

Benchmark Assemblies producing neutron and gamma mixed fields

Laboratory report No. 2019 06 17, version-1

Bohumil Jánský, Evžen Novák Research Centre Rez, Czech Republic

31 st WPEC Meetings,WPEC SG47 Meeting June 24, 2019NEA Headquarters, Boulogne-Billancourt, France

Content

- CVR Research Infrastructure
- Neutron gamma (n,g) sources
- Instrumentation
- Benchmark assemblies
- Methodology of spectra measurement
- Stilbene and HPD spectrometry
- Methodology of MCNP calculation
- Examples of C/E comparison use of HPD
- Use of spectrometry measurements on Fe-benchmarks for improvement of cross section XS-Fe56(n,el),
- References

CVR Research Infrastructure

Research Reactors LVR-15 and LR-0

- Validation of various XS (Si, FLIBE, Pb, graphite ..)
- SACS (validation of dosimetrical xs, fission spectra)
- Mock-Up experiments (VVER-1000 reactor dosimetry)
- Transmision experiments in Si beam (Pb, Fe)
- Point neutron sources ²⁵²Cf, AmBe, ²³⁸PuBe
 - SACS
 - Leakage spectra

Neutron DT generator

Integral experiments

Neutron and gamma (n,g) sources 1

Research Centre Rez: Izotopic sources

- Cf-252 (n,g), Q=3.5E8 n/s, (pneumatic post transport Flexo Rabbit)
- Am-Be (n,g)
- Pu-Be (n,g)

Reactors

- LR-0 reactor (n,g) P=1kW, φ_{th}= 1E12 n/scm²
- LVR-15 reactor (n,g), P=10MW, $\varphi_{th} = 1E14 \text{ n/scm}^2 + 10 \text{ filtered neutron channels}$

Neutron generator

14 MeV, D-T reaction ("fusion source"), gas sealed tube, Q= 1E09 n/s

Common gamma sources: Co-60, Cs-137, Ba-133, ...

Nuclear Physics Institute (Czech Academy of Science): Quasi monoenergetic neutrons, available in NPI Rez accelerator, E_{mean}< 30MeV) UJV: PET

Neutron gamma (n,g) sources 2 Reactor LR-0

VVER-1000 reactor core mock-up

crane

Special reactor core

Flux density distribution in Fuel Pin - MCNP

Neutron gamma (n,g) sources 3 Reactor LVR-15

channel

Irradiation channels

IRT-4 LVR-15 FA

Si-filtered beam at LVR-15

Silicon filtered beam spectrum contains characteristic peaks.

Suitable tool for validation of detectors and methods used in fast neutron spectrometry.

Iron filtered beam assembly – LVR-15

Location of therm column TK-10 in LVR-15 (all dimensions are in cm).

LVR-15 Fe filtered beam exploitation

Influence of neutron beam angle relatively to detector axis, HV=2.8 kV, detector HPD of NOK-440 type.

Neutron source 4 – Am-Be

AmBe and ISO "standard" spectrum comparison

- AmBe is not standard, every source is "unique"
 - Source construction
 - Porosity
 - AmO₂, Be grain size, density
- However measured AmBe spectra is close to "tabulated values" (ISO AmBe)

■ AmBe and ²³⁸PuBe available in CVR

AmBe/PuBe spectrum comparison

AmBe source in double coated stainless steel box

Neutron source 5 - Cf-252

Transport box for Cf-252 neutron source (right)

Q=3.5E8 n/s (20.6.2019)

Instrumentation - Flexo-Rabbit Ending

AF placement at the surface of Fe 50 cm On the left-top is Al Flexo-Rabbit ending

Irradiation Box for powder material "bulk" activation "foils" FLiBe, NaF,... with Flexo-Rabbit ending

Shielding container and Flexo Rabbit

ø500

069

OCELOVÍ PLÁŠŤ

> STINICI --ZATKA NOVODUR

ÚLOŽNĚ KANÁLY

Cf-252

n-zdroj

STINICI

VRSTVA

KONTE INEROVA

KONCOVKA POTRUBNÍ POŠTY

ø32/27

58

ø1125

Shielding container

ø32/27

Transport container with Cf-252

Transport container (ADR)

Neutron and gamma flux distribution

Principal scheme of leakage neutron spectra measurement

Principal scheme of the leakage neutron spectrum measurement

Iron sphere of diam. 100cm.

