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Inconsistent data 

IEU-Met-Fast and HEU-Met-Fast1

1000 TENDL2014 files
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1Curtesy of Steven Van Der Marck



Inconsistent data - causes

• Model defects 

– e.g., ND uncertainties or correlation not taking into 

account (lack of nuisance parameters).

– models inability to reproduce the true ND.

• Unaccounted experimental uncertainties or correlations.

• Underestimated  statistical uncertainties. 

• Isotopes not taken into account.
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Previous attempts to address 

inconsistent integral experiments

Adjustment Margin (AM)

Δ𝜒2 filtering

Includes correlations
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Possible issues

AM 

1) does not take into 

account correlations.

2) is binary.

Δ𝜒2 filtering

1) is binary.

2) The choice of 1.2 is 

rather arbitrary? It should 

depend on the number of 

experiments. (Can be 

resolved)
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Before and after calibration

IEU-Met-Fast and HEU-Met-Fast1

1000 TENDL2014 files

6AM would not reject any of the experiments. 



Treating inconsistent data using 

Marginal Likelihood Optimization (MLO)
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R033 – G. Schnabel ,Interfacing TALYS with A 
Bayesian Treatment of Inconsistent Data and 
Model Defects, ND2019

(Extra uncertainty)L f



MLO for integral data and BMC

• We add an extra uncertainty to each experiment.

• σextra found by 

maxzimizing1 L: 
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1 Here MC and integral information.  Compare with
1G.Schnabel, Fitting and analysis technique for inconsitent data,MC2017  

n = number of experiments 



Adding a prior 

βis chosen by expert judgement or in a data-driven approach1. 
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1G.Schnabel, Fitting and analysis technique for inconsitent data,MC2017  

To favor small extra uncertainties. 
Includes more of expert judgement. 



MLO for BMC / GLS
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Synthetic data study MLO - GLS

- Characterize MLO’s performance,

- GLS 

- No prior on the extra uncertainty

- Take hypothetical integral parameters (IPs)

- Have calculated values (C) and experimental (E), which 
have covariance matrices M

E
and M

C

- Manipulate the reported uncertainty in M
E

to see if MLO 
can account for it

- Under-reported: M
E

fake = M
E

* 0.1

- Give M
E

fake to MLO, and see if it reproduces M
E



Under-estimated E Uncertainty
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Under-estimated E Uncertainty

• - Chi2 plotted with sample mean, std from chi2 

distribution 



Under-estimated E Uncertainty

- Averaged across all IPs 
𝛿𝐸𝑓𝑎𝑘𝑒
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MLO Applied to SG33 Benchmark

- Apply MLO to controlled set of benchmarks using GLS 
version of the formula

- No prior on extra uncertainty and no experimental 
correlations between the IP. 

- Conceptually easy case: one inconsistent IP

- Perhaps not ideal case:

- Prior chi2 is already too small, likely overconistent, (data already 
tuned to these experiments? )

- Using MLO here to only identify inconsistent IP

- 33 group ENDF/B-VII.0  and COMMARA- 2.0. 

- B-10, O-16, Na-23, Fe-56, Cr-52, Ni-58, U-235/238, 

Pu-239/240/241



MLO Effects on SG33 Benchmark



Posterior Nuclear Data Adjustments



Posterior Nuclear Data Adjustments



Posterior Nuclear Data Adjustments

Correlations were also changed. 



BMC case

IEU-Met-Fast and HEU-Met-Fast1

1000 TENDL2014 files
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Benchmark errors are correlated: 

Adding a correlation term  

• Correlations: σE, σdefect, 

σother_isotopes

• A fully correlated 

uncertainty is added to 

all experiments.
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Benchmark correlation-matrix



Results – with correlation
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Benchmark uncertainties [PCM] HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Fully correlated

No ML: Reported uncertainties 100 160 300 170 80 0

Uptated uncertainties 153 204 300 580 390 0

With correlation 267 329 333 591 409 257



Results with an added prior
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Benchmark uncertainties [PCM] HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Fully correlated

No ML: Reported uncertainties 100 160 300 170 80 0

Uptated uncertainties 153 204 300 580 390 0

With correlation 267 329 333 591 409 257

With prior 232 263 366 468 228 209

Posterior HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Chi2 p_value

No ML 69 28 103 52 34 2,1 6%

Uptated uncertainties 139 131 234 183 273 0,38 86%

With correlation 264 254 313 290 351 0,4 84%

With Prior 253 214 288 256 265 0,58 72%



A larger data set / BMC  – No MLO 
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8500 TENDL files, MCNP6, PU9, U8 and U5



With MLO

25

+200pcm +200pcm

If allowed, the MLO reduces the uncertainties for most of the 
experiments, indicating that some tuning to these experiments 
have already been done.



Conclusion

• We need to find and treat unrecognized systematic 
uncertainties (USU). 

• Marginal Likelihood Optimization (MLO) can be an effective 
tool for this.

• Treating USU reduces the risk of overfitting to the integral 
data.  
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• MLO is our preferred method

 Includes correlations

 Can introduce correlations 

 Transparent

 Not binary 

 Statistical well-founded

 Can be combined with expert 
judgment.  

 Works with both GLS and 
BMC adjustment. 



Next step: include the full likelihood 

functions. 
• All values of the likelihood 

functions are possible, 
hence should be taken into 
account. 

– affects the best-estimate 
and normally increase 
the uncertainty → 
decrease the 
adjustment. 

• Can be achieved by, e.g., 
sampling. 

• Performed for differential 
data (reported in SG 44)



THANK YOU FOR YOUR 

ATTENTION!
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