

Remarks from use of SINBAD

S. Simakov, U. Fischer

contribution to Subgroup 47: "Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation"

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

I. Tungsten: Geometry Error in the MCNP model in SINBAD

NEA-1553/47 "FNG/TUD Tungsten Experiment (spectra measurements)"

NEA-1553/47: file #10 = mcnp.inp = 3-D model for MCNP-4C code

original SINBAD mcnp.inp file:

2

our correction (inserting the cell 932):

II. Iron (*slide - from EFFDOC-1373, 27-30 Nov 2018*):

Lab: Years	n-source Energy	Assembly, sizes cm	Me- thod		Main References and Numerical Data
KFK: 1975	²⁵² Cf(s.f.) 7E+7 n/s E ≈ 2.1 MeV	6 spheres: dia. = 15, 20, 25, 30, 35 and 40 cm	Pulse Height + Unfold	Neutrons:2 proton recoil (1.08 m): $E = 0.06 - 0.86$ MeV, $E = 0.31 - 2.35$ MeV1 proton recoil (1.53 m): $E = 0.92 - 5.24$ MeV1 ³ He/Si sandwich (surf): $E = 0.10 - 7.85$ MeV	H. Werle, H. Bluhm et al. - KFK-2219 (1975) - NEACRP-U-73 (1976)8 SINBAD: <u>NEA-1553/43</u>
KFK: 1977	²⁵² Cf(s.f.) 5.5E+7 n/s (± 5%) (also ²³² Th)	3 spheres: dia. = 25, 30, 35 cm (also Iron pile: 100*100*87cm)	Pulse Height + Unfold (± 10%)	Gammas: Si(Li) compton spectr. - at 1.02m (bare source) - on surface (spheres) Energy range E = 0.34 – 3.11 MeV	SH. Jiang, H. Werle - KFK-2444 (1977) = PhD - NEACRP-L-196(1977) - NSE 66(1978)354 Data are presented only in Plots - we digitized !
NIST: 2000	²⁵² Cf(s.f.) 5.5E+7 n/s (± 5%)	1 sphere: dia. = 50 cm	Pulse Height +Unfold	Neutrons: 2 proton recoil (1.00 m): E = 0.06 - 0.86 MeV, E = 0.31 - 2.35 MeV	B. Stanka et al. - NSE 134(200)68 not in SINBAD yet
IPPE: 1985	²⁵² Cf: ≈ 2.1 MeV	6 spheres: dia. = 10, 20, 40, 50, 60, 70 cm	Pulse Height (PH)	Neutrons: H-prop. 5 – 700 keV Stilben 0.2 - 17 MeV Gammas: Stilben 0.4 - 10 MeV	<u>ICSBEP/DICE</u> : ALARM-CF_FE-SHIELD- 001

II. Gamma from Iron spheres with Cf-252 source (slide - from EFFDOC-1373, 27-30 Nov 2018):

NEA MUREGr Jat GW Bek 247 une 20169, 2018, DHEA Bank, Bank, Paris

II. KFK and IPPE bare ²⁵²Cf γ-sources: comparison with known exper. and theory Prompt Fission <u>Gamma Multiplicity</u> for ²⁵²Cf(s.f.)

Karlsruhe Institute of Technology

Observations: Gamma over Neutron Multiplicities = Mg/Mn for 252 Cf(s.f.), extrapolated to E γ > 100 keV:

- all known measurements (Cf fission chamber) and theory \approx (8 10)/3.7676 = (2.1 2.7) if it's truth !
- IPPE and KFK (encapsulated Cf)

≈ (18 - 20)/3.7676 = (4.7 - 5.3) – then why ?

More Information and Analyses see in EFFDOC-1373, 27-30 Nov 2018

Description of Experiment is available in:

- e.g.: C.Clifford et al., NSE 27(1967)299; E.Straker ORNL-TM-2242(1968), -3868(1972)
- SINBAD <u>NEA-1517/59</u>: description + numerical data (only 60 in. = 152,4 cm), no MCNP model

III. Oxygen (slide – from IAEA TM "Long Term Collaboration", 18 Dec 2017):

III. Oxygen (*slide – from EFFDOC-1342, 20-23 Nov 2017*):

Lonely available spectral benchmark with pure Oxygen FNS/JAERI, <u>NEA-153/61</u>: (other one <u>NEA-1517/59</u> is a uncollided transmission to test σ_{tot} in range 1.9 – 8.6 MeV)

Neutron Leakage Spectra at 0, 12, 25, 42, 67 deg. from Liquid Oxygen Disc ($\mathcal{L}=20$ cm × Ø60 cm) irradiated by pulsed 14 MeV source

Information about Experiment is available in: - e.g.: Y.Oyama et al., NDST 1991, p.337 Fig.3

- Details/Data: see SINBAD NEA-1553/61

"The Quality Assessment of the FNS Benchmark Experiments" by A.Milocco, I.Kodeli,

recommendation on page 38:

"Thus, the scaling factor should be calculated by squaring L and dividing by the effective measured area and the cosine of the detector angle. With this procedure good agreement in flux magnitude is obtained at 66.8°..."

Our results but without dividing by cosine of the detector angle (?) on next slide =>

Fig.3 Calculational model for MCNP

III. Oxygen (slide – from , from EFFDOC-1342, 20-23 Nov 2017):

<u>Findings</u>: - JENDL-3.3T4 = ENDF/B-VII.1 and ENDF/B-VIII.0 are practically indistinguished - however among them, the ENDF/B-VIII.0 is slightly better IV. Tantalum (slide - from EFFDOC-1342, 20-23 Nov 2017):

Ta is not presented in SINBAD, however relevant Benchmarks exist:

1. Livermore Lab (LLNL, Livermore) Pulsed Spheres = neutron leakage spectra from two Ta spheres with 14 MeV source

Information about Experiment is available in:

- NSE 92(1986)382: Ta spheres sizes, leakage energy spectra
- UCRL-51144 (1972), LA-12885 (1994): T(d,n) neutron source specification, TOF leakage spectra and MCNP input decks for 28 spheres, except Ta
- 2. Lewis Research Center (LRC, Ohio) Sphere
 - = neutron leakage spectra from one Ta sphere with **Am-Be source**

Information about Experiment is available in:

- D.Bogart et al. NSE 53(1974)285: Ta sphere sizes, Neutron Source and Leakage Energy Spectra

Summary = Recommendations

- Found error in SINBAD MCNP input for FNG/TUG have to be corrected
- Different from recommended in SINBAD interpretation of Experiments (Oxygen FNS)
- No MCNP input and Experimental data in SINBAD Oxygen ORNL, Tower Shielding
- Benchmarks relevant but missed in SINBAD (Fe-NIST, Fe-KFK gamma, Ta-LRC) have to included since publications have sufficient information
- Livermore Pulsed Spheres are not included in any database
- Recent/new Benchmarks:
 - a. Research Center Rez: Fe spheres with 252Cf source B.Jansky, J.Rejchrt, JEFFDOC-1957; M.Schulc, M.Kostal et al., NIM A914(2019)53 presentation on this Meeting
 - b. Ohio University: Fe spheres with D(d,n) 7-10 MeV neutron source S.Dhakal, C.R.Brune, T.N.Massey et al., NSE 2019

С.