Proposal of Target Accuracy for ADS Neutronics Design

Takanori SUGAWARA, Masahiro FUKUSHIMA and Kenji NISHIHARA

JAEA

	Proposal		
	for ADS		
Multiplication factor (BOL)	450pcm	From the viewpoint of core configuration.	
		±3 FA (fuel assemblies) can be	
		permitted (One FA has about 150 pcm).	
Power peak (BOL)	5%	If k-eff=0.98 at BOL. This value is used	
		for the estimation of cladding tube	
		temperature for SFR.	
Burnup reactivity swing	200 pcm	If k-eff changes from 0.98 (BOL) to 0.96	
		(EOL). The value is 5% of the	
		subcriticality at EOL.	
Coolant void reactivity	300 pcm	It should be set as pcm to consider	
		positive/negative effects. The definition	
		of coolant void (in core or whole region)	
		should be explained.	
Doppler reactivity	10%	The doppler reactivity is not so	
		important in ADS design because the	
		value is very small.	
ajor nuclide density at end of irradiation	Samo as NEA M/DEC/SC26 roport		
cycle	2 70	Same as NEA WFEC/SGZO TEPUL	
Other nuclide density at end of irradiation	10%	Same as NEA WPEC/SG26 report	
cycle			

Discussed based on ANE 111, 449-459 (2018)

Additional parameters to be considered for ADS

	Proposal	
	for ADS	
β _{eff} (BOL/EOL)	3%	The subcriticality will be measured in
		unit of \$ by PNS method in ADS. Then,
		it will be converted by β_{eff} to absolute
		subcriticality, which affects directly to
		the proton beam current.
Product of Number of spallation neutron	20/	$N_{p}\phi^{*}$ is the parameter related to the
(N_p) and Spallation source efficiency (ϕ^*)	370	thermal power of ADS.
Heat generation by spallation reaction	5%	This value is important for the design of
		beam window

Comparison

	NEA/WPEC -26 report (2008)	Proposal by Dr. Salvatores	Proposal for ADS by JAEA
Multiplication factor (BOL)	300 pcm	200 pcm	450pcm
Power peak (BOL)	2%	1%	5%
Burnup reactivity swing	300 pcm	200 pcm	200 pcm
Reactivity coefficients (Coolant void and Doppler – BOL/EOL)	7%	5%	300pcm (void) 10% (Doppler)
Control rod bank	-	3%	-
Single control rod	-	2%	-
Major nuclide density at end of irradiation cycle	2%	1%	2%
Other nuclide density at end of irradiation cycle	10%	10%	10%