Adjusting GEF Model Parameters with Post Irradiation Examination Experiments

WPEC Subgroup 46 Meeting Paris, France

Daniel Siefman, M. Hursin, A. Pautz Swiss Federal Institute of Technology in Lausanne (EPFL)

June 25-26, 2019

Outline

- We want to do Data Assimilation on Fission Yields (FY)
- Evidence: PIE data from LWR-Proteus Phase II
- Posteriors:
 - 1. Improved nuclide compositions (biases and uncertainties)
 - 2. Adjusted FY data (means and covariances of model parameters)
- Recipe:
 - 1. GEF for FYs (sample model parameters)
 - 2. Simulations with CASMO-5 and GEF samples
 - 3. Marginal Likelihood Optimization: Inconsistent experimental data
 - 4. BFMC to fit model parameters to experimental data
 - 5. Rerun GEF with posterior model parameters
 - 6. Compare posterior FYs to prior, JEFF3.3, ENDFB/V-III.0
 - 7. Inspect posterior calculated nuclide concentrations

GEF Model Parameters

- Around 100 model parameters in GEF
- Parameters set once with benchmark experimental data
- 21 have uncertainties assigned to them
- Defined as normal and independent

Input Parameter	Mean	Std.	Input Parameter	Mean	Std
Shell position for S_1 channel	-0.18	0.1	Shell curvature for S_1 channel	0.37	5%
Shell position for S_2 channel	-0.46	0.1	Shell curvature for S_2 channel	0.185	5%
Shell position for S_3 channel	-0.37	0.1	Shell curvature for S_3 channel	0.156	5%
Shell position at $Z \approx 42$	0.0	0.1	Shell curvature at $Zpprox$ 42	0.035	5%
Shell effect for S_1 channel	-2.85	0.1	Weakening of the S_1 shell	0.31	0.1
Shell effect for S_2 channel	-4.4	0.1	$(\hbar\omega)_{eff}$ for tunneling of S_1 channel	0.32	0.1
Shell effect for S_3 channel	-6.4	0.2	$(\hbar\omega)_{eff}$ for tunneling of S_2 channel	0.31	0.1
Shell effect at $Z \approx 42$	-0.9	0.05	$(\hbar\omega)_{eff}$ for tunneling of S_3 channel	0.31	0.1
Rectangular contribution to S ₂ channel width	12.5	5%	$(\hbar\omega)_{eff}$ for tunneling at $Zpprox42$	0.31	0.1
Shell effect at mass symmetry	0	0.1	Width of fragment distribution in N/Z	1	10%
Charge Polarization	0.25	0.1			

Table: Means and standard deviations of GEF model parameters.

daniel.siefman@epfl.ch (EPFL)

PDF of Fission Product Concentration

- FYs have non-normal distributions
 - Max skewness = 1.3
 - Avg. skewness = 0.74 \pm 0.08
- Coupled nature of equations creates non-linearity
- Some FPs have non-normal distributions
 - Max skewness = 1.6
 - Avg. skewness = 0.4 \pm 1.12

Figure: Histogram of Gd-160 concentration normalized to mean

BFMC: Bayesian Monte Carlo

- Stochastically searches for maximum likelihood
- No assumptions about prior distribution: can be non-normal!
- Each sample of nuclear data used in one calculation $C_i(\sigma_i)$
- Sample set of calculations used in likelihoods

$$L(\mathbf{E}|\boldsymbol{\sigma}_i) \propto e^{-\chi_i^2/2}$$
 (1)

$$\chi_i^2 = \left(\mathbf{E} - \mathbf{C}_i(\boldsymbol{\sigma}_i)\right)^T (\mathbf{M}_{\mathbf{E}})^{-1} \left(\mathbf{E} - \mathbf{C}_i(\boldsymbol{\sigma}_i)\right)$$
(2)

• Each χ_i^2 is used to calculate a weight, w_i

$$w_i = \chi_i^2 / \chi_{\min}^2$$

Posteriors: Weighted Averages

Figure: Weight distribution example.

BFMC Procedure

• Sample model parameters in GEF2017/1.2 to create samples of FYs

- Thermal fission @ 0.0253 eV: U-235, Pu-239, Pu-241
- Fast fission @ 0.5 MeV: U-238
- Do burnup calculation with sample set of FYs
- BFMC-update with burnup calculations and PIE data
 - Adjusted GEF model parameters
 - Reduced uncertainties
 - New correlations
- Re-run GEF with adjusted model parameters
 - Generate new FYs with GEF and adjusted model parameters
- Calculate new nuclide concentrations and their uncertainties

Application Case

- Test using PIE data from the Proteus experimental campaign
 - UO₂ fuel sample
 - Burnup of 38 MWd/kg
 - 33 fission products
 - Measured in the PSI hotlab with mass spectroscopy, gamma spectroscopy
- Simulate with CASMO-5
- 10,000 prior FY samples
- 500 posterior FY samples

Figure: Experimental correlation matrix

Experimental Data

Figure: Experimental data part of LWR-PII on the Pu-239 FY spectrum

Recipe MLO

Inconsistent Data

- Certain nuclide compositions are inconsistent
 - Difference between C and E not explained by uncertainty
 - Model defect unaccounted for
 - Uncertainty underestimated
 - Correlations not taken into account

• Causes too large and unphysical adjustments to model parameters

Marginal Likelihood Optimization (MLO)

