Analysis of shielding experiments calculations with using Russian codes and ND libraries

Gleb Lomakov JSC "SSC RF – IPPE", RUSSIA

24.06.2019

Introduction

- Shielding experiments (SINBAD) have some specialties, impact on calculation results:
- Geometry data dimension and place of plates, source(s) and detector(s);
- Material data contains of impurities and inaccuracy of compositions;
- Source data a power, energy and spatial distribution of particles;
- Detector data energy distribution both of response function and of reaction rates;
- Normalization a coefficient between of experimental and calculation values.
- Fixing of these parameters and varying only cross section data libraries is necessary for nuclear data validation.

Russian codes and ND

<u>Codes</u> for neutron-physics calculations:

- ROZ one-dimensional, analogue ANISN (ONEDANT);
- KASKAD two-dimensional, analogue DORT (TWODANT);
- KATRIN three-dimensional, analogue TORT (THREEDANT).
- The MCNP code was used with variance reduction techniques in some cases for shielding calculation.

Nuclear data libraries:

- ABBN-93 a group data library used in many organizations;
- ABBN-RF a new group data library based on the ROSFOND2010 library for reactor core and shielding calculations;
- ROSFOND2010 point-wise neutron data library for MCNP calculations.

Shielding experiments

- There were analyzed follow experiments with used Russian tools:
- <u>ASPIS</u>: Iron 88, Graphite, Nesdip-2, Nesdip-3, Water-steel arrays, Janus 1 and Janus 8
- **EURACOS**: Sodium and Steel
- <u>JASPER</u>: 1A, 5A, 5C and 7B.
- OKTAVIAN: Nb and Si
- Several of them experiments will discuss below in more details.
- An analysis based on general specialties of these experiments will show in presentation on next slides.

Geometry and Material data

- 1) **Geometrical** dimensions are impact on capability transmission particles through shielding plates. Thus detailed geometry description of benchmark model is important
- Benchmarks both of two-dimensional (example, R-Z) and of three-
- dimensional (example, X-Y-Z, R-θ-Z) geometries are needed.
- Detector geometry (size and position) is also important.
- 2) Detailed material data (in concentrations) are allow more precisely of a describe interaction in shielding layers.
- Effect of unaccounted nuclide could lead to incorrect nuclear data validation results.
- Database of shielding benchmark models for nuclear data validation is needed.

Source and normalization

- These are global parameters impact on all calculation results in varies detector positions.
- These parameters are connected. Calculation results are normalized on experimental source power.
- 1) **Source** inputs are entered before start of calculation. If you need clarification of source information you must restart task.
- Source power and neutron spectrum have an energy and spatial distribution.
- 2) Normalization coefficient is value for adducting of calculation results to experimental data.
- For the nuclear data validation purpose could be normalize on the first detecting point.
- We need to compare of calculation-to-experiment discrepancies shape of graph. 6

Detector

- Energy distribution of response functions, Bonner Balls, reaction rates (foils) etc. How to translate these values from experiment to calculation (special for a group calculation)? Need detailed description.
- We need use the values for a group calculation from a point-wise calculation.

We must explain how a cadmium cover impact on a cross-section of a

Testing of iron data

▲ Janus Phase I ★ Iron 88

Testing of carbon data

Graphite Benchmark

Nesdip 2 benchmark results

Water-steel benchmark

Neutron/Gamma-Ray Transport (water, steel)

Neutron transmission experiments (1960th)

Neutron energy was obtained used with kinematic tables from proton energy.

Energy width of neutron transmission depends on a thickness of a titan-tritium target.

Samples of study material were placed between a target and a detector on neutron beam.

Samples thickness accrues from 0.5 to 50 cm.

Set of neutron transmission experiments for energy region from 1 keV to 3 MeV was conducted by V. Fillipov in 1960th for follows elements:

Fe, Ni, Cr (ICSBEP Handbook), Si, Nb (this work), Be, Cu, Zr, Mo, W, Pb, Bi, Al, Zn, V, Ti, C, Mg, P, S, Ga, Sb, Ba, Ta.

Neutron transmission for Nb 1/2

- ✓ Energy region 0.01 3.0 MeV.
- ✓ TI-T target thickness from 0.32 to 3.75 mg/cm².
- ✓ 44 energy intervals.
- Max samples thickness 50,5 cm.

Energy, MeV

	RRR			URR		
Library	Upper limit, keV	Num. of <i>I</i> -values	Num. of resonan ces	Upper limit, keV	Num. of <i>I</i> -values	INT
ENDF/B-VIII	7,0	2	201	600,0	3	5
ENDF/B-VII.7	7,35	2	194	-	-	-
JEFF-3.3	10,08758	2	275	30,4623	2	2
JENDL-4.0	7,0	2	201	600,0	3	5
JENDL-3.3	7,0	2	201	100,0	3	2
РОСФОНД2010	7,0	2	199	100,0	2	2
TENDL-2017	9,476746	3	346	30,4623	3	2 13

Neutron transmission for Nb 2/2

ROSFOND2010 has URR up to 100 keV.

Only JENDL-4.0 ND library well describes neutron transmission experiments (1960th).

Testing of Nb data

Testing results of a new Nb data based on HEU-MET-FAST-047, OKTAVIAN Nb and a theory model*.

Table– K_{eff} HMF047

Neutron transmission for Si 1/2

- ✓ Energy region 0.3 3.0 MeV.
- ✓ TI-T target thickness 2,6 mg/cm².
- ✓ Max samples thickness -35,8 cm.
- ✓ 14 energy intervals.

	RRR				
Library	Upper limit, MeV	Num. of <i>I</i> -values			
ENDF/B-VII.I (VIII)	1.75	RM-3			
JEFF-3.2 (3.3)	1.75	RM-3			
JENDL-4.0	1.75	RM-3			
ROSFOND 2010	1.75	RM-3			
TENDL-2017	0.5	MLBW-4			
TENDL-2014	1.75	MLBW-4			

Neutron transmission for Si 2/2

0.3

0.4

0.5

Energy, MeV

0.6

Resonance parameter selection of ²⁸Si was performed via stochastic optimization technique for describe of neutron transmission.

Resonance at 700 keV is needed for that.

0.8

0.7

Testing of Si data

Table – spectral indices of HMM-005-6

Index	idex Exp.		C/E-1, %	
σ (238LI) /σ (235LI)		RF2010	6.7 ± 3.8	
0 _f (2350)/0 _f (2550)	0.015±0.005	RF2010+Si	5.3 ± 3.8	
σ (197 Δ.μ.) /σ (235 μ.)		RF2010	-21.7 ± 4.9	
$O_{c}(23, AU)/O_{f}(23, U)$	1.15±0.05	RF2010+Si	-2.6 ± 4.7	

Adding of missed resonances improves of spectral and of criticality calculation results: F238/F235 – on ~1.5%;
C197/F235 – on ~20%. ¹⁸

Conclusion

- 1. Analysis of reactor shielding experiments show that Russian tools could be used for nuclear data validation.
- 2. For nuclear data validation needs benchmark inputs database with precise information about geometry, material, source, detector and normalization data.
- 3. Normalization by the first experimental point is a possible if we need analyze of a calculation-to-experiment discrepancies shape.
- 4. Neutron transmission experiments for Nb and Si are propose to include in SINBAD database.
- An unresolved resonance region for Nb-93 necessary enlarge up to 600 keV.
- 6. Correctness of adding resonance at 700 keV is need test on more benchmarks.

Thank you for your attention!