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Motivation for Using Bias Factor Method

• Currently in advanced reactor design cross section
adjustments are falling out of favor for many different
reasons. This has been the case for projects under
development in France, USA, and Japan.

• Among the reasons that are mentioned we find:

– The adjustment methodology is difficult to understand
by the designers and they want something simpler
(Japan).

– The adjustment methodology is cumbersome and
difficult to implement for practical applications and
require a significant effort (France, USA).

– The adjustment methodology relies on modification of
multigroup infinite dilution cross sections, if other
approaches are used (e. g. Monte Carlo, ultra-fine
groups) it is not clear how to apply.

• The bias factor methodology is a relatively easier and
useful alternative for taking into account the uncertainties
of cross sections, especially in a preliminary design stage.



Bias Factor Methods and Their Application

• We will illustrate various bias factor methods including:

– Standard Bias Factor Method

– The Representativity Weighted Bias Factor Method

– The Generalized Bias Factor Method

– The Product of Exponentials Bias Factor Method

• These methods will be applied to a practical case: the
critical mass of a typical fast test reactor with metallic fuel
and enriched U and Pu.



The Standard Bias Factor Methodology

• The bias factor methodology exploits the information, i. e. the
discrepancy between experimental and calculated values, of
“pertinent” integral experiments. This allows to correct the
calculated values of the target reactor, and to attach a
reasonable uncertainty estimate to it.

• The standard bias factor method actually uses only one “mock
up” experiment.

• The calculated value on the target reactor 𝑅𝑐
𝑖 is multiplied by a

bias factor 𝑓𝐸
𝑖 for the corresponding integral parameter i defined

as the ratio between the experimental 𝐸𝐸
𝑖 and calculated 𝐸𝑐

𝑖

value of the mock up experiment.

𝑅′𝑐
𝑖 = 𝑅𝑐

𝑖𝑓𝐸
𝑖

𝑓𝐸
𝑖 =

𝐸𝐸
𝑖

𝐸𝑐
𝑖
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The Representativity Factor

• In order to adopt standard bias factor methodology, one has to have in
principle a real mock up experiment, i. e. a correspondence one to one
between the target reactor and the integral experiment.

• One way to evaluate if the experiment is a real mock up one is to use
the “representativity” factor.

• We start from the definition of the square of the uncertainty
associated to neutron cross section data ∆𝑹𝒊

𝟐 for the integral
parameter i end reactor r and characterized by the covariance matrix
D.

• If we compute the sensitivity coefficient array 𝑆𝑟
𝑖 and the

corresponding transposed one 𝑺𝒓
𝒊+, we use the sandwich formula:

∆𝑹𝒊
𝟐 = 𝑺𝒓

𝒊+𝑫𝑺𝒓
𝒊

• Then, if we compute the corresponding sensitivity array 𝑆𝐸
𝑖 for the

integral experiment, we can express the representativity factor 𝑟𝑟𝑒 as:

𝒓𝒓𝒆 =
𝑺𝒓
𝒊+𝑫𝑺𝑬

𝒊

𝑺𝒓
𝒊+𝑫𝑺𝒓

𝒊 𝑺𝑬
𝒊+𝑫𝑺𝑬

𝒊
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The Bias Factor Uncertainty

• If the representativity factor is equal to 1, then we have a perfect mock
up experiment. What it tells is that, if there is a change to the value of
integral parameter i due to a change of a cross section and the
representativity factor is equal to one, the two systems, reactor and
experiment, react in exactly the same way.

• Moreover, it can be shown that, when the representativity factor is 
known, the uncertainty on the reactor calculated value can be reduced 
by the information coming from the integral experiment as:

∆𝑹𝒊
′𝟐 = ∆𝑹𝒊

𝟐 𝟏 − 𝒓𝒓𝒆
𝟐

• Experimental and calculational uncertainties of the integral
experiment have to be accounted for, as well as the technological
uncertainties (e.g. dimensions and densities) impacting the reactor
parameters of interest. For simplicity, here we include the
technological uncertainties in the experimental ones, and, in
particular, for the relative uncertainty on the bias factor we have

∆𝒇𝑬
𝒊

𝒇𝑬
𝒊
=

∆𝑬𝑬
𝒊

𝑬𝑬
𝒊

𝟐

+
∆𝑬𝒄

𝒊

𝑬𝒄
𝒊

𝟐
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The Representativity Weighted Bias Factor 
Method

• We will use a combination of bias factors, where the uncertainty due
to cross sections is quantified through the standard deviation of the
dispersion of bias factors for a series of integral experiments.

