental data

The measured spectra were normalized by the n-p scattering with equation bellow,

$$\frac{N_B^e}{N_n} = \frac{N_B^e}{N_\alpha^B \times B^1} = \frac{N_B^e \times N_p^c \times N_\alpha^p}{N_p^e \times N_\alpha^B}$$

Where N_B^e is the number of neutrons per time bin, N_{α}^B is the number of associated alpha particles detected for other sample in beam

Statistical Uncertainty		Systematic Uncertainty		
N^e_B	<0.5%	relative neutron	~ 20/	
N_P^c	<0.5%	detection efficiency	\5 /0	
N ^e _P	<0.5%	scattering angle ambiguity	<1%	
N^p_{α}	<0.5%			
$N_{\alpha}^{\tilde{B}}$	<0.5%			

Table.3 The uncertainties of the present experiment

Monte Carlo simulation

Fig.9 The models were used in MCNP simulation

Monte Carlo simulation

Fig.10 The simulation results from different models; Φ13cm(left), 30cm×30cm(right)

✓ Φ13cm : Simple model with ring detector
 ✓ 30cm×30cm: Complex model with ring detector

Monte Carlo simulation of experimental details

1、 Use the neutron flight time spectrum as an input spectrum;

Fig.11 The angle dependent energy distribution of the source neutrons(by TARGET code)

2. Source neutron TOF spectra at different times were simulated by MCNP code;

Fig.12 TOF spectra of neutron source at 0° and 8m with different generation time

Monte Carlo simulation of experimental details

3, Use the γ TOF spectrum as a default spectrum

Fig.13 Comparison of the fitting result with the neutron spectrum and the γ spectrum

The results

Fig.14 The comparison of measured and calculated leakage neutron spectra; Φ13cm(left), 30cm×30cm(right)

 The calculation results with different libraries are different from the experimental results in some energy region, especially the high-energy region.

The results

Fig.15 The The C/E values integrated over the specified energy ranges; Φ13cm(left), 30cm×30cm(right)

INNE CHINA INSTITUTE OF ATOMIC ENERG

The results

> 12-16 MeV, the elastic scattering region

Calculated scattering peaks with the ENDF/B-VIII.0 library well reproduce the experimental ones, CENDL-3.1, JENDL-4.0 and JEFF-3.3 underestimated at 120°

8.5-12MeV, the discrete inelastic scattering

The results with JENDL-4.0 library are overestimated around 25% at both 60° and 120° . At 60° , the results with the CENDL-3.1 library are underestimated around 10%, and at 120° , the results with the ENDF/B-VIII.0 are overestimated by more than 15%.

> 3-8.5 MeV, the continuous inelastic scattering

The calculated results with four libraries agree with the experiment within 10% at 60° , while the results with the ENDF/B-VIII.0 and JENDL-4.0 libraries are underestimated about 15% at 120°.

▶ 0.8-3 MeV

The calculated results from all libraries agree with the experimental ones within 10%

Analysis and Discussion

Fig.16 The angular distributions of the neutron elastic scattering

Fig.17 the continuum inelastic scattering