EFFECT E EVALUATION A = E + AB + FB + LB - meas. without shadow cone B = AB + FB + LB - meas. with shadow cone

 $\mathbf{E} = \mathbf{A} - \mathbf{B}$

Benchmark assemblies 1

Shielding Cones

Fe 100 cm $E_n < 1 MeV$ - neutrons

15

Benchmark assemblies 2

Fe <mark>20</mark>cm gamma

Cf-252 hall view

Stainless Steel cube 40x40x40cm

D₂O o.d.30 cm

Fe 50cm neutrons

Benchmark assemblies 3

 $E_n < 1 \text{ MeV}$

 D_2O 50cm neutrons Shielding Cone Fe, PE+B

Fe 50cm neutrons E_n>1 MeV (stilbene detector]

 $D_2O \frac{50}{E_n}$ neutrons E_n MeV

Benchmark experiments 4

Fe 50 cm sphere placed in the height of 7 m above the hall floor (standard height is 2m)

Measurement of influence of Fe sphere distance from floor on the shape of neutron spectrum

Fe cylinder and PE slab

Fe cylinder anfd PE slab – all dimension are in mm

Fe cylinder At the right side is parafine barrel thermal neutron laboratory standard

Benchmark assemblies – schemes Fe 100 sphere allows measurement inside iron CVŘ CVŘ

Fe 100 cm (~4 tones) (only Fe) Parafin barrel (cylinder)

Benchmark assemblies: Fe, Ni - spheres

Fe and Ni available

Benchmark assemblies: H₂O, D₂O - spheres

Shielding Cones for gamma and neutrons

Neutron generator 14 MeV

of bremsstrahlung

Cu and Pb slabs – for C/E fusion data validation

Principal scheme of NG "sealed tube"

Max $Q_{n14MeV} = \sim 1E9 \text{ n/s}$

Neutron spectrum measured with diamond detector close to the axial axis. Peak confirms presence of 14 MeV neutrons.

HPGe Gamma spectrometry

HPGe detector and spectrometer for AF and irradiated samples measurement SW - GENIE2000

Laboratory for Gamma scanning laboratory: Equipped with HPGe detector inside the lead shielding. Axially movable and rotating irradiated fuel pins are scanned to determine the fission products activity for fission rate distribution measurement in LR-0 reactor core

Stilbene spectrometry in LR-0 labs

- Measurement with stilbene scintillation spectrometry
 - Pulse shape discrimination
 - Satisfactory resolution

Validated in Cf-252 and LVR-15 Si-filtered beam

PSD principle - n/g separation

Digital spectometer FD-13 with PSD Stilbene Detector with Photomultiplier

Spherical benchmark assemblies (Fe,Ni,H₂O, D₂O,...)

Abbreviations used: FE DIA100, R150

It denotes Fe sphere of 100 cm diameter, R150 (cm)= distance "centre to centre" (the sphere centre Cf to the centre of detector)

HPD Neutron spectrometry (HPD = Hydrogen proportional detectors)

Detectors used with neutron spectrometers

Detector type	Туре	Pressure	Dimension	Energy range [MeV]
Proportional Counter filled by Hydrogen (HPD)	NOK145 NOK445 NOK1045	100 kPa 400 kPa 1000 kPa	Ø 40 mm	0.01-0.3 0.2-0.8 0.5-1.3

HPD detectors of o.d. 40 mm (NOK type, Poland), and o.d. 30 mm (Czech Rep.), cylindrical protection covers made of boron and stainless steel are in background

NOK type HPD o.d. 45 mm

Centrum výzkumu Řež

Methodology of MCNP calculation

Calculations

The calculations were performed using Monte-Carlo program MCNP.

As for geometry description a simplified model was used which substitutes assembly elements with concentric spherical shells around the source.

Also the detector is represented by a **1 cm** thick spherical shell with radius equal to the real detector-source distance

(R=28 and 100 cm).

The energy bin structure of resulting tallies was chosen to be logarithmic, either with **40 or with 200 groups per decade**. Contemporary the energy scale with constant energy step (0.1MeV) is used in calculation for using in C/E comparison for stilbene.