• Having a number N of integral experiments for the integral parameter
of interest, we define the weighted bias factor as:

෩𝒇𝒊 = σ𝒋=𝟏
𝑵 𝝎𝒋 𝒇𝒋

𝒊

σ𝒋=𝟏
𝑵 𝝎𝒋 = 𝟏

• The relative standard deviation of the weighted bias factor is
calculated as:

∆ ෩𝒇𝒊

෩𝒇𝒊
=

σ𝒋=𝟏
𝑵 𝝎𝒋 𝒇𝒋

𝒊−෪𝒇𝒊
𝟐

ൗ𝑵−𝟏
𝑵

෩𝒇𝒊
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The Representativity Weighted Bias Factor 
Method

• To this term we have to add the weighted experimental and
calculational uncertainty of the N experiments so that the final formula
becomes:

∆ ෩𝒇𝒊

෩𝒇𝒊
= σ𝒋=𝟏

𝑵 𝝎𝒋

∆𝑬𝑬𝒋
𝒊

𝑬𝑬𝒋
𝒊

𝟐

+
∆𝑬𝒄𝒋

𝒊

𝑬𝒄𝒋
𝒊

𝟐

+

σ𝒋=𝟏
𝑵 𝝎𝒋 𝒇𝒋

𝒊−෪𝒇𝒊
𝟐

ൗ𝑵−𝟏
𝑵

෩𝒇𝒊

ൗ𝟏 𝟐

• The calculational uncertainty of the reactor needs to be added to that

of the weights bias factor as well as the technological ones
∆𝑹𝒕

𝒊

𝑹𝒕
𝒊 , so that

the final uncertainty is computed as:

∆𝑹𝒊
′

𝑹𝒊
′ =

∆ ෩𝒇𝒊

෩𝒇𝒊

𝟐

+
∆𝑹𝒄

𝒊

𝑹𝒄
𝒊

𝟐

+
∆𝑹𝒕

𝒊

𝑹𝒕
𝒊

𝟐
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The Representativity Weighted Bias Factor 
Method

• In order to define the weights, we use the representativity factors
formulas for discriminating among all the available experiments. We
can use different definitions for the weighting factors (always
normalized to 1):

 The representativity factor: 𝝎𝒋=
𝑺𝒓
𝒊+𝑫𝑺𝒋

𝒊

𝑺𝒓
𝒊+𝑫𝑺𝒓

𝒊 𝑺𝒋
𝒊+𝑫𝑺𝒋

𝒊

 A stronger “representative” weight as the inverse of the reduction

factor: 𝝎𝒋 = ൗ𝟏 𝟏 − 𝒓𝒓𝒆
𝒋𝟐

. This is the one adopted for the

application.

 A combination of the representative weight and one derived by the

uncertainty of the experiments: 𝝎𝒋
𝒖 =

∆𝒇𝒋𝑬
𝒊

𝒇𝒋𝑬
𝒊

σ𝒋=𝟏
𝑵

∆𝒇𝒋𝑬
𝒊

𝒇𝒋𝑬
𝒊

. The two weights

𝝎𝒋
𝒓𝒆𝒑

, the representativity ones, and 𝝎𝒋
𝒖, the uncertainty ones, can

be summed up, because they are normalized to one, and then
renormalized.
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The Generalized Bias Factor Method
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If negative!

Variance is minimized with respect to the weights (first derivative equal to zero).



The Product of Exponentials Bias Factor Method
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? If negative!

Variance is minimized with respect to the weights (first derivative equal to zero).