- We apply a technique called MLO for inconsistent data
 - Terranova et al., Fission yield covariance matrices for the main neutron-induced fissioning systems contained in the JEFF-3.1.1 library, Annals of Nuclear Energy, 109, 2017
- Idea: Account for biases or underestimated uncertainties with an extra uncertainty term, M_{extra}
- Minimize the negative of the log-likelihood to estimate Mextra

$$\chi^{2} = \left(\mathbf{E} - \mathbf{C}\right)^{T} \left(\mathbf{M}_{\mathbf{E}} + \mathbf{M}_{\mathbf{C}} + \mathbf{M}_{\mathsf{extra}}\right)^{-1} \left(\mathbf{E} - \mathbf{C}\right)$$
(3)

$$L = \frac{e^{-\chi^2/2}}{\sqrt{(2\pi)^N \det(\mathbf{M_E} + \mathbf{M_C} + \mathbf{M_{extra}})}}$$
(4)

$$\min\left[\frac{1}{2}\left(N*\log(2\pi) + \det\left(\mathbf{M}_{\mathbf{E}} + \mathbf{M}_{\mathbf{C}} + \mathbf{M}_{\mathbf{extra}}\right) + \chi^{2}\right)\right]$$
(5)

Recipe M

MLO

MLO Results

- Before MLO $\chi^2/N = 23$
- After MLO $\chi^2/N = 0.7$

Figure: Biases before and after applying MLO to ensure consistency

Comparison to JEFF3.3 and ENDFB/V-III.0

Means: Relative Difference from ENDFB/V-III.0

Comparison to ENDFB/VIII.0

Table: Average Relative Differences from ENDFB/VIII.0 (Absolute Values for Means)

		Mean	Standard Deviation
Pu-239	Prior	15.8	15.9
	Posterior	11.4	-15.5
U-235	Prior	12.9	176.8
	Posterior	15.0	100.6
Pu-241	Prior	21.9	5.3
	Posterior	15.8	-27.7

Adjustments of Pu-239 FY Correlations

Posterior Calculated FP Concentrations

	Prior	Posterior
Average absolute bias	26.4%	15.4%
Average relative standard deviation	20.9%	8.83%

Applied to Another Fuel Sample

The End

- Showed an approach to incorporate PIE data into burnup simulations
- Improved biases and reduced uncertainties
- Improved agreement with ENDFB/VIII.0 FYs
- Weakened correlations between FYs
- Was an engineering application, how useful for nuclear data?
- More diverse PIE data would be better
- Cleaner experiments?

Questions?

Figure: Campus of EPFL in Lausanne, Switzerland

daniel.siefman@epfl.ch (EPFL)

GEF Parameters Adjustments

Experimental Correlations

Experimental Correlations

- Most nuclide concentrations measured with high-performance liquid chromatography (HPLC) and a multicollector inductively-coupled plasma mass spectrometer (MC-ICP-MS)
 - HPLC: to separate chemical elements
 - MC-ICP-MS: to measure the isotopic concentrations
- Only MC-ICP-MS for metallic fission products
 - No isobaric interference
 - Mo-95, Tc-99, Ru-101, Rh-103, and Ag-109
- Ru-106, Sb-125, Ce-144, and Cm-243 measured with gamma ray spectrometry
 - Present in very small concentrations

Experimental Correlations

 Experimental value: mass of isotope relative to the total mass of U (mg/g)

$$\epsilon_i = w_i \frac{\eta_j}{U_{\rm tot}}$$

- Correlations arise from $U_{\rm tot}$ normalization, common element mass η_j
- Assume no correlations between w, $U_{\rm tot}$, and η

$$V_{out} = J^T V_{in} J$$

$$\mathbf{J} = \begin{bmatrix} \frac{\delta\epsilon_1}{\delta U_{\text{tot}}} & \frac{\delta\epsilon_2}{\delta U_{\text{tot}}} & \cdots & \frac{\delta\epsilon_n}{\delta U_{\text{tot}}} \\ \frac{\delta\epsilon_1}{\delta\eta_1} & \frac{\delta\epsilon_2}{\delta\eta_1} & \cdots & \frac{\delta\epsilon_n}{\delta\eta_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta\epsilon_1}{\delta\eta_n} & \frac{\delta\epsilon_2}{\delta\eta_n} & \cdots & \frac{\delta\epsilon_n}{\delta\eta_n} \\ \frac{\delta\epsilon_1}{\deltaw_1} & \frac{\delta\epsilon_2}{\deltaw_1} & \cdots & \frac{\delta\epsilon_n}{\deltaw_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta\epsilon_1}{\deltaw_n} & \frac{\delta\epsilon_2}{\deltaw_n} & \cdots & \frac{\delta\epsilon_n}{\deltaw_n} \end{bmatrix}$$

Model Adjustments: Means

Figure: Adjustments to 21 model parameters, with and without MLO.

Model Adjustments: Means

Figure: Adjustments to 21 model parameters, with and without MLO.

Extra Slides

Model Adjustments: Standard Deviations

Figure: Adjustments to standard deviations of 21 model parameters, with and without MLO.

daniel.siefman@epfl.ch (EPFL)

Development of Correlations Between Model Parameters

• Model parameters sampled from mulitvariate Gaussian distribution using these covariance matrices

Figure: Prior

Figure: Without MLO

Figure: With MLO

Standard Deviations: Relative Difference from ENDFB/V-III.0

Means: Relative Difference from JEFF3.3

Extra Slides

Standard Deviations: Relative Difference from JEFF3.3