Data libraries commonly used for MCNP calculation:

JEFF-3.1, JEFF-3.2, JEFF-3.3 (A.Blokhin, IPPE Obninsk, Russia) ENDF/B-VIII.0 (CIELO) (J.Rejchrt, CVR Czech Republic)

Tab.1 FE DIA100, R53, C/E comparison, see Fig.1 (C/E= Calculation / Experiment)

Assembly FE DIA100, R53,							
En.range[MeV]		C/E					
From	То	ENDF/BVIII.0	JEFF-3.1	JEFF-3.2	JEFF-3.3		
0.013	1.290	1.045	1.054	1.066	1.052		
0.013	0.033	0.9138	0.9822	0.9867	0.9948		
0.033	0.060	0.9005	1.015	0.9757	1.020		
0.060	0.090	0.9702	0.9779	0.9781	0.9885		
0.090	0.150	0.9934	1.003	1.008	1.006		
0.150	0.200	1.037	1.018	1.021	1.008		
0.200	0.250	1.028	1.021	1.022	1.013		
0.250	0.289	1.036	1.017	1.023	1.005		
0.289	0.333	1.333	1.245	1.276	1.230		
0.333	0.367	1.305	1.269	1.303	1.268		
0.367	0.410	1.191	1.183	1.216	1.170		
0.410	0.520	1.033	1.089	1.115	1.079		
0.520	0.780	1.089	1.07	1.102	1.062		
0.780	1.060	0.7834	1.053	1.076	1.048		
1.060	1.290	0.7584	0.8655	0.8912	0.8646		
	D abs<5%						
	D=5-10%						
	D>10%						
	D=-(5-10%)					
	D< -10%						

En=0.013-1.3MeV ("HPD region")

EXP: HPD

CALC: ENDF/B-VIII.0 JEFF-3.1 JEFF-3.2 JEFF-3.3

Fig.1 FE DIA100, R53; C/E comparison (see tab.1)

En=0.013-1.3MeV ="HPD region", 200gpd HPD measurement (red), calculation JEFF-3.3 (blue), (see tab.1)

Tab.2 FE 50, R100, C/E comparison, see Fig.2

Assembly FE DIA50, R100								
En.range[MeV]		C/E						
From	То	ENDF/BVIII.0	JEFF-3.1	JEFF-3.2	JEFF-3.3			
1.0	10.0	0.8442	0.9746	0.9744	0.9756			
1.0	1.2	0.8396	0.8963	0.8964	0.8748			
1.2	1.4	0.8781	0.9853	0.9850	0.9905			
1.4	1.6	0.7347	0.8640	0.8622	0.8800			
1.6	1.8	0.9308	1.0690	1.0690	1.0970			
1.8	2.0	0.8911	1.0690	1.0710	1.0950			
2.0	3.0	0.8390	1.1020	1.1020	1.1150			
3.0	4.0	0.8102	1.1850	1.1870	1.1910			
4.0	5.0	0.8416	1.1250	1.1170	1.1130			
5.0	6.0	0.8557	1.0060	1.0070	1.0030			
6.0	7.0	0.8708	1.0270	1.0280	1.0300			
7.0	8.0	0.8755	1.0350	1.0370	1.0500			
8.0	9.0	0.9337	1.1030	1.1020	1.1140			
9.0	10.0	0.8906	1.0280	1.0430	1.0580			
10.0	12.0	0.8707	0.9366	0.9324	0.9408			
12.0	14.0	0.7554	0.7897	0.7423	0.7728			
14.0	16.0	0.6235	0.5624	0.5850	0.5581			
	D abs<5%							
	D=5-10%							
	D>10%							
	D=-(5-10%)						
	D< -10%							

En= 0.8-16 MeV ("stilbene region")

EXP: F5-mean-4in (mean value from 4 independent measurements)

CALC: ENDF/B-VIII.0 JEFF-3.1 JEFF-3.2 JEFF-3.3

32

Fig.2, Assembly FE DIA50, R100, C/E, En=0.8-17MeV, stilbene region, Experiment: F5-mean-4in (=mean from 4 independent measurements), (red) Calculation: JEFF-3.3 (blue) (see Tab.2)

Fig.3a, FE DIA20,30,50,100, R100 (150), neutron spectra calculation (P.Cuda)

34

Fig.3b, FE DIA20,30,50,100, R100 (150) gamma spectra calculation (P.Cuda)

Energy range[MeV]		Integral values[1]						dependence C/E		
		Fe20		Fe30		Fe50		Fe100		on Fe thicknes
from	to	CAL/EXP	U[%]	CAL/EXP	U[%]	CAL/EXP	U[%]	CAL/EXP	U[%]	
0,1	1,3	1,135	0,65	1,117	0,53	1,094	0,29	1,145	0,49	nearly const.
0,1	0,2	1,124	2,85	1,142	1,9	1,125	0,94	1,151	1,01	nearly const.
0,2	0,4	1,182	1,96	1,178	1,41	1,149	0,62	1,198	0,79	nearly const.
0,4	0,8	1,192	0,75	1,150	0,64	1,115	0,32	1,119	0,75	decrease slowly
0,8	1,0	1,128	1,35	1,101	1,29	1,009	0,68	0,775	2,22	decrease
1,0	1,3	0,974	1,32	0,901	1,25	0,773	0,76	0,538	3,28	decrease rapidly