Application to a Fast Test Reactor

• The application is the critical mass (Keff) of a typical fast test
reactor with metallic fuel and enriched U and Pu.

• A threshold of 0.75 was used for the representativity
factor in order to select the relevant experiments.

• Four uncorrelated experiments were selected:

– ZPPR-15 A

– CIRANO 2B

– FFTF start up configuration

– ZPR3-56B

• No correlation among experiments exist, and calculational
uncertainty was put equal to zero (with Monte Carlo is in the
pcm range).

• Besides bias factor methods, also adjustments was
performed using the same experiments in order to compare
results.
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Characteristics of the Experiments

Experiment ZPPR-15 A CIRANO 2B FFTF ZPR3-56B 

Bias Factor 1.0018 0.9936 0.9962 0.9969 

Exper. Uncert. 

pcm 
89 200 211 150 

Represent. 

Factor 
0.7819 0.9485 0.8618 0.8366 

Reduced 

Uncert.a) pcm 
535 272 436 470 

Total Uncert. 

pcm 
542 338 484 493 

List of Keff experiments, bias factors, and uncertainty with respect to the FTR (Fast Test Reactor). 

Starting FTR Uncertainty due to nuclear data: 859 pcm. 
a) Using Standard Bias Factor Methodology 

Estimated



3 Experiments Weights

Experiment ZPPR-15 A FFTF ZPR3-56B 

Represent. 

Weighted BF 
0.2628 0.3970 0.3403 

Generalized BF 0.1663 0.4553 0.3783 

Product of 

Expon. BF a) 
0.1807 0.4109 0.3666 

Table -. Bias Factor weights for different methods. 3 experiments used. 
a) Exponents of the product 



3 Experiments Results

Method Bias Factor 
Nucl. Data Unc. 

pcm 

Exper. Unc. 

pcm 

Total Unc. 

pcm 

Represent. 

Weighted BF 
0.9979 287 166 331 

Generalized BF 0.9974 433 173 466 

Product of 

Expon. BF a) 
0.9976 455 167 485 

Adjustment 0.9977 a) 470 470 

Bias Factor and uncertainty with respect to the FTR for different methods. 3 experiments used. 
a) Derived as the ratio between the calculated Keff with adjusted cross section and unadjusted ones. 



4 Experiments Weights

Experiment ZPPR-15 A CIRANO 2B FFTF ZPR3-56B 

Represent. 

Weighted BF 
0.1303 0.5042 0.1968 0.1687 

Generalized BF 0.1659 0.7324 0.1017 0.0 b) 

Product of 

Expon. BF a) 
0.2066 0.8034 0.0241 -0.1113 

Bias Factor weights for different methods. 4 experiments used. 
a) Exponents of the product 

b) Negative value of -0.084 was obtained, replaced with zero, and renormalized the weights to 1. 



4 Experiments Results

Method Bias Factor 
Nucl. Data Unc. 

pcm 

Exper. Unc. 

pcm 

Total Unc. 

pcm 

Represent. 

Weighted BF 
0.9957 314 184 364 

Generalized BF 0.9952 264 187 324 

Product of 

Expon. BF a) 
0.9955 307 180 356 

Adjustment 0.9968 a) 317 317 

Bias Factor and uncertainty with respect to the FTR for different methods. 4 experiments used. 
a) Derived as the ratio between the calculated Keff with adjusted cross section and unadjusted ones. 



CONCLUSIONS

• Bias factor methods have been compared in a practical
case, the critical mas of fast test reactor, using four
different experiments and compared against cross section
adjustments using the same experiments.

• Results are quite comparable in terms of resulting bias
factor and reduction of the initial uncertainty related to
nuclear data; however, the generalized and product of
exponential methods can produce negative weights, and
potentially this could be a problem.

• The standard bias factor method is preferable in presence
of significantly high representativity factors (e.g. 0.95).

• In bias factor methods is crucial to use experiments that
capture the physics of the integral parameter under
consideration. For the FTR is very important to capture the
reflector effect.
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