Centrum výzkumu Řež

Fig.3 Assembly FE DIA 20,30,50,100, 40gpd, C/M dependence C-E on Fe thickness, see tab.3

Spectra are normalized by factor: 1,3,10,30, (in this Figure). **Measurement:** HPD (CVR Rez) (thick); **Calculation:** data Perey used, (thin)

Conclusion: The the biggest sphere (FE100) brings the biggest difference for C/E in energy region $E_n = 0.85-1.3 \text{ MeV}$

For years it has been stated that :

- calculations overestimate measured spectra in region around 300keV by about 20-40 % and also around 600keV MeV by about 12-15%, Fig.1 and Tab.1
- The problem around 300keV (C/E) grows with iron thickness See references, ND 2013, ND2016, JEFF–ND weeks,...

To our great pleasure, the IAEA-NDS has begun to look into this issue in more detail (A.Trkov, R.Capote, S.Simakov,..) see [9], ND 2019, There is briefly described the part of the work concerning the use of n- spectra measured in RC Rez.

Measurement and calculations use 200gpd energy structure. (200 gpd represents 200 groups per decade, it is lethargy step about 1%.)

Spectrometer with HPD has relatively good resolution. In energy interval 200-400keV is possible to observe:4-6peaks (218,242,272,309,352,375 keV) - only by some HPD detectors. See Fig.1.

Other spectrometers which use for example stilbene or TOF method resolves usually only one peak at 300keV in the 200-400 keV region.

Fig.4, XS-Fe56(n,tot), black=CIELO(ENDF/B-VIII.0), blue=R34 (working version of corrected XS) red=ratio R34/CIELO, norm=1000

References

- 1) B.Jansky, J.Rejchrt, M.Schulc, A.Blokhin, "*Iron-56, problem with the elastic cross section in neutron energy region around 300 keV and natural iron isotopes influence on the neutron transport through iron.*" **JEFDOC-1918,** NEA Nuclear Data Week JEFF Meetings, 18 20 April 2018, CIEMAT, Moncloa Centre, Madrid, Spain
- 2) B. Jansky, J. Rejchrt, E. Novak, E. Losa, A. I. Blokhin and E. Mitenkova, *Neutron Spectra Measurement and Calculations using Data Libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in Iron Benchmark Assemblies* **Nuclear Data 2016, Bruges**, Belgium, 11-16.09.2106, (contribution No. R152)
- 3) M.B. Stanka, J.M.Adams, Ch.M. Eisenhauer "*Proton Recoil Measurements of 252-Cf fission Neutron Leakage Spectrum from an Iron Sphere*", **Nuclear Science and Engineering: 134, 68-76 (2000)**
- 4) J.Rejchrt, V.Juricek, B.Jansky, "*GRUP-DEL*, program for analyse of measured and calculated neutron and gamma spectra" RC Rez, (the program is in the testing state)
- 5) B.Jansky. E.Novak. *Neutron Spectrometry with Spherical Hydrogen Proportional Detectors.* **Nuclear Instruments and Methods in Physics Research. A735(2014). 390–398.**
- 7) B. Jansky, J. Rejchrt and A. I. Blokhin, Neutron Spectra Measurement and Calculations using Data Library JEFF- 4.0T0 in Iron Benchmark Assemblies, **JEF/DOC-1850**

- 8) B.Janský, E.Novák, P. Otopal .: *Data for calculation* of neutron and gamma leakage spectra from iron and water spheres with Cf-252 neutron source in centre, Report NRI, ÚJV-11506, Řež, 2000
- 9) B.Jansky (1), J.Rejchrt (1), A.Blokhin (2),
 - 1) Neutron spectra measurement and calculation using data libraries CIELO and JEFF in Iron and Oxygen benchmark.
 - 2) Analyse of XS Fe56(n,el) corrections for En = 0.05-0.7MeV
 - **ND 2019**, International Conference on Nuclear Data for Science and Technology, May 19-24,2019, Beijing, China

Research Centre Řež

Centrum výzkumu Řež s. r. o. (Research Centre Řež) Hlavní 130 250 68 Husinec-Řež Czech Republic

E-mail: cvrez@cvrez.cz Phone: +420 266 173 181 IČ 26722445 Web: http://www.cvrez.cz

Thank you for your attention